1
|
Nirogi R, Jayarajan P, Shinde A, Mohammed AR, Grandhi VR, Benade V, Goyal VK, Abraham R, Jasti V, Cummings J. Progress in Investigational Agents Targeting Serotonin-6 Receptors for the Treatment of Brain Disorders. Biomolecules 2023; 13:309. [PMID: 36830678 PMCID: PMC9953539 DOI: 10.3390/biom13020309] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Serotonin (5-HT) plays an important role in the regulation of several basic functions of the central and peripheral nervous system. Among the 5-HT receptors, serotonin-6 (5-HT6) receptor has been an area of substantial research. 5-HT6 receptor is a G-protein-coupled receptor mediating its effects through diverse signaling pathways. Exceptional features of the receptors fueling drug discovery efforts include unique localization and specific distribution in the brain regions having a role in learning, memory, mood, and behavior, and the affinity of several clinically used psychotropic agents. Although non-clinical data suggest that both agonist and antagonist may have similar behavioral effects, most of the agents that entered clinical evaluation were antagonists. Schizophrenia was the initial target; more recently, cognitive deficits associated with Alzheimer's disease (AD) or other neurological disorders has been the target for clinically evaluated 5-HT6 receptor antagonists. Several 5-HT6 receptor antagonists (idalopirdine, intepirdine and latrepirdine) showed efficacy in alleviating cognitive deficits associated with AD in the proof-of-concept clinical studies; however, the outcomes of the subsequent phase 3 studies were largely disappointing. The observations from both non-clinical and clinical studies suggest that 5-HT6 receptor antagonists may have a role in the management of neuropsychiatric symptoms in dementia. Masupirdine, a selective 5-HT6 receptor antagonist, reduced agitation/aggression-like behaviors in animal models, and a post hoc analysis of a phase 2 trial suggested potential beneficial effects on agitation/aggression and psychosis in AD. This agent will be assessed in additional trials, and the outcome of the trials will inform the use of 5-HT6 receptor antagonists in the treatment of agitation in dementia of the Alzheimer's type.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Pradeep Jayarajan
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Anil Shinde
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Abdul Rasheed Mohammed
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Venkata Ramalingayya Grandhi
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Vijay Benade
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Vinod Kumar Goyal
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Renny Abraham
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Venkat Jasti
- Suven Life Sciences Limited, Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
2
|
Nirogi R, Ieni J, Goyal VK, Ravula J, Jetta S, Shinde A, Jayarajan P, Benade V, Palacharla VRC, Dogiparti DK, Jasti V, Atri A, Cummings J. Effect of masupirdine (SUVN-502) on cognition in patients with moderate Alzheimer's disease: A randomized, double-blind, phase 2, proof-of-concept study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12307. [PMID: 35662833 PMCID: PMC9157584 DOI: 10.1002/trc2.12307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 04/27/2022] [Indexed: 01/21/2023]
Abstract
Introduction This study explored the efficacy and safety of a serotonin-6 receptor antagonist, masupirdine, as adjunct treatment in patients with moderate Alzheimer's disease (AD) concomitantly treated with donepezil and memantine. Methods The effects of masupirdine were evaluated in patients with moderate AD dementia on background treatment with donepezil and memantine. Five hundred thirty-seven patients were expected to be randomized in a 1:1:1 ratio, using permuted blocked randomization. After a 2- to 4-week screening period, the study consisted of a 26-week double-blind treatment period, and a 4-week washout period. The primary efficacy measure was the 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog 11). Secondary efficacy measures were Clinical Dementia Rating Scale-Sum of Boxes, Mini-Mental State Examination, 23-item Alzheimer's Disease Co-operative Study Activities of Daily Living, and 12-item Neuropsychiatric Inventory. Changes from baseline were analyzed using a mixed effects model for repeated measures (MMRM). A total of 564 patients were randomized to receive either daily masupirdine 50 mg (190 patients), masupirdine 100 mg (185 patients), or placebo (189 patients). The study is registered at ClinicalTrials.gov (NCT02580305). Results The MMRM results showed statistically non-significant treatment differences in change from baseline in ADAS-Cog 11 scores at week 26, comparing each masupirdine dose arm to the placebo arm. No significant treatment effects were observed in the secondary evaluations. Discussion Masupirdine was generally safe and well tolerated. Possible reasons for the observed trial results are discussed. Highlights Masupirdine was evaluated in moderate Alzheimer's disease patients.First trial in class with background treatment of donepezil and memantine.Masupirdine was generally safe and well tolerated.Possible reasons for the observed trial results are discussed.
Collapse
Affiliation(s)
| | - John Ieni
- Suven Life Sciences LimitedHyderabadIndia
| | | | | | | | | | | | | | | | | | | | - Alireza Atri
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizonaand Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jeffrey Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of NevadaLas VegasNevadaUSA
| |
Collapse
|
3
|
Li X, Gao L, Liu J, Zhang H, Chen H, Yang L, Wu M, Li C, Zhu X, Ding Y, Sun L. Safety, Tolerability and Pharmacokinetics of the Serotonin 5-HT6 Receptor Antagonist, HEC30654, in Healthy Chinese Subjects. Front Pharmacol 2021; 12:726536. [PMID: 34489712 PMCID: PMC8416768 DOI: 10.3389/fphar.2021.726536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: HEC30654 is a selective 5-HT6 receptor antagonist that was safe and well-tolerated in preclinical models of Alzheimer’s disease. The objective of this double-blind, randomized, placebo-controlled clinical trial was to evaluate the safety, tolerability, and pharmacokinetic profile of HEC30654 after single ascending doses in healthy Chinese subjects. Methods: Healthy volunteers received a single oral dose of HEC30654 (5, 10, 15, 30, 60 mg). Safety and tolerability assessments included adverse events, vital signs, and findings on electrocardiograms, electroencephalograms, physical examination, and clinical laboratory tests. Pharmacokinetic analysis of HEC30654 and its major metabolite HEC93263 were conducted in blood, urine, and fecal samples. Results: Single doses of HEC30654 up to 30 mg were generally safe and well tolerated, but dose escalation was terminated early as the 60 mg HEC30654 treatment group met the pre-defined stopping rules specified in the protocol. Median tmax of HEC30654 was 6 h (range, 4–12 h), t1/2 of 10–60 mg HEC30654 ranged from 52.1 to 63.8 h. Exposure to HEC30654 across the dose range explored in this study increased more than in proportion to dose. Metabolism of HEC30654 to HEC93263 was slow (<10%), and HEC30654 was mainly eliminated unchanged through feces. Conclusion: Single doses of HEC30654 up to 30 mg were generally safe and well tolerated. Based on preclinical efficacy in various models of cognition, HEC30654 may represent a therapeutic option for symptomatic treatment of cognitive disorders.
Collapse
Affiliation(s)
- Xiaojiao Li
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Lei Gao
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Jingrui Liu
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Hong Zhang
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Hong Chen
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Lizi Yang
- Nanguan District Maternal and Child Health and Family Planning Service Center of Changchun, Changchun, China
| | - Min Wu
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Cuiyun Li
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxue Zhu
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Yanhua Ding
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Hogendorf A, Hogendorf AS, Kurczab R, Satała G, Szewczyk B, Cieślik P, Latacz G, Handzlik J, Lenda T, Kaczorowska K, Staroń J, Bugno R, Duszyńska B, Bojarski AJ. N-Skatyltryptamines-Dual 5-HT 6R/D 2R Ligands with Antipsychotic and Procognitive Potential. Molecules 2021; 26:4605. [PMID: 34361754 PMCID: PMC8347595 DOI: 10.3390/molecules26154605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
A series of N-skatyltryptamines was synthesized and their affinities for serotonin and dopamine receptors were determined. Compounds exhibited activity toward 5-HT1A, 5-HT2A, 5-HT6, and D2 receptors. Substitution patterns resulting in affinity/activity switches were identified and studied using homology modeling. Chosen hits were screened to determine their metabolism, permeability, hepatotoxicity, and CYP inhibition. Several D2 receptor antagonists with additional 5-HT6R antagonist and agonist properties were identified. The former combination resembled known antipsychotic agents, while the latter was particularly interesting due to the fact that it has not been studied before. Selective 5-HT6R antagonists have been shown previously to produce procognitive and promnesic effects in several rodent models. Administration of 5-HT6R agonists was more ambiguous-in naive animals, it did not alter memory or produce slight amnesic effects, while in rodent models of memory impairment, they ameliorated the condition just like antagonists. Using the identified hit compounds 15 and 18, we tried to sort out the difference between ligands exhibiting the D2R antagonist function combined with 5-HT6R agonism, and mixed D2/5-HT6R antagonists in murine models of psychosis.
Collapse
Affiliation(s)
- Agata Hogendorf
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Adam S. Hogendorf
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (B.S.); (P.C.)
| | - Paulina Cieślik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (B.S.); (P.C.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (G.L.); (J.H.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (G.L.); (J.H.)
| | - Tomasz Lenda
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland;
| | - Katarzyna Kaczorowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Jakub Staroń
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| |
Collapse
|
5
|
2-Aminoimidazole-based antagonists of the 5-HT 6 receptor - A new concept in aminergic GPCR ligand design. Eur J Med Chem 2019; 179:1-15. [PMID: 31229883 DOI: 10.1016/j.ejmech.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/17/2019] [Accepted: 06/01/2019] [Indexed: 01/14/2023]
Abstract
A new strategy in the design of aminergic GPCR ligands is proposed - the use of aromatic, heterocyclic basic moieties in place of the evergreen piperazine or alicyclic and aliphatic amines. This hypothesis has been tested using a benchmark series of 5-HT6R antagonists obtained by coupling variously substituted 2-aminoimidazole moieties to the well established 1-benzenesulfonyl-1H-indoles, which served as the ligands cores. The crystallographic studies revealed that upon protonation, the 2-aminoimidazole fragment triggers a resonance driven conformational change leading to a form of higher affinity. This molecular switch may be responsible for the observed differences in 5-HT6R activity of the studied chemotypes with different amine-like fragments. Considering the multiple functionalization sites of the embedded guanidine fragment, diverse libraries were constructed, and the relationships between the structure and activity, metabolic stability, and solubility were established. Compounds from the N-(1H-imidazol-2-yl)acylamide chemotype (10a-z) exhibited high affinity for 5-HT6R and very high selectivity over 5-HT1A, 5-HT2A, 5-HT7 and D2 receptors (negligible binding), which was attributed to their very weak basicity. The lead compound in the series 4-methyl-5-[1-(naphthalene-1-sulfonyl)-1H-indol-3-yl]-1H-imidazol-2-amine (9i) was shown to reverse the cognitive impairment caused by the administration of scopolamine in rats indicating procognitive potential.
Collapse
|