1
|
Legg A, Devchand F, Gwee A, Sandaradura I, Lai T. Safe and effective use of vancomycin. Aust Prescr 2025; 48:54-59. [PMID: 40343139 PMCID: PMC12055491 DOI: 10.18773/austprescr.2025.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
Vancomycin is an important antimicrobial for prophylactic, empirical and directed therapy of Gram-positive organisms. Therapeutic drug monitoring is recommended for all patients expected to receive vancomycin for more than 48 hours to optimise drug exposure. Monitoring the area under the concentration-time curve over a 24-hour period (AUC24) for vancomycin is preferred over monitoring trough plasma concentrations. An AUC24 of 400 to 600 mg.hr/L is recommended for infections other than central nervous system infections. Vancomycin may cause nephrotoxicity, ototoxicity, cutaneous reactions, hypersensitivity and haematological toxicity. Reducing the incidence of vancomycin-induced nephrotoxicity involves recognising and modifying risk factors where possible.
Collapse
Affiliation(s)
- Amy Legg
- Royal Brisbane and Women's Hospital
- Menzies School of Health Research, Charles Darwin University
- Therapeutic Guidelines Limited
- The Royal Children's Hospital Melbourne
- Antimicrobials Research Group, Murdoch Children's Research Institute, Melbourne
- Department of Paediatrics, The University of Melbourne
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney
- The University of Sydney
- The Children's Hospital at Westmead, Sydney
| | - Felicia Devchand
- Royal Brisbane and Women's Hospital
- Menzies School of Health Research, Charles Darwin University
- Therapeutic Guidelines Limited
- The Royal Children's Hospital Melbourne
- Antimicrobials Research Group, Murdoch Children's Research Institute, Melbourne
- Department of Paediatrics, The University of Melbourne
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney
- The University of Sydney
- The Children's Hospital at Westmead, Sydney
| | - Amanda Gwee
- Royal Brisbane and Women's Hospital
- Menzies School of Health Research, Charles Darwin University
- Therapeutic Guidelines Limited
- The Royal Children's Hospital Melbourne
- Antimicrobials Research Group, Murdoch Children's Research Institute, Melbourne
- Department of Paediatrics, The University of Melbourne
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney
- The University of Sydney
- The Children's Hospital at Westmead, Sydney
| | - Indy Sandaradura
- Royal Brisbane and Women's Hospital
- Menzies School of Health Research, Charles Darwin University
- Therapeutic Guidelines Limited
- The Royal Children's Hospital Melbourne
- Antimicrobials Research Group, Murdoch Children's Research Institute, Melbourne
- Department of Paediatrics, The University of Melbourne
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney
- The University of Sydney
- The Children's Hospital at Westmead, Sydney
| | - Tony Lai
- Royal Brisbane and Women's Hospital
- Menzies School of Health Research, Charles Darwin University
- Therapeutic Guidelines Limited
- The Royal Children's Hospital Melbourne
- Antimicrobials Research Group, Murdoch Children's Research Institute, Melbourne
- Department of Paediatrics, The University of Melbourne
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney
- The University of Sydney
- The Children's Hospital at Westmead, Sydney
| |
Collapse
|
2
|
Watabe N, Subsomwong P, Yamane K, Asano K, Nakane A. Polygonum tinctorium extract suppresses the virulence of methicillin-resistant Staphylococcus aureus by disrupting its extracellular vesicles. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118933. [PMID: 39396717 DOI: 10.1016/j.jep.2024.118933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Methicillin-resistant S. aureus (MRSA) is a significant global health concern, causing both hospital- and community-acquired infections. The extracellular vesicles released by S. aureus (SaEVs) contain essential factors related to the bacterial survival and pathogenicity. Polygonum tinctorium is traditionally used as a natural dye (indigo) and for treating various infectious diseases caused by microorganisms. However, the effect of P. tinctorium extract (Indigo Ex) and its mechanism on SaEVs is unknown. AIM OF THE STUDY We investigated the effect and mechanism of Indigo Ex on SaEVs, which could be used in controlling S. aureus, especially MRSA infection. MATERIALS AND METHODS Indigo Ex was prepared from pesticide-free P. tinctorium, which was dried, powdered, and extracted with d-limonene. SaEVs were isolated and purified from MRSA culture supernatant by step-gradient ultracentrifugation. The effect of Indigo Ex on SaEVs morphology was observed by both transmission and scanning electron microscopy after incubating the Indigo Ex and SaEVs under shaking conditions. The cytotoxicity of Indigo Ex was performed using mouse macrophage cell line, RAW 264.7. In addition, the ability of Indigo Ex-treated SaEVs to stimulate the immune response and cytotoxicity in RAW 264.7 cells were evaluated by ELISA and WST-1 assay, respectively. RESULTS SaEV particles were disrupted when treated with undiluted Indigo Ex in a time-dependent manner. For the cytotoxicity of Indigo Ex on RAW 264.7 cells, over 50% of the cell viability decreased when diluted Indigo Ex 1000-fold and no cytotoxic effect was observed at a 25,000-fold dilution of Indigo Ex. Interestingly, the Indigo Ex-treated SaEVs showed less cytotoxic effect than SaEVs alone. Similarly, SaEVs treated with Indigo Ex reduced stimulation of pro-inflammatory cytokines (TNF-α and IL-6) and anti-inflammatory cytokine (IL-10) in RAW 264.7 cells compared to untreated SaEVs. Our results indicate that Indigo Ex disrupted SaEV particles, resulting in reduced virulence and stimulation of immune response. CONCLUSIONS This study reveals that the low concentration of Indigo Ex can suppresses the virulence of SaEVs without causing cytotoxicity to the host cells. Therefore, Indigo Ex may have the potential to be used to control S. aureus infection.
Collapse
Affiliation(s)
- Naoko Watabe
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | | | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biopolymer and Health Science, Hirosaki University Graduate School of. Medicine, Hirosaki, Aomori, Japan.
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of. Medicine, Hirosaki, Aomori, Japan.
| |
Collapse
|
3
|
Alosaimy S, Rybak MJ, Sakoulas G. Understanding vancomycin nephrotoxicity augmented by β-lactams: a synthesis of endosymbiosis, proximal renal tubule mitochondrial metabolism, and β-lactam chemistry. THE LANCET. INFECTIOUS DISEASES 2024; 24:e179-e188. [PMID: 37883984 DOI: 10.1016/s1473-3099(23)00432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 10/28/2023]
Abstract
The recent understanding that hydrophobic β-lactams have greater affinity for organic anion transporter-3 (OAT-3) of the proximal renal tubule could provide valuable insights for anticipating β-lactams that may exacerbate vancomycin-induced nephrotoxicity. Vancomycin alone provides oxidative stress on the highly metabolic proximal tubular cells. Hydrophobic β-lactams (eg, piperacillin and anti-staphylococcal β-lactams) could have greater OAT-3 mediated uptake into proximal tubular cells than hydrophilic β-lactams (eg, most cephalosporins and carbapenems), thereby causing greater mitochondrial stress on these susceptible cells. It remains to be seen whether concomitant drugs that inhibit OAT-3 mediated cellular uptake of β-lactams into proximal tubular cells or provide antioxidant effects might mitigate β-lactam augmented vancomycin nephrotoxicity. Furthermore, the serum creatinine rise seen with vancomycin and hydrophobic β-lactams might represent competition for creatinine-secreting transporters (of which OAT-3 is one), thus, indicating creatinine retention rather than renal injury. In the meantime, clinicians are advised to utilise less nephrotoxic combinations in both empirical and directed antibiotic selection settings until further research is conducted.
Collapse
Affiliation(s)
- Sara Alosaimy
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Nestlé Health Science, Bridgewater Township, NJ, USA
| | - Michael J Rybak
- Division of Infectious Diseases, School of Medicine, Wayne State University, Detroit, MI, USA; Department of Pharmacy, Detroit Receiving Hospital, Detroit, MI, USA.
| | - George Sakoulas
- University of California San Diego School of Medicine, Division of Host-Microbe Systems and Therapeutics, La Jolla, CA, USA; Sharp Rees-Stealy, San Diego, CA, USA
| |
Collapse
|
4
|
Pais GM, Marianski S, Valdez K, Melicor RP, Liu J, Rohani R, Chang J, Tong SYC, Davis JS, Scheetz MH. Flucloxacillin worsens while imipenem-cilastatin protects against vancomycin-induced kidney injury in a translational rat model. Br J Pharmacol 2024; 181:670-680. [PMID: 37696768 PMCID: PMC10872794 DOI: 10.1111/bph.16234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Vancomycin is one of the most common clinical antibiotics, yet acute kidney injury is a major limiting factor. Common combinations of antibiotics with vancomycin have been reported to worsen and improve vancomycin-induced kidney injury. We aimed to study the impact of flucloxacillin and imipenem-cilastatin on kidney injury when combined with vancomycin in our translational rat model. EXPERIMENTAL APPROACH Male Sprague-Dawley rats received allometrically scaled (1) vancomycin, (2) flucloxacillin, (3) vancomycin + flucloxacillin, (4) vancomycin + imipenem-cilastatin or (5) saline for 4 days. Kidney injury was evaluated via drug accumulation and urinary biomarkers including urinary output, kidney injury molecule-1 (KIM-1), clusterin and osteopontin. Relationships between vancomycin accumulation in the kidney and urinary kidney injury biomarkers were explored. KEY RESULTS Urinary output increased every study day for vancomycin + flucloxacillin, but after the first dose only in the vancomycin group. In the vancomycin + flucloxacillin group, urinary KIM-1 increased on all days compared with vancomycin. In the vancomycin + imipenem-cilastatin group, urinary KIM-1 was decreased on Days 1 and 2 compared with vancomycin. Similar trends were observed for clusterin. More vancomycin accumulated in the kidney with vancomycin + flucloxacillin compared with vancomycin and vancomycin + imipenem-cilastatin. The accumulation of vancomycin in the kidney tissue correlated with increasing urinary KIM-1. CONCLUSIONS AND IMPLICATIONS Vancomycin + flucloxacillin caused more kidney injury compared with vancomycin alone and vancomycin + imipenem-cilastatin in a translational rat model. The combination of vancomycin + imipenem-cilastatin was nephroprotective.
Collapse
Affiliation(s)
- Gwendolyn M. Pais
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
- Midwestern University- Downers Grove Campus, Pharmacometrics Center of Excellence, Downers Grove, IL, USA
| | - Sylwia Marianski
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
| | - Kimberly Valdez
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
| | - Renz Paulo Melicor
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
| | - Jiajun Liu
- Present affiliation: Division of Pharmacometrics, Office of Clinical Pharmacology, Office of Translational Sciences, United States Food and Drug Administration, Silver Spring, MD, USA; work was carried out while employed at Midwestern University College of Pharmacy, Downers Grove, IL, USA
| | - Roxane Rohani
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
- Midwestern University- Downers Grove Campus, Pharmacometrics Center of Excellence, Downers Grove, IL, USA
- Present affiliation: Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Jack Chang
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
- Midwestern University- Downers Grove Campus, Pharmacometrics Center of Excellence, Downers Grove, IL, USA
- Northwestern Memorial Hospital, Department of Pharmacy, Chicago, IL, USA
| | - Steven Y. C. Tong
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Joshua S Davis
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Marc H. Scheetz
- Midwestern University- Downers Grove Campus, Department of Pharmacy Practice, Downers Grove, IL, USA
- Midwestern University- Downers Grove Campus, Pharmacometrics Center of Excellence, Downers Grove, IL, USA
- Northwestern Memorial Hospital, Department of Pharmacy, Chicago, IL, USA
- Midwestern University- Downers Grove Campus, Department of Pharmacology, Downers Grove, IL, USA
| |
Collapse
|
5
|
Nolan J, McCarthy K, Farkas A, Avent ML. Feasibility of individualised patient modelling for continuous vancomycin infusions in outpatient antimicrobial therapy, a retrospective study. Int J Clin Pharm 2023; 45:1444-1451. [PMID: 37532840 DOI: 10.1007/s11096-023-01618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/24/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND The area under the curve (AUC) to minimum inhibitory concentration (MIC) ratio is proposed as a therapeutic drug-monitoring parameter for dosing vancomycin continuous infusion in methicillin-resistant Staphylococcus aureus (MRSA) infection. Individualised pharmacokinetic-pharmacodynamic (PK/PD) calculation of AUC24 may better represent therapeutic dosing than current Therapeutic Drug Monitoring (TDM) practices, targeting a Steady State Concentration of 15-25 mg/L. AIM To compare real world TDM practice to theoretical, individualised, PK/PD target parameters utilising Bayesian predictions to steady state concentrations (Css) for outpatients on continuous vancomycin infusions. METHOD A retrospective single centre study was conducted at a tertiary hospital on adult patients, enrolled in an outpatient parenteral antimicrobial therapy (OPAT) program, receiving vancomycin infusions for MRSA infection. Retrospective Bayesian dosing was modelled to target PK/PD parameters and compared to real world data. RESULTS Fifteen patients were evaluated with 53% (8/15) achieved target CSS during hospitalisation, and 83% (13/15) as outpatient. Median Bayesian AUC/MIC was 613 mg.h/L with CSS 25 mg/L. Patients suffering an Acute Kidney Injury (33%) had higher AUC0-24/MIC values. Retrospective Bayesian modelling demonstrated on median 250 mg/24 h lower doses than that administered was required (R2 = 0.81) which achieved AUC24/MIC median 444.8 (range 405-460) mg.h/L and CSS 18.8 (range 16.8-20.4) mg/L. CONCLUSION Bayesian modelling could assist in obtaining more timely target parameters at lower doses for patients receiving continuous vancomycin infusion as part of an OPAT program, which may beget fewer adverse effects. Utilisation of personalised predictive modelling may optimise vancomycin prescribing, achieving earlier target concentrations as compared to empiric dosing regimens.
Collapse
Affiliation(s)
- J Nolan
- The Royal Brisbane and Women's Hospital, Herston, Australia.
- School of Medicine, University of Queensland, 4029, Herston, Australia.
| | - K McCarthy
- The Royal Brisbane and Women's Hospital, Herston, Australia
- School of Medicine, University of Queensland, 4029, Herston, Australia
| | - A Farkas
- Mount Sinai West Hospital, New York, USA
- Optimum Dosing Strategies, Bloomingdale, New York, USA
| | - M L Avent
- The Royal Brisbane and Women's Hospital, Herston, Australia
- Queensland Statewide Antimicrobial Stewardship Program, University of Queensland Centre for Clinical Research, Herston, Australia
| |
Collapse
|
6
|
Legg A, Davis JS, Roberts JA. Optimal drug therapy for Staphylococcus aureus bacteraemia in adults. Curr Opin Crit Care 2023; 29:446-456. [PMID: 37641503 DOI: 10.1097/mcc.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Staphylococcus aureus is a significant human pathogen, causing a variety of infections, from skin and soft tissue infections to endocarditis, bone and joint infections and deep tissue abscesses. Mortality from S. aureus bacteraemia remains high, without major therapeutic advances in recent decades. RECENT FINDINGS In recent years, optimized dosing of antibiotics is increasingly being recognized as a cornerstone of management for severe infections including S. aureus bacteraemia. This comprehensive review details the pharmacokinetics/pharmacodynamics (PK/PD) targets for commonly used antistaphylococcal antibiotics and the doses predicted to achieve them in clinical practice. Recent advances in dosing of teicoplanin and use of cefazolin in CNS infections and findings from combination therapy studies are discussed. Drug exposure relationships related to toxicity are also detailed. SUMMARY This review details the different PK/PD targets for drugs used to treat S. aureus bacteraemia and how to apply them in various scenarios. The drug doses that achieve them, and the risks of toxicity are also provided.
Collapse
Affiliation(s)
- Amy Legg
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Queensland
| | - Joshua S Davis
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory
- School of Medicine and Public Health, The University of Newcastle, Newcastle, New South Wales
| | - Jason A Roberts
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Queensland
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes France
| |
Collapse
|