1
|
Work HM, Hackett JC, Lampe JN. HCV Antiviral Drugs Have the Potential to Adversely Perturb the Fetal-Maternal Communication Axis through Inhibition of CYP3A7 DHEA-S Oxidation. Drug Metab Dispos 2024; 52:516-525. [PMID: 38267095 PMCID: PMC11114604 DOI: 10.1124/dmd.123.001434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
The hepatitis C virus (HCV) poses a great risk to pregnant people and their developing fetus, yet no HCV antiviral treatment guidelines have been established. While there has been a substantial increase in the development of HCV antivirals, the effect they have on the developing fetus remains poorly defined. Many of these drugs are metabolized through the cytochrome P450 CYP3A pathway, which is mediated by cytochrome P450 3A7 (CYP3A7) in the fetus and developing infant. In this study, we sought to investigate the effect HCV antivirals have on CYP3A7 metabolism, as this CYP enzyme plays a vital role in proper fetal and neonatal development. Of the 13 HCV antivirals we investigated, 8 (∼62%) inhibited CYP3A7 metabolic activity by 50% or more at a concentration of 20 µM. Furthermore, paritaprevir, asunaprevir, simeprevir, danoprevir, and glecaprevir all had observed half-maximal inhibitory concentrations between the range of 10 and 20 µM, which is physiologically relevant in comparison with the Km of dehydroepiandrosterone-sulfate (DHEA-S) oxidation (reported to be between 5 and 20 µM). We also discovered that paritaprevir is a time-dependent inhibitor of CYP3A7, which shifts the IC50 ∼twofold from 11 µM to 5 µM. Upon further characterization, paritaprevir inactivates DHEA-S metabolism by CYP3A7, with KI and Kinact values of 4.66 µM and 0.00954 minute-1, respectively. Depending on treatment plan and off-label drug use, HCV treatment could adversely affect the fetal-maternal communication axis by blocking fetal CYP3A7 metabolism of important endogenous hormones. SIGNIFICANCE STATEMENT: The prevalence of HCV in pregnant people is estimated at between 1% and 8% of the global population, yet little to no information exists about the risk antiviral treatment poses to the developing fetus. There is a potential risk of drugs adversely affecting mother-fetal communication by inhibiting fetal hepatic CYP3A7, an integral enzyme for estriol production. We discovered that five HCV antivirals inhibited DHEA-S metabolism by CYP3A7, and paritaprevir inactivated the enzyme. Our studies demonstrate the potential threat these drugs pose to proper fetal development.
Collapse
Affiliation(s)
- Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (H.M.W., J.N.L.); and Biomolecular Sciences Institute & Department of Chemistry & Biochemistry, School of Integrated Science & Humanity, College of Arts, Sciences, & Education, Florida International University, Miami, Florida (J.C.H.)
| | - John C Hackett
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (H.M.W., J.N.L.); and Biomolecular Sciences Institute & Department of Chemistry & Biochemistry, School of Integrated Science & Humanity, College of Arts, Sciences, & Education, Florida International University, Miami, Florida (J.C.H.)
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (H.M.W., J.N.L.); and Biomolecular Sciences Institute & Department of Chemistry & Biochemistry, School of Integrated Science & Humanity, College of Arts, Sciences, & Education, Florida International University, Miami, Florida (J.C.H.)
| |
Collapse
|
2
|
Kamal S, Shahzad A, Rehman K, Tariq K, Akash MSH, Imran M, Assiri MA. Therapeutic Intervention of Serine Protease Inhibitors against Hepatitis C Virus. Curr Med Chem 2024; 31:2052-2072. [PMID: 37855348 DOI: 10.2174/0109298673234823230921090431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 10/20/2023]
Abstract
Hepatitis C virus (HCV) is a globally prevalent and hazardous disorder that is responsible for inducing several persistent and potentially fatal liver diseases. Current treatment strategies offer limited efficacy, often accompanied by severe and debilitating adverse effects. Consequently, there is an urgent and compelling need to develop novel therapeutic interventions that can provide maximum efficacy in combating HCV while minimizing the burden of adverse effects on patients. One promising target against HCV is the NS3-4A serine protease, a complex composed of two HCV-encoded proteins. This non-covalent heterodimer is crucial in the viral life cycle and has become a primary focus for therapeutic interventions. Although peginterferon, combined with ribavirin, is commonly employed for HCV treatment, its efficacy is hampered by significant adverse effects that can profoundly impact patients' quality of life. In recent years, the development of direct-acting antiviral agents (DAAs) has emerged as a breakthrough in HCV therapy. These agents exhibit remarkable potency against the virus and have demonstrated fewer adverse effects when combined with other DAAs. However, it is important to note that there is a potential for developing resistance to DAAs due to alterations in the amino acid position of the NS3-4A protease. This emphasizes the need for ongoing research to identify strategies that can minimize the emergence of resistance and ensure long-term effectiveness. While the combination of DAAs holds promise for HCV treatment, it is crucial to consider the possibility of drug-drug interactions. These interactions may occur when different DAAs are used concurrently, potentially compromising their therapeutic efficacy. Therefore, carefully evaluating and monitoring potential drug interactions are vital to optimize treatment outcomes. In the pursuit of novel therapeutic interventions for HCV, the field of computational biology and bioinformatics has emerged as a valuable tool. These advanced technologies and methodologies enable the development and design of new drugs and therapeutic agents that exhibit maximum efficacy, reduced risk of resistance, and minimal adverse effects. By leveraging computational approaches, researchers can efficiently screen and optimize potential candidates, accelerating the discovery and development of highly effective treatments for HCV, treatments.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Asif Shahzad
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Komal Tariq
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Imran
- Research center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Assiri
- Research center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Arora S, Pansari A, Kilford PJ, Jamei M, Turner DB, Gardner I. A Mechanistic Absorption and Disposition Model of Ritonavir to Predict Exposure and Drug-Drug Interaction Potential of CYP3A4/5 and CYP2D6 Substrates. Eur J Drug Metab Pharmacokinet 2022; 47:483-495. [PMID: 35486324 DOI: 10.1007/s13318-022-00765-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Due to health authority warnings and the recommended limited use of ketoconazole as a model inhibitor of cytochrome P450 (CYP) 3A4 in clinical drug-drug interaction (DDI) studies, there is a need to search for alternatives. Ritonavir is a strong inhibitor for CYP3A4/5-mediated DDIs and has been proposed as a suitable alternative to ketoconazole. It can also be used as a weak inhibitor for CYP2D6-mediated DDIs. Most of the currently available physiologically based pharmacokinetic (PBPK) inhibitor models developed for predicting DDIs use first-order absorption models, which do not mechanistically capture the effect of formulations on the systemic exposure of the inhibitor. Thus, the main purpose of the current study was to verify the predictive performance of a mechanistic absorption and disposition model of ritonavir when it was applied to the inhibition of CYP2D6 and CYP3A4/5 by ritonavir. METHODS A PBPK model that incorporates formulation characteristics and enzyme kinetic parameters for post-absorptive pharmacokinetic processes of ritonavir was constructed. Key absorption-related parameters in the model were determined using mechanistic modelling of in vitro biopharmaceutics experiments. The model was verified for systemic exposure and DDI risk assessment using clinical observations from 13 and 18 studies, respectively. RESULTS Maximal inhibition of hepatic (3.53% of the activity remaining) and gut (5.16% of the activity remaining) CYP3A4 activity was observed when ritonavir was orally administered in doses of 100 mg or higher. The PBPK model accurately described the concentrations of ritonavir in the different simulated studies. The prediction accuracy for maximum concentration (Cmax) and area under the plasma concentration versus time curve (AUC) were assessed. The bias (average fold error, AFE) for the prediction of Cmax and AUC was 0.92 and 1.06, respectively, and the precision (absolute average fold error, AAFE) was 1.29 and 1.23, respectively. The PBPK model predictions for all Cmax and AUC ratios when ritonavir was used as an inhibitor of CYP metabolism fell within twofold of the clinical observations. The prediction accuracy for Cmax and AUC ratios had a bias (AFE) of 0.85 and 0.99, respectively, and a precision (AAFE) of 1.21 and 1.33, respectively. CONCLUSIONS The current model, which incorporates formulation characteristics and mechanistic disposition parameters, can be used to assess the DDI potential of CYP3A4/5 and CYP2D6 substrates administered with a twice-daily dose of 100 mg of ritonavir for 14 days.
Collapse
Affiliation(s)
- Sumit Arora
- Certara UK Limited, Simcyp Division, Level 2 Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK. .,Janssen Pharmaceutical, Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Amita Pansari
- Certara UK Limited, Simcyp Division, Level 2 Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Peter J Kilford
- Certara UK Limited, Simcyp Division, Level 2 Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK.
| | - Masoud Jamei
- Certara UK Limited, Simcyp Division, Level 2 Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - David B Turner
- Certara UK Limited, Simcyp Division, Level 2 Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Iain Gardner
- Certara UK Limited, Simcyp Division, Level 2 Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
4
|
Pharmacokinetics, safety and tolerability of ravidasvir, with and without danoprevir/ritonavir, in healthy subjects. Antimicrob Agents Chemother 2021; 65:e0060021. [PMID: 34252301 DOI: 10.1128/aac.00600-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ravidasvir (RDV) is a novel oral hepatitis C virus NS5A inhibitor. This study aimed to evaluate the pharmacokinetics and safety of RDV and the drug-drug interaction between RDV and ritonavir-boosted danoprevir (DNVr) in healthy adults. In 1st study, healthy volunteers were administered oral single doses of 100, 200 and 300 mg RDV and 200 mg once daily for 7 days. The 2nd study was randomized, double-blind and placebo-controlled sequential design (day 1 for 200 mg RDV alone, day 7 for 100 mg/100 mg DNVr, day 13 for 200 mg RDV plus 100mg/100mg DNVr, followed by RDV 200 mg once daily with DNVr 100mg/100mg twice daily for 10 days). The results showed that RDV exposure increased in a dose-proportional manner following a single dose with no evidence of accumulation with multiple doses. Co-administration with DNVr regimen (100 mg/100 mg, twice daily) resulted in a 2.92- and 1.99-fold increase in minimum plasma concentration at steady state (Cmin,ss) and area under the concentration-time curve at steady state (AUCτ) of RDV. With co-administration of RDV, maximum plasma concentration (Cmax) and area under the concentration curve from zero to 12 h (AUC0-12) of DNV increased 1.71-fold and 2.33-fold, respectively. We did not observe any significant changes in ritonavir exposure. Both single and multiple doses of RDV with or without DNVr were well tolerated. The favorable pharmacokinetic and safety results support ravidasvir's continued clinical development and treatment.
Collapse
|
5
|
Eng H, Bi YA, West MA, Ryu S, Yamaguchi E, Kosa RE, Tess DA, Griffith DA, Litchfield J, Kalgutkar AS, Varma MVS. Organic Anion-Transporting Polypeptide 1B1/1B3-Mediated Hepatic Uptake Determines the Pharmacokinetics of Large Lipophilic Acids: In Vitro-In Vivo Evaluation in Cynomolgus Monkey. J Pharmacol Exp Ther 2021; 377:169-180. [PMID: 33509903 DOI: 10.1124/jpet.120.000457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
It is generally presumed that uptake transport mechanisms are of limited significance in hepatic clearance for lipophilic or high passive-permeability drugs. In this study, we evaluated the mechanistic role of the hepato-selective organic anion-transporting polypeptides (OATPs) 1B1/1B3 in the pharmacokinetics of compounds representing large lipophilic acid space. Intravenous pharmacokinetics of 16 compounds with molecular mass ∼400-730 Da, logP ∼3.5-8, and acid pKa <6 were obtained in cynomolgus monkey after dosing without and with a single-dose rifampicin-OATP1B1/1B3 probe inhibitor. Rifampicin (30 mg/kg oral) significantly (P < 0.05) reduced monkey clearance and/or steady-state volume of distribution (VDss) for 15 of 16 acids evaluated. Additionally, clearance of danoprevir was reduced by about 35%, although statistical significance was not reached. A significant linear relationship was noted between the clearance ratio (i.e., ratio of control to treatment groups) and VDss ratio, suggesting hepatic uptake contributes to the systemic clearance and distribution simultaneously. In vitro transport studies using primary monkey and human hepatocytes showed uptake inhibition by rifampicin (100 µM) for compounds with logP ≤6.5 but not for the very lipophilic acids (logP > 6.5), which generally showed high nonspecific binding in hepatocyte incubations. In vitro uptake clearance and fraction transported by OATP1B1/1B3 (ft,OATP1B) were found to be similar in monkey and human hepatocytes. Finally, for compounds with logP ≤6.5, good agreement was noted between in vitro ft,OATP1B and clearance ratio (as well as VDss ratio) in cynomolgus monkey. In conclusion, this study provides mechanistic evidence for the pivotal role of OATP1B-mediated hepatic uptake in the pharmacokinetics across a wide, large lipophilic acid space. SIGNIFICANCE STATEMENT: This study provides mechanistic insight into the pharmacokinetics of a broad range of large lipophilic acids. Organic anion-transporting polypeptides 1B1/1B3-mediated hepatic uptake is of key importance in the pharmacokinetics and drug-drug interactions of almost all drugs and new molecular entities in this space. Diligent in vitro and in vivo transport characterization is needed to avoid the false negatives often noted because of general limitations in the in vitro assays while handling compounds with such physicochemical attributes.
Collapse
Affiliation(s)
- Heather Eng
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Yi-An Bi
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Mark A West
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Sangwoo Ryu
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Emi Yamaguchi
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Rachel E Kosa
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - David A Tess
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - David A Griffith
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - John Litchfield
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Amit S Kalgutkar
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Manthena V S Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| |
Collapse
|
6
|
Tess DA, Eng H, Kalgutkar AS, Litchfield J, Edmonds DJ, Griffith DA, Varma MVS. Predicting the Human Hepatic Clearance of Acidic and Zwitterionic Drugs. J Med Chem 2020; 63:11831-11844. [PMID: 32985885 DOI: 10.1021/acs.jmedchem.0c01033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prospective predictions of human hepatic clearance for anionic/zwitterionic compounds, which are oftentimes subjected to transporter-mediated uptake, are challenging in drug discovery. We evaluated the utility of preclinical species, rats and cynomolgus monkeys [nonhuman primates (NHPs)], to predict the human hepatic clearance using a diverse set of acidic/zwitterionic drugs. Preclinical clearance data were generated following intravenous dosing in rats/NHPs and compared to the human clearance data (n = 18/27). Single-species scaling of NHP clearance with an allometric exponent of 0.50 allowed for good prediction of human clearance (fold error ∼2.1, bias ∼1.0), with ∼86% predictions within 3-fold. In comparison, rats underpredicted the clearance of lipophilic acids, while overprediction was noted for hydrophilic acids. Finally, an in vitro clearance assay based on human hepatocytes, which is routinely used in discovery setting, markedly underpredicted human clearance (bias ∼0.12). Collectively, this study provides insights into the usefulness of the preclinical models in enabling pharmacokinetic optimization for acid/zwitterionic drug candidates.
Collapse
Affiliation(s)
- David A Tess
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Heather Eng
- Medicine Design, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - John Litchfield
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - David J Edmonds
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - David A Griffith
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Manthena V S Varma
- Medicine Design, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| |
Collapse
|
7
|
Miao M, Jing X, De Clercq E, Li G. Danoprevir for the Treatment of Hepatitis C Virus Infection: Design, Development, and Place in Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2759-2774. [PMID: 32764876 PMCID: PMC7368560 DOI: 10.2147/dddt.s254754] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
On June 8, 2018, an NS3/4A protease inhibitor called danoprevir was approved in China to treat the infections of HCV genotype (GT) 1b – the most common HCV genotype worldwide. Based on phase 2 and 3 clinical trials, the 12-week regimen of ritonavir-boosted danoprevir (danoprevir/r) plus peginterferon alpha-2a and ribavirin offered 97.1% (200/206) of sustained virologic response at post-treatment week 12 (SVR12) in treatment-naïve non-cirrhotic patients infected with HCV genotype 1b. Adverse events such as anemia, fatigue, fever, and headache were associated with the inclusion of peginterferon alpha-2a and ribavirin in the danoprevir-based regimen. Moreover, drug resistance to danoprevir could be traced to amino acid substitutions (Q80K/R, R155K, D168A/E/H/N/T/V) near the drug-binding pocket of HCV NS3 protease. Despite its approval, the clinical use of danoprevir is currently limited to its combination with peginterferon alpha-2a and ribavirin, thereby driving its development towards interferon-free, ribavirin-free regimens with improved tolerability and adherence. In the foreseeable future, pan-genotypic direct-acting antivirals with better clinical efficacy and less adverse events will be available to treat HCV infections worldwide.
Collapse
Affiliation(s)
- Miao Miao
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, People's Republic of China
| | - Xixi Jing
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, People's Republic of China
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, People's Republic of China
| |
Collapse
|
8
|
Miyake T. Estimating Efflux Transporter-Mediated Disposition of Molecules beyond the Rule of Five (bRo5) Using Transporter Gene Knockout Rats. Biol Pharm Bull 2019; 43:384-392. [PMID: 31685755 DOI: 10.1248/bpb.b19-00641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transporter gene knockout models are a practical and widely used tool for pharmacokinetic studies in drug discovery. P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) are major efflux transporters that control absorption and bioavailability, and are important when determining oral drug disposition. To the best of our knowledge, beyond the rule of five (bRo5) molecules launched on the market to date tend to be substrates for efflux transporters. The purpose of this study is to evaluate in vivo the impact of efflux transporters on the oral absorption process and systemic clearance using rats which lack P-gp and/or Bcrp expression. We administered five bRo5 substrates (asunaprevir, cyclosporine, danoprevir, ledipasvir, and simeprevir) intravenously or orally to wild-type and Mdr1a, Bcrp, and Mdr1a/Bcrp knockout rats, calculated the clearance, oral bioavailability, and absorption rate profile of each substrate, and compared the results. Systemic clearance of the substrates in knockout rats changed within approximately ±40% compared to wild-types, suggesting the efflux transporters do not have a significant influence on clearance in rats. On the other hand, the oral absorption of substrates in the knockout rats, especially those lacking Mdr1a, increased greatly-between 2- and 5-fold more than in wild-types. This suggests that rat efflux transporters, especially P-gp, greatly reduce the oral exposure of these substrates. Moreover, results on the absorption rate-time profile suggest that efflux transporters are constantly active during the absorption period in rats. Transporter knockout rats are a useful in vivo tool for estimating the transporter-mediated disposition of bRo5 molecules in drug discovery.
Collapse
Affiliation(s)
- Taiji Miyake
- Discovery ADMET Dept., Research Div., Chugai Pharmaceutical Co., Ltd
| |
Collapse
|
9
|
Kao JH, Tung SY, Lee Y, Thongsawat S, Tanwandee T, Sheen IS, Wu JJ, Li H, Brennan BJ, Zhou J, Le Pogam S, Najera I, Thommes JA, Hill G. Ritonavir-boosted danoprevir plus peginterferon alfa-2a and ribavirin in Asian chronic hepatitis C patients with or without cirrhosis. J Gastroenterol Hepatol 2016; 31:1757-1765. [PMID: 26992248 DOI: 10.1111/jgh.13374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Chronic hepatitis C is an important public health problem in Asia. We evaluated the safety, efficacy, and pharmacokinetics of fixed-dose ritonavir-boosted danoprevir plus peginterferon alfa-2a/ribavirin in treatment-naive Asian patients with chronic hepatitis C virus (HCV) genotype (G)1 infection. METHODS Treatment-naive G1 patients in Taiwan, Thailand, and Korea with serum HCV-RNA level ≥ 105 IU/mL received ritonavir-boosted danoprevir 125/100 mg twice daily plus peginterferon alfa-2a/ribavirin for either 12 (noncirrhotic patients: Arm A, n = 34) or 24 weeks (cirrhotic patients: Arm B, n = 27) in this phase II open-label study. Sustained virologic response was defined as HCV-RNA < 25 IU/mL 12 weeks after end of treatment (SVR12). RESULTS Similar SVR12 rates were achieved in Arms A (88.2%; 95% confidence interval, 73.4-95.3%) and B (88.9%; 71.9-96.2%). Most patients had G1b infection, among whom SVR12 rates in Arms A and B were 96.7% and 91.7%, respectively. The overall SVR12 rate was 94.0% in noncirrhotic Taiwanese patients (100% in the subset of G1b patients). No patients withdrew for safety reasons. Three (11%) cirrhotic patients (Arm B) experienced serious adverse events, none of which was considered to be related to treatment. No Grade 3/4 alanine aminotransferase elevations were reported. The pharmacokinetic properties of danoprevir were broadly overlapping in noncirrhotic and cirrhotic patients both on Days 1 and 14. CONCLUSIONS Ritonavir-boosted danoprevir plus peginterferon alfa-2a/ribavirin produced sustained virologic response rates > 90% after 12 weeks' treatment in noncirrhotic and 24 weeks' treatment in cirrhotic Asian patients with G1b infection and was well tolerated. These regimens are well suited to countries where G1b predominates.
Collapse
Affiliation(s)
- Jia-Horng Kao
- Graduate Institute of Clinical Medicine and Hepatitis Research Center, National Taiwan University and Hospital, Taipei, Taiwan.
| | - Shui-Yi Tung
- Department of Gastroenterology, Chang Gung Memorial Hospital, Chia Yi, Taiwan.,Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Younjae Lee
- Pusan Paik Hospital, Inje University, Pusan, Korea
| | | | | | - I-Shyan Sheen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | - Hui Li
- Roche Product Development, Shanghai, China
| | - Barbara J Brennan
- Roche Translational and Clinical Research Center, New York, New York, USA
| | | | | | - Isabel Najera
- Roche Pharma and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - George Hill
- Genentech, South San Francisco, California, USA
| |
Collapse
|
10
|
Shen H, Dai J, Liu T, Cheng Y, Chen W, Freeden C, Zhang Y, Humphreys WG, Marathe P, Lai Y. Coproporphyrins I and III as Functional Markers of OATP1B Activity: In Vitro and In Vivo Evaluation in Preclinical Species. J Pharmacol Exp Ther 2016; 357:382-93. [PMID: 26907622 DOI: 10.1124/jpet.116.232066] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/12/2016] [Indexed: 03/08/2025] Open
Abstract
Inhibition of organic anion-transporting polypeptide (OATP)1B function can lead to serious clinical drug-drug interactions, thus a thorough evaluation of the potential for this type of interaction must be completed during drug development. Therefore, sensitive and specific biomarkers for OATP function that could be used in conjunction with clinical studies are currently in demand. In the present study, preclinical evaluations were conducted to characterize the suitability of coproporphyrins (CPs) I and III as markers of hepatic OATP functional activity. Active uptake of CPs I and III was observed in human embryonic kidney (HEK) 293 cells singly expressing human OATP1B1 (hOATP1B1), hOATP1B3, cynomolgus monkey OATP1B1 (cOATP1B1), or cOATP1B3, as well as human and monkey hepatocytes. Cyclosporin A (100 mg/kg, oral) markedly increased the area under the curve (AUC) plasma concentrations of CPs I and III by 2.6- and 5.2-fold, while rifampicin (15 mg/kg, oral) increased the AUCs by 2.7- and 3.6-fold, respectively. As the systemic exposure increased, the excretion of both isomers in urine rose from 1.6- to 4.3-fold in monkeys. In agreement with this finding, the AUC of rosuvastatin (RSV) in cynomolgus monkeys increased when OATP1B inhibitors were coadministered. In Oatp1a/1b gene cluster knockout mice (Oatp1a/1b(-/-)), CPs in plasma and urine were significantly increased compared with wild-type animals (7.1- to 18.4-fold; P < 0.001), which were also in agreement with the changes in plasma RSV exposure (14.6-fold increase). We conclude that CPs I and III in plasma and urine are novel endogenous biomarkers reflecting hepatic OATP function, and the measurements have the potential to be incorporated into the design of early clinical evaluation.
Collapse
Affiliation(s)
- Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Jun Dai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Tongtong Liu
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yaofeng Cheng
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Weiqi Chen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Chris Freeden
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yingru Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - W Griffith Humphreys
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Punit Marathe
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| |
Collapse
|