1
|
Ma M, Zeng H, Yang P, Xu J, Zhang X, He W. Drug Delivery and Therapy Strategies for Osteoporosis Intervention. Molecules 2023; 28:6652. [PMID: 37764428 PMCID: PMC10534890 DOI: 10.3390/molecules28186652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the advent of the aging society, osteoporosis (OP) risk increases yearly. Currently, the clinical usage of anti-OP drugs is challenged by recurrent side effects and poor patient compliance, regardless of oral, intravenous, or subcutaneous administration. Properly using a drug delivery system or formulation strategy can achieve targeted drug delivery to the bone, diminish side effects, improve bioavailability, and prolong the in vivo residence time, thus effectively curing osteoporosis. This review expounds on the pathogenesis of OP and the clinical medicaments used for OP intervention, proposes the design approach for anti-OP drug delivery, emphatically discusses emerging novel anti-OP drug delivery systems, and enumerates anti-OP preparations under clinical investigation. Our findings may contribute to engineering anti-OP drug delivery and OP-targeting therapy.
Collapse
Affiliation(s)
- Mingyang Ma
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Huiling Zeng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, China;
| | - Jiabing Xu
- Taizhou Institute for Drug Control, Taizhou 225316, China;
| | - Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
2
|
Tran H, Aihara E, Mohammed FA, Qu H, Riley A, Su Y, Lai X, Huang S, Aburub A, Chen JJH, Vitale OH, Lao Y, Estwick S, Qi Z, ElSayed MEH. In Vivo Mechanism of Action of Sodium Caprate for Improving the Intestinal Absorption of a GLP1/GIP Coagonist Peptide. Mol Pharm 2023; 20:929-941. [PMID: 36592951 DOI: 10.1021/acs.molpharmaceut.2c00443] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sodium caprate (C10) has been widely evaluated as an intestinal permeation enhancer for the oral delivery of macromolecules. However, the effect of C10 on the intestinal absorption of peptides with different physicochemical properties and its permeation-enhancing effect in vivo remains to be understood. Here, we evaluated the effects of C10 on intestinal absorption in rats with a glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GIP-GLP1) dual agonist peptide (LY) and semaglutide with different enzymatic stabilities and self-association behaviors as well as the oral exposure of the LY peptide in minipigs. Furthermore, we investigated the mechanism of action (MoA) of C10 for improving the intestinal absorption of the LY peptide in vivo via live imaging of the rat intestinal epithelium and tissue distribution of the LY peptide in minipigs. The LY peptide showed higher proteolytic stability in pancreatin and was a monomer in solution compared to that in semaglutide. C10 increased in vitro permeability in the minipig intestinal organoid monolayer to a greater extent for the LY peptide than for semaglutide. In the rat jejunal closed-loop model, C10 increased the absorption of LY peptide better than that of semaglutide, which might be attributed to higher in vitro proteolytic stability and permeability of the LY peptide. Using confocal live imaging, we observed that C10 enabled the rapid oral absorption of a model macromolecule (FD4) in the rat intestine. In the duodenum tissues of minipigs, C10 was found to qualitatively reduce the tight junction protein level and allow peptide uptake to the intestinal cells. C10 decreased the transition temperature of the artificial lipid membrane, indicating an increase in membrane fluidity, which is consistent with the above in vivo imaging results. These data indicated that the LY's favorable physicochemical properties combined with the effects of C10 on the intestinal mucosa resulted in an ∼2% relative bioavailability in minipigs.
Collapse
|
3
|
Considerations in the developability of peptides for oral administration when formulated together with transient permeation enhancers. Int J Pharm 2022; 628:122238. [PMID: 36174850 DOI: 10.1016/j.ijpharm.2022.122238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews many of the properties of a peptide that need to be considered prior to development as an oral dosage form when co-formulated with a permeation enhancer to improve oral bioavailability, including the importance and implications of peptide half-life on variability in pharmacokinetic profiles. Clinical considerations in terms of food and drug-drug interactions are also discussed. The paper further gives a brief overview how permeation enhancers overcome barriers that limit oral absorption of peptides and thereby improve their oral bioavailability, albeit bioavailabilities are still low single digit and variability is high.
Collapse
|
4
|
Tran H, Patel PJ, Aburub A, Sperry A, Estwick S, ElSayed MEH, -Mannan AD. Identification of a Multi-Component Formulation for Intestinal Delivery of a GLP-1/Glucagon Co-agonist Peptide. Pharm Res 2022; 39:2555-2567. [PMID: 36050547 DOI: 10.1007/s11095-022-03372-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/14/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Oral delivery of therapeutic peptides has been challenging due to multiple physiological factors and physicochemical properties of peptides. We report a systematic approach to identify formulation compositions combining a permeation enhancer and a peptidase inhibitor that minimize proteolytic degradation and increase absorption of a peptide across the small intestine. METHODS An acylated glucagon-like peptide-1/glucagon co-agonist peptide (4.5 kDa) was selected as a model peptide. Proteolytic stability of the peptide was investigated in rat and pig SIF. Effective PEs and multiple component formulations were identified in rats. Relative bioavailability of the peptide was determined in minipigs via intraduodenal administration (ID) of enteric capsules. RESULTS The peptide degraded rapidly in the rat and pig SIF. Citric acid, SBTI, and SBTCI inhibited the enzymatic degradation. The peptide self-associated into trimers in solution, however, addition of PEs monomerized the peptide. C10 was the most effective PE among tested PEs (DPC, LC, rhamnolipid, C12-maltosides, and SNAC) to improve intestinal absorption of the peptide in the rat IJ-closed loop model. A combination of C10 and SBTI or SBTCI increased the peptide exposure 5-tenfold compared to the exposure with the PE alone in the rat IJ-cannulated model, and achieved 1.06 ± 0.76% bioavailability in minipigs relative to subcutaneous via ID administration using enteric capsules. CONCLUSION We identified SBTI and C10 as an effective peptidase inhibitor and PE for intestinal absorption of the peptide. The combination of SBTI and C10 addressed the peptide physiochemical properties and provides a formulation strategy to achieve intestinal delivery of this peptide.
Collapse
Affiliation(s)
- Huyen Tran
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - Phenil J Patel
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Aktham Aburub
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Andrea Sperry
- Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Selina Estwick
- Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Mohamed E H ElSayed
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Amita Datta -Mannan
- Exploratory Medicine and Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| |
Collapse
|
5
|
Klepach A, Tran H, Ahmad Mohammed F, ElSayed ME. Characterization and impact of peptide physicochemical properties on oral and subcutaneous delivery. Adv Drug Deliv Rev 2022; 186:114322. [PMID: 35526665 DOI: 10.1016/j.addr.2022.114322] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Peptides, an emerging modality within the biopharmaceutical industry, are often delivered subcutaneously with evolving prospects on oral delivery. Barrier biology within the subcutis or gastrointestinal tract is a significant challenge in limiting absorption or otherwise disrupting peptide disposition. Aspects of peptide pharmacokinetic performance and ADME can be mitigated with careful molecular design that tailors for properties such as effective size, hydrophobicity, net charge, proteolytic stability, and albumin binding. In this review, we endeavor to highlight effective techniques in qualifying physicochemical properties of peptides and discuss advancements of in vitro models of subcutaneous and oral delivery. Additionally, we will delineate empirical findings around the relationship of these physicochemical properties and in vivo (animal or human) impact. We conclude that robust peptide characterization methods and in vitro techniques with demonstrated correlations to in vivo data are key routines to incorporate in the drug discovery and development to improve the probability of technical and commercial success of peptide therapeutics.
Collapse
|
6
|
Tran H, ElSayed MEH. Progress and limitations of oral peptide delivery as a potentially transformative therapy. Expert Opin Drug Deliv 2022; 19:163-178. [PMID: 35255753 DOI: 10.1080/17425247.2022.2051476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The oral delivery of peptides offers advantages over the injectable route of administration due to patient convenience. However, oral delivery remains challenging due to physiological barriers. Numerous formulation technologies have been developed to overcome these challenges, and understanding the advantages and limitations of each technology is important for the development of new delivery systems to enable oral delivery of peptides designed for parenteral administration. AREAS COVERED This review summarizes key learnings from the use of permeation enhancers (PEs) for oral peptide delivery associated with solid dosage form optimization to maximize the PE effect. Furthermore, we will highlight the most recent emerging delivery strategies to improve oral peptide bioavailability such as nanoparticles, self-emulsifying drug delivery systems, gut shuttles, and ingestible devices. In addition, advantages and limitations of these technologies will be compared with the permeation enhancer technology. EXPERT OPINION Despite the success of permeation enhancer technology in the FDA approved oral peptide products for gastric and intestinal delivery, oral peptide delivery is still facing the immense challenge of low-to-single digit oral bioavailability and the impact of food and water intake on oral absorption. Optimization of drug product attributes such as dissolution kinetics is critical to overcome spreading and dilution effects in vivo to improve permeation enhancer efficacy. The next frontiers to substantially increase oral bioavailability and transform injectable peptides to oral deliverables may be ingestible devices and gut shuttles. In addition, ingestible devices may have potential to overcome the impact of food on oral bioavailability. However, clinical studies are necessary to inform the safety and efficacy of these emerging technologies.
Collapse
|
7
|
Jackman MJ, Davies NM, Bak A, Puri S. Landscape for oral delivery of peptides. ORAL DELIVERY OF THERAPEUTIC PEPTIDES AND PROTEINS 2022:1-50. [DOI: 10.1016/b978-0-12-821061-1.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Formulation strategies to improve the efficacy of intestinal permeation enhancers . Adv Drug Deliv Rev 2021; 177:113925. [PMID: 34418495 DOI: 10.1016/j.addr.2021.113925] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
The use of chemical permeation enhancers (PEs) is the most widely tested approach to improve oral absorption of low permeability active agents, as represented by peptides. Several hundred PEs increase intestinal permeability in preclinical bioassays, yet few have progressed to clinical testing and, of those, only incremental increases in oral bioavailability (BA) have been observed. Still, average BA values of ~1% were sufficient for two recent FDA approvals of semaglutide and octreotide oral formulations. PEs are typically screened in static in vitro and ex-vivo models where co-presentation of active agent and PE in high concentrations allows the PE to alter barrier integrity with sufficient contact time to promote flux across the intestinal epithelium. The capacity to maintain high concentrations of co-presented agents at the epithelium is not reached by standard oral dosage forms in the upper GI tract in vivo due to dilution, interference from luminal components, fast intestinal transit, and possible absorption of the PE per se. The PE-based formulations that have been assessed in clinical trials in either immediate-release or enteric-coated solid dosage forms produce low and variable oral BA due to these uncontrollable physiological factors. For PEs to appreciably increase intestinal permeability from oral dosage forms in vivo, strategies must facilitate co-presentation of PE and active agent at the epithelium for a sustained period at the required concentrations. Focusing on peptides as examples of a macromolecule class, we review physiological impediments to optimal luminal presentation, discuss the efficacy of current PE-based oral dosage forms, and suggest strategies that might be used to improve them.
Collapse
|
9
|
Brayden DJ, Maher S. Transient Permeation Enhancer® (TPE®) technology for oral delivery of octreotide: a technological evaluation. Expert Opin Drug Deliv 2021; 18:1501-1512. [PMID: 34128734 DOI: 10.1080/17425247.2021.1942838] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The FDA approval of oral semaglutide for type 2 diabetes (2019) and oral octreotide for acromegaly (2020) is evidence that selected niche peptides can be administered orally if formulated with selected intestinal permeation enhancers. AREAS COVERED We evaluated the oral octreotide formulation, MYCAPSSA® (Chiasma Pharmaceuticals, Needham, MA, USA). An outline of the current standard of care in acromegaly and the benefits of oral octreotide versus depot injections is provided. We discuss the Transient Permeation Enhancer (TPE®) technology used and detail the safety and efficacy data from animal models and clinical trials. EXPERT OPINION TPE® is an oily suspension of octreotide that includes a number of excipients that can transiently alter epithelial barrier integrity by opening of intestinal epithelial tight junctions arising from transcellular perturbation. Phase I studies using 20 mg octreotide capsules yielded a relative oral bioavailability of ~0.7% and primary endpoints were achieved in two Phase III studies. The oral octreotide dose required to achieve these endpoints was over 200 times that of the 0.1 mg immediate-release subcutaneous injection, a reminder of the difficulty in achieving oral absorption of macromolecules. Many acromegaly patients will prefer a convenient twice-daily oral formulation of octreotide compared to monthly depot injections.
Collapse
Affiliation(s)
- David J Brayden
- University College Dublin (UCD) School of Veterinary Medicine, UCD, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biotechnology, UCD, Belfield, Dublin 4, Ireland.,CÚRAM, the SFI Research Centre for Medical Devices, UCD, Belfield, Dublin 4, Ireland
| | - Sam Maher
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
10
|
Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021; 171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Philippe Berben
- Pharmaceutical Development, UCB Pharma SA, Braine- l'Alleud, Belgium
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gøril Eide Flaten
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | - Alan Mackie
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | | | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Petr Pavek
- Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | | | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Elena Toader
- Faculty of Medicine, University of Medicine and Pharmacy of Iasi, Romania
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saskia N De Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Oral Drug Delivery: Conventional to Long Acting New-Age Designs. Eur J Pharm Biopharm 2021; 162:23-42. [PMID: 33631319 DOI: 10.1016/j.ejpb.2021.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/16/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022]
Abstract
The Oral route of administration forms the heartwood of the ever-growing tree of drug delivery technology. It is one of the most preferred dosage forms among patients and controlled release community. Despite the high patient compliance, the deliveries of anti-cancerous drugs, vaccines, proteins, etc. via the oral route are limited and have recorded a very low bioavailability. The oral administration must overcome the physiological barriers (low solubility, permeation and early degradation) to achieve efficient and sustained delivery. This review aims at highlighting the conventional and modern-age strategies that address some of these physiological barriers. The modern age designs include the 3D printed devices and formulations. The superiority of 3D dosage forms over conventional cargos is summarized with a focus on long-acting designs. The innovations in Pharmaceutical organizations (Lyndra, Assertio and Intec) that have taken giant steps towards commercialization of long-acting vehicles are discussed. The recent advancements made in the arena of oral peptide delivery are also highlighted. The review represents a comprehensive journey from Nano-formulations to micro-fabricated oral implants aiming at specific patient-centric designs.
Collapse
|
12
|
Abstract
Protein and peptide therapeutics require parenteral administration, which can be a deterrent to medication adherence. For this reason, there have been extensive efforts to develop alternative delivery strategies, particularly for peptides such as insulin that are used to treat endocrine disorders. Oral delivery is especially desirable, but it faces substantial barriers related to the structural organization and physiological function of the gastrointestinal tract. This article highlights strategies designed to overcome these barriers, including permeation enhancers, inhibitors of gut enzymes, and mucus-penetrating and cell-penetrating peptides. It then focuses on the experience with oral peptides that have reached clinical trials, including insulin, calcitonin, parathyroid hormone and vasopressin, with an emphasis on the advances that have recently led to the landmark approval of an oral formulation of the glucagon-like peptide 1 receptor agonist semaglutide for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Awasthi H, Mani D, Singh D, Gupta A. The underlying pathophysiology and therapeutic approaches for osteoporosis. Med Res Rev 2018; 38:2024-2057. [DOI: 10.1002/med.21504] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/28/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Harshika Awasthi
- Herbal Medicinal Products Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow India
| | - Dayanandan Mani
- Herbal Medicinal Products Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow India
| | - Divya Singh
- Division of Endocrinology; CSIR-Central Drug Research Institute; Lucknow India
| | - Atul Gupta
- Medicinal Chemistry Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow India
| |
Collapse
|
14
|
Gaowa A, Horibe T, Kohno M, Kawakami K. Bile Acid as an Effective Absorption Enhancer for Oral Delivery of Epidermal Growth Factor Receptor–Targeted Hybrid Peptide. J Pharm Sci 2018; 107:1322-1329. [DOI: 10.1016/j.xphs.2017.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/29/2023]
|
15
|
Williams AJ, Jordan F, King G, Lewis AL, Illum L, Masud T, Perkins AC, Pearson RG. In vitro and preclinical assessment of an intranasal spray formulation of parathyroid hormone PTH 1–34 for the treatment of osteoporosis. Int J Pharm 2018; 535:113-119. [DOI: 10.1016/j.ijpharm.2017.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022]
|
16
|
Cheloha RW, Chen B, Kumar NN, Watanabe T, Thorne RG, Li L, Gardella TJ, Gellman SH. Development of Potent, Protease-Resistant Agonists of the Parathyroid Hormone Receptor with Broad β Residue Distribution. J Med Chem 2017; 60:8816-8833. [PMID: 29064243 DOI: 10.1021/acs.jmedchem.7b00876] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The parathyroid hormone receptor 1 (PTHR1) is a member of the B-family of GPCRs; these receptors are activated by long polypeptide hormones and constitute targets of drug development efforts. Parathyroid hormone (PTH, 84 residues) and PTH-related protein (PTHrP, 141 residues) are natural agonists of PTHR1, and an N-terminal fragment of PTH, PTH(1-34), is used clinically to treat osteoporosis. Conventional peptides in the 20-40-mer length range are rapidly degraded by proteases, which may limit their biomedical utility. We have used the PTHR1-ligand system to explore the impact of broadly distributed replacement of α-amino acid residues with β-amino acid residues on susceptibility to proteolysis and agonist activity. This effort led us to identify new PTHR1 agonists that contain α → β replacements throughout their sequences, manifest potent agonist activity in cellular assays, and display remarkable resistance to proteolysis, in cases remaining active after extended exposure to simulated gastric fluid. The strategy we have employed suggests a path toward identifying protease-resistant agonists of other B-family GPCRs.
Collapse
Affiliation(s)
- Ross W Cheloha
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Bingming Chen
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Niyanta N Kumar
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Tomoyuki Watanabe
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Robert G Thorne
- School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States.,Clinical Neuroengineering Training Program, University of Wisconsin-Madison Biomedical Engineering , Engineering Centers Building, Room 2120, 1550 Engineering Drive, Madison Wisconsin 53706, United States.,Neuroscience Training Program & Center for Neuroscience, Wisconsin Institutes for Medical Research II , Rooms 9531 and 9533, 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Cellular and Molecular Pathology Graduate Training Program, UW Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison , 1685 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Aguirre TAS, Teijeiro-Osorio D, Rosa M, Coulter IS, Alonso MJ, Brayden DJ. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev 2016; 106:223-241. [PMID: 26921819 DOI: 10.1016/j.addr.2016.02.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 01/12/2023]
Abstract
The development of oral dosage forms that allows absorption of therapeutic peptides to the systemic circulation is one of the greatest challenges for the pharmaceutical industry. Currently, a number of technologies including either mixtures of penetration enhancers or protease inhibitors and/or nanotechnology-based products are under clinical development. Typically, these formulations are presented in the form of enteric-coated tablets or capsules. Systems undergoing preclinical investigation include further advances in nanotechnology, including intestinal microneedle patches, as well as their combination with regional delivery to the colon. This review critically examines four selected promising oral peptide technologies at preclinical stage and the twelve that have progressed to clinical trials, as indicated in www.clinicaltrials.gov. We examined these technologies under the criteria of peptide selection, formulation design, system components and excipients, intestinal mechanism of action, efficacy in man, and safety issues. The conclusion is that most of the technologies in clinical trials are incremental rather than paradigm-shifting and that even the more clinically advanced oral peptide drugs examples of oral bioavailability appear to yield oral bioavailability values of only 1-2% and are, therefore, only currently suitable for a limited range of peptides.
Collapse
Affiliation(s)
- T A S Aguirre
- Centro de Ciências Exatas e Tecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - D Teijeiro-Osorio
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - M Rosa
- Sigmoid Pharma, Dublin City University, Invent Centre, Dublin 9, Ireland
| | - I S Coulter
- Sigmoid Pharma, Dublin City University, Invent Centre, Dublin 9, Ireland
| | - M J Alonso
- CIMUS Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - D J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
18
|
Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106:277-319. [PMID: 27320643 DOI: 10.1016/j.addr.2016.06.005] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Intestinal permeation enhancers (PEs) are one of the most widely tested strategies to improve oral delivery of therapeutic peptides. This article assesses the intestinal permeation enhancement action of over 250 PEs that have been tested in intestinal delivery models. In depth analysis of pre-clinical data is presented for PEs as components of proprietary delivery systems that have progressed to clinical trials. Given the importance of co-presentation of sufficiently high concentrations of PE and peptide at the small intestinal epithelium, there is an emphasis on studies where PEs have been formulated with poorly permeable molecules in solid dosage forms and lipoidal dispersions.
Collapse
|
19
|
Mancilla EE, Brodsky JL, Mehta S, Pignolo RJ, Levine MA. Teriparatide as a systemic treatment for lower extremity nonunion fractures: a case series. Endocr Pract 2016; 21:136-42. [PMID: 25297667 DOI: 10.4158/ep14315.or] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate the effect of teriparatide (parathyroid hormone [1-34]) on the healing of long bone nonunion fractures. METHODS We performed a retrospective chart review of patients with fracture nonunion, aged 10 to 99 years who were treated with teriparatide at the Children's Hospital of Philadelphia or the Hospital of the University of Pennsylvania between November 2002 and January 2013. The primary endpoints were radiographic evidence of callus formation and fracture union, ability to bear weight without affected limb limp, and normal range of motion and strength. RESULTS Six patients aged 19 to 64 years with tibial or femoral fractures that had not healed for 3 to 36 months were treated with teriparatide 20 μg/day. Accelerated healing of fracture nonunion was confirmed in 5 of 6 patients with time to complete union of 3 to 9 months. The shortest time to recovery was observed in younger patients without comorbidities. Treatment was well tolerated. CONCLUSION Teriparatide is a promising treatment for nonunion fractures, but its response depends on associated comorbidities. The potential benefit of teriparatide as an adjunct to treat nonunion justifies randomized placebo-controlled trials to determine its efficacy and safety in broader populations.
Collapse
Affiliation(s)
- Edna E Mancilla
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jill L Brodsky
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samir Mehta
- Orthopaedic Trauma & Fracture Service, Hospital of the University of Pennsylvania Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert J Pignolo
- Ralston-Penn Clinic for Osteoporosis & Related Bone Disorders, Center for FOP and Related Bone Disorders, Departments of Medicine & Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael A Levine
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Anti-osteoporotic effects of Pueraria candollei var. mirifica on bone mineral density and histomorphometry in estrogen-deficient rats. J Nat Med 2016; 70:225-33. [DOI: 10.1007/s11418-016-0965-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
|
21
|
Park YS, Kim HS, Jin YM, Yu Y, Kim HY, Park HS, Jung SC, Han KH, Park YJ, Ryu KH, Jo I. Differentiated tonsil-derived mesenchymal stem cells embedded in Matrigel restore parathyroid cell functions in rats with parathyroidectomy. Biomaterials 2015; 65:140-52. [DOI: 10.1016/j.biomaterials.2015.06.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
22
|
Karsdal MA, Riis BJ, Mehta N, Stern W, Arbit E, Christiansen C, Henriksen K. Lessons learned from the clinical development of oral peptides. Br J Clin Pharmacol 2015; 79:720-32. [PMID: 25408230 PMCID: PMC4415709 DOI: 10.1111/bcp.12557] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/14/2014] [Indexed: 01/11/2023] Open
Abstract
The oral delivery of peptides and proteins has been hampered by an array of obstacles. However, several promising novel oral delivery systems have been developed. This paper reviews the most advanced oral formulation technologies, and highlights key lessons and implications from studies undertaken to date with these oral formulations. Special interest is given to oral salmon calcitonin (CT), glucagon-like peptide-1 (GLP-1), insulin, PYY-(3-36), recombinant human parathyroid hormone (rhPTH(1-31)-NH2) and PTH(1-34), by different technologies. The issues addressed include (i) interaction with water, (ii) interaction with food, (iii) diurnal variation, (iv) inter- and intra-subject variability, (v) correlation between efficacy and exposure and (vi) key deliverables of different technologies. These key lessons may aid research in the development of other oral formulations.
Collapse
|
23
|
Comparison between recombinant human parathyroid hormone (1–34) and elcatonin in treatment of primary osteoporosis. ASIAN PAC J TROP MED 2015; 8:79-84. [DOI: 10.1016/s1995-7645(14)60192-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/10/2014] [Accepted: 11/15/2014] [Indexed: 11/21/2022] Open
|
24
|
A head-to-head multi-parametric high content analysis of a series of medium chain fatty acid intestinal permeation enhancers in Caco-2 cells. Eur J Pharm Biopharm 2014; 88:830-39. [DOI: 10.1016/j.ejpb.2014.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 11/24/2022]
|
25
|
Polyzos SA, Makras P, Efstathiadou Z, Anastasilakis AD. Investigational parathyroid hormone receptor analogs for the treatment of osteoporosis. Expert Opin Investig Drugs 2014; 24:145-57. [PMID: 25316089 DOI: 10.1517/13543784.2015.973021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Intermittent parathyroid hormone (PTH) administration, acting through multiple signaling pathways, exerts an osteoanabolic effect on the skeleton that surpasses the effect of other antiosteoporotic agents. However, its efficacy is limited by the coupling effect and relatively common adverse events. Thus, the development of more sophisticated PTH receptor analogs seems imperative. AREAS COVERED In this review, the authors summarize the role of PTH signaling pathway in bone remodeling. The authors also summarize investigational analogs targeting this pathway, which may be potential treatments for osteoporosis. EXPERT OPINION β-arrestins are multifunctional cytoplasmic molecules that are decisive for regulating intracellular PTH signaling. Recently, in preclinical studies, arrestin analogs have achieved the anabolic bone effect of PTH without an accompanying increase in bone resorption. However, it is not yet known whether these analogs have adverse effects and there are no clinical data for their efficacy to date. On the other hand, several molecules derived either from PTH and PTH-related protein (PTHrP) molecules have been developed. Alternative routes of PTH 1 - 34 delivery (oral, transdermal), the PTH analog ostabolin and the N-terminal PTHrP analogs PTHrP 1 - 36 and abaloparatide, have recently been or are currently being tested in clinical trials and are more likely to become available for use in the near future.
Collapse
Affiliation(s)
- Stergios A Polyzos
- Harvard Medical School, Beth Israel Deaconess Medical Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine , Boston, MA , USA
| | | | | | | |
Collapse
|
26
|
Abstract
Delivery of peptides by the oral route greatly appeals due to commercial, patient convenience and scientific arguments. While there are over 60 injectable peptides marketed worldwide, and many more in development, most delivery strategies do not yet adequately overcome the barriers to oral delivery. Peptides are sensitive to chemical and enzymatic degradation in the intestine, and are poorly permeable across the intestinal epithelium due to sub-optimal physicochemical properties. A successful oral peptide delivery technology should protect potent peptides from presystemic degradation and improve epithelial permeation to achieve a target oral bioavailability with acceptable intra-subject variability. This review provides a comprehensive up-to-date overview of the current status of oral peptide delivery with an emphasis on patented formulations that are yielding promising clinical data.
Collapse
|