1
|
Paul PR, Mishra MK, Bora S, Kukal S, Singh A, Kukreti S, Kukreti R. The Impact of P-Glycoprotein on CNS Drug Efflux and Variability in Response. J Biochem Mol Toxicol 2025; 39:e70190. [PMID: 39987512 DOI: 10.1002/jbt.70190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Resistance against CNS drugs may arise from various mechanisms, with limited drug penetration across the blood-brain barrier (BBB) being a significant contributing factor. The BBB employs efflux transporters like P-glycoprotein (P-gp) to safeguard the brain by removing toxins and xenobiotics, however, P-gp also pumps out therapeutic drugs, and its upregulation in disease states can contribute to variability in drug response. While inhibiting P-gp to prevent drug efflux seems appealing, it could lead to toxicity since P-gp is also important for expulsion of toxins from the brain. This necessitates the incorporation of P-gp substrate liability assessment into early drug discovery stages using appropriate experimental approaches. Therefore, this review aims to draw interest in this crucial area by analyzing the existing research on P-gp's impact on brain distribution of major CNS drugs and exploring the detection methods for identifying P-gp substrates. By identifying confirmed P-gp substrates and evaluating effective detection methods, this work emphasizes the continued importance of monitoring P-gp-mediated CNS drug efflux out of the brain tissue. This knowledge can empower clinicians to anticipate potential treatment inefficacy and guide therapeutic decision-making, ultimately leading to improved patient treatment outcomes.
Collapse
Affiliation(s)
- Priyanka R Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manish K Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), New Delhi, India
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), New Delhi, India
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anju Singh
- Department of Chemistry, Hindu College, University of Delhi, New Delhi, India
- Nucleic acid research lab, Department of Chemistry, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic acid research lab, Department of Chemistry, University of Delhi, New Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Silva S, Bicker J, Fialho S, Cunha S, Falcão A, Fortuna A. Intranasal delivery of paroxetine: A preclinical study on pharmacokinetics, depressive-like behaviour, and neurochemical sex differences. Biochem Pharmacol 2024; 223:116184. [PMID: 38556027 DOI: 10.1016/j.bcp.2024.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/02/2024]
Abstract
Treatment of major depressive disorder remains a major unmet clinical need. Given the advantages of intranasal administration for targeted brain delivery, the present study aimed at investigating the pharmacokinetics of paroxetine, after its intranasal instillation and assessing its potential therapeutic effect on female and male mice subjected to unpredictable chronic mild stress (UCMS) protocol. IN administration revealed direct nose-to-brain paroxetine delivery but dose- and sex-dependent differences. Pharmacokinetics was nonlinear and paroxetine concentrations were consistently higher in plasma and brain of male mice. Additionally, UCMS decreased animal preference for sucrose in both male and female mice following acute (p < 0.01) and chronic stress (p < 0.05), suggesting anhedonia. Both male and female mice exhibited depressive-like behavior in the forced swimming test. UCMS females displayed a significantly longer immobility time and shorter climbing time than the control group (p < 0.05), while no differences were found between male mice. Two weeks of paroxetine intranasal administration reduced immobility time and lengthened climbing and swimming time, approaching values similar to those observed in the healthy control group. The therapeutic effect was stronger on female mice. Importantly, melatonin plasma levels were significantly decreased in female mice following UCMS (p < 0.05), while males exhibited heightened corticosterone levels. On the other hand, treatment with IN paroxetine significantly increased corticosterone and melatonin levels in both sexes compared to healthy mice (p < 0.05). Intranasal paroxetine delivery undoubtedly ameliorated the behavioral despair, characteristic of depressive-like animals. Despite its efficiency in male and female mice subjected to UCMS, females were more prone to this novel therapeutic strategy.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - S Fialho
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Susana Cunha
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Benet LZ. Solubility-Permeability Interplay in Facilitating the Prediction of Drug Disposition Routes, Extent of Absorption, Food Effects, Brain Penetration and Drug Induced Liver Injury Potential. J Pharm Sci 2023; 112:2326-2331. [PMID: 37429358 PMCID: PMC11033615 DOI: 10.1016/j.xphs.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Here I detail the use of measures of permeability rate and solubility in predicting drug disposition characteristics through the utilization of the Biopharmaceutics Drug Disposition Classification System (BDDCS) and the Extended Clearance Classification System (ECCS) as well as the accuracy of the systems in predicting the major route of elimination and the extent of oral absorption of a new small molecule therapeutics. I compare the BDDCS and ECCS with the FDA Biopharmaceutics Classification System (BCS). I also detail the use of the BCS in predicting food effects and the BDDCS in predicting brain disposition of small molecule therapeutics and in validating DILI predictive metrics. This review provides an update of the current status of these classification systems and their uses in the drug development process.
Collapse
Affiliation(s)
- Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, 533 Parnassus Ave., Room S-822, San Francisco, CA 94102-0912, USA.
| |
Collapse
|
4
|
Tian D, Yang Y, Zhang H, Du H, Zhou H, Wang T. Comparison of Ussing Chamber and Caco-2 Model in Evaluation of Intestinal Absorption Mechanism of Compounds from Different BCS Classifications. DRUG METABOLISM AND BIOANALYSIS LETTERS 2023; 16:105-112. [PMID: 37711012 DOI: 10.2174/2949681016666230913105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Oral bioavailability (F), which is evaluated by permeability and solubility, is one of the key parameters in drug discovery. Currently, Caco-2 and Ussing chamber are both used in the study of intestinal permeability of drugs at different stages of drug development. However, comparative research between the Ussing chamber and Caco-2 for predicting the intestinal availability data (Fa×Fg) in humans has not been reported. METHODS In the present study, we evaluated the permeability of 22 drugs in rat intestines by Ussing chamber and compared them with the reported permeability data from Caco-2. In addition, the active transport of gabapentin was evaluated by Ussing Chamber. RESULTS Intestine segments were selected by corresponding absorption site for Ussing chamber analysis. BCS Class I and II compounds were more absorbed in the duodenum and jejunum, and Class III and IV compounds were more absorbed in the ileum. Papp values in the Caco-2 model were moderately correlated with human Fa×Fg (R2=0.722), and the Papp of the rat in the Ussing chamber revealed a better correlation with human Fa×Fg (R2=0.952). In addition, we also used the Ussing chamber to identify the transporter of gabapentin, and the results showed that the active absorption of gabapentin was related to LAT1. CONCLUSION Ussing chamber combined with rat intestinal tissue would be a significant tool for predicting the intestinal absorption and metabolism of compounds with diverse physiochemical characteristics.
Collapse
Affiliation(s)
- Dong Tian
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Yingxin Yang
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Huiying Zhang
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Hongwen Du
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Hongyu Zhou
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| | - Tao Wang
- Department of Drug Metabolism and Pharmacokinetics (DMPK), Pharmaron Beijing Co., Ltd., Beijing, 100176, China
| |
Collapse
|
5
|
Zaccara G, Franco V. Pharmacokinetic Interactions Between Antiseizure and Psychiatric Medications. Curr Neuropharmacol 2023; 21:1666-1690. [PMID: 35611779 PMCID: PMC10514545 DOI: 10.2174/1570159x20666220524121645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/27/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Antiseizure medications and drugs for psychiatric diseases are frequently used in combination. In this context, pharmacokinetic interactions between these drugs may occur. The vast majority of these interactions are primarily observed at a metabolic level and result from changes in the activity of the cytochrome P450 (CYP). Carbamazepine, phenytoin, and barbiturates induce the oxidative biotransformation and can consequently reduce the plasma concentrations of tricyclic antidepressants, many typical and atypical antipsychotics and some benzodiazepines. Newer antiseizure medications show a lower potential for clinically relevant interactions with drugs for psychiatric disease. The pharmacokinetics of many antiseizure medications is not influenced by antipsychotics and anxiolytics, while some newer antidepressants, namely fluoxetine, fluvoxamine and viloxazine, may inhibit CYP enzymes leading to increased serum concentrations of some antiseizure medications, including phenytoin and carbamazepine. Clinically relevant pharmacokinetic interactions may be anticipated by knowledge of CYP enzymes involved in the biotransformation of individual medications and of the influence of the specific comedication on the activity of these CYP enzymes. As a general rule, these interactions can be managed by careful evaluation of clinical response and, when indicated, individualized dosage adjustments guided by measurement of drugs serum concentrations, especially if pharmacokinetic interactions may cause any change in seizure control or signs of toxicity. Further studies are required to improve predictions of pharmacokinetic interactions between antiseizure medications and drugs for psychiatric diseases providing practical helps for clinicians in the clinical setting.
Collapse
Affiliation(s)
| | - Valentina Franco
- Department of Internal Medicine and Therapeutics, Clinical and Experimental Pharmacology Unit, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
6
|
Megariotis G, Mikaelian G, Avramopoulos A, Romanos N, Theodorou DN. Molecular simulations of fluoxetine in hydrated lipid bilayers, as well as in aqueous solutions containing β-cyclodextrin. J Mol Graph Model 2022; 117:108305. [PMID: 35987186 DOI: 10.1016/j.jmgm.2022.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/25/2022] [Accepted: 08/06/2022] [Indexed: 01/14/2023]
Abstract
Fluoxetine, which is a well-known antidepressant drug, is studied in hydrated cholesterol-free and cholesterol-containing lipid bilayers through unbiased and biased atomistic molecular dynamics simulations. The latter are conducted for the calculation of the potential of mean force (PMF) of fluoxetine along an axis perpendicular to the two leaflets of the bilayer. The PMF indicates that the drug prefers to reside inside the lipid phase and allows us to calculate important thermodynamic properties, such as the Gibbs energy difference of partitioning from the water to the lipid phase and the Gibbs energy barrier for hopping events between the two leaflets of the bilayer. The results from the biased simulations are in accord with the mass density profiles calculated from the unbiased simulations. Moreover, we estimate the effect of fluoxetine mole fraction on the order parameters of the lipid alkyl chains and on the area per lipid. It is also found that fluoxetine forms a hydrogen bond network with lipids and water molecules penetrating into the lipid phase. In addition, fluoxoetine is studied in detail in aqueous solutions containing β-cyclodextrin. It is observed from unbiased molecular dynamics simulations that the two aforementioned molecules form a noncovalent complex spontaneously and the calculated binding free energy is in agreement with the literature.
Collapse
Affiliation(s)
- Grigorios Megariotis
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR, 15780, Greece.
| | - Georgios Mikaelian
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR, 15780, Greece
| | - Aggelos Avramopoulos
- Department of Physics, University of Thessaly, 3rd Km Old National Road Lamia Athens, Lamia, GR, 35100, Greece
| | - Nikolaos Romanos
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR, 15780, Greece
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, Athens, GR, 15780, Greece
| |
Collapse
|
7
|
Application of Intranasal Administration in the Delivery of Antidepressant Active Ingredients. Pharmaceutics 2022; 14:pharmaceutics14102070. [PMID: 36297505 PMCID: PMC9611373 DOI: 10.3390/pharmaceutics14102070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
As a mental disease in modern society, depression shows an increasing occurrence, with low cure rate and high recurrence rate. It has become the most disabling disease in the world. At present, the treatment of depression is mainly based on drug therapy combined with psychological therapy, physical therapy, and other adjuvant therapy methods. Antidepressants are primarily administered peripherally (oral and intravenous) and have a slow onset of action. Antidepressant active ingredients, such as neuropeptides, natural active ingredients, and some chemical agents, are limited by factors such as the blood–brain barrier (BBB), first-pass metabolism, and extensive adverse effects caused by systemic administration. The potential anatomical link between the non-invasive nose–brain pathway and the lesion site of depression may provide a more attractive option for the delivery of antidepressant active ingredients. The purpose of this article is to describe the specific link between intranasal administration and depression, the challenges of intranasal administration, as well as studies of intranasal administration of antidepressant active ingredients.
Collapse
|
8
|
Guan C, Yang Y, Tian D, Jiang Z, Zhang H, Li Y, Yan J, Zhang C, Chen C, Zhang J, Wang J, Wang Y, Du H, Zhou H, Wang T. Evaluation of an Ussing Chamber System Equipped with Rat Intestinal Tissues to Predict Intestinal Absorption and Metabolism in Humans. Eur J Drug Metab Pharmacokinet 2022; 47:639-652. [PMID: 35733077 DOI: 10.1007/s13318-022-00780-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVE Oral bioavailability (F) is one of the key factors that need to be determined in drug discovery. This factor is determined by the permeability and solubility of new molecule entities (NMEs) according to the biopharmaceutics classification system (BCS). METHODS In the present study, we evaluated the permeability of 22 drugs in rat intestinal tissues using an Ussing chamber system and correlated the permeability with data on human intestinal absorption (Fa) and intestinal availability (Fa × Fg) reported in the literature. RESULTS The rat intestinal permeability data were better correlated with the combined effect of the absorbed fraction (Fa) and the fraction escaping intestinal metabolism (Fg) than Fa itself. Clear regional dependent absorption was observed for most of the test drugs, and ileal Papp was generally higher than that in other segments. Finally, the function of the efflux transporter P-glycoprotein (P-gp) with regard to oral absorption of substrates was evaluated with an Ussing chamber. We also demonstrated that the rat intestinal stability of the three cytochrome P450 (CYP) substrates was consistent with the human data. CONCLUSION An Ussing chamber system incorporating rat intestinal tissue would be a valuable tool to predict human intestinal absorption and metabolism for molecules with various physicochemical properties.
Collapse
Affiliation(s)
- Chi Guan
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yingxin Yang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Dong Tian
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Zhiqiang Jiang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Huiying Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yali Li
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Jiaxiu Yan
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Congman Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Chun Chen
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Junhua Zhang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Jing Wang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Yu Wang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Hongwen Du
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Hongyu Zhou
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China
| | - Tao Wang
- Drug Metabolism and Pharmacokinetics (DMPK) Department, Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing, 100176, China.
| |
Collapse
|
9
|
Bocci G, Oprea TI, Benet LZ. State of the Art and Uses for the Biopharmaceutics Drug Disposition Classification System (BDDCS): New Additions, Revisions, and Citation References. AAPS J 2022; 24:37. [PMID: 35199251 PMCID: PMC8865883 DOI: 10.1208/s12248-022-00687-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
The Biopharmaceutics Drug Disposition Classification system (BDDCS) is a four-class approach based on water solubility and extent of metabolism/permeability rate. Based on the BDDCS class to which a drug is assigned, it is possible to predict the role of metabolic enzymes and transporters on the drug disposition of a new molecular entity (NME) prior to its administration to animals or humans. Here, we report a total of 1475 drugs and active metabolites to which the BDDCS is applied. Of these, 379 are new entries, and 1096 are revisions of former classification studies with the addition of references for the approved maximum dose strength, extent of the systemically available drug excreted unchanged in the urine, and lowest solubility over the pH range 1.0–6.8 when such information is available in the literature. We detail revised class assignments of previously misclassified drugs and the literature analyses to classify new drugs. We review the process of solubility assessment for NMEs prior to drug dosing in humans and approved dose classification, as well as the comparison of Biopharmaceutics Classification System (BCS) versus BDDCS assignment. We detail the uses of BDDCS in predicting, prior to dosing animals or humans, disposition characteristics, potential brain penetration, food effect, and drug-induced liver injury (DILI) potential. This work provides an update on the current status of the BDDCS and its uses in the drug development process.
Collapse
Affiliation(s)
- Giovanni Bocci
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, 94143-0912, United States of America.,Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, 87131, United States of America.,ExScientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Tudor I Oprea
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, 87131, United States of America.,UNM Comprehensive Cancer Center, Albuquerque, New Mexico, 87131, United States of America.,Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Roivant Discovery, 451 D Street, Boston, MA, 02210, USA
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, 94143-0912, United States of America.
| |
Collapse
|
10
|
Patel RB, Rao HR, Thakkar DV, Patel MR. Comprehending the potential of metallic, lipid, and polymer-based nanocarriers for treatment and management of depression. Neurochem Int 2021; 153:105259. [PMID: 34942308 DOI: 10.1016/j.neuint.2021.105259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
The World Health Organization (WHO) ranked depression as the third leading cause of global burden of disease in 2004, and it is predicted to overtake it and move to first place by 2030. It is a mental disorder that causes significant changes in the mood and day-to-day activity of an individual. Various approaches already exist for treating depression but, none of them are completely successful in treating depression. At present, discovering a new medication or delivery mechanism that can manage depression safely and efficiently is a huge challenge. Conventional formulations used in the management of depression have drawbacks like limited penetration, frequent dosing, toxicity, patient compliance concerns as well as brain barriers which are a big hurdle for antidepressant drugs to reach the brain through conventional formulations. Nano-based formulations are gaining popularity as one of the possibilities to overcome the limitations of conventional formulations by reducing the dose and dosing frequency, increasing the efficacy as well as proving it to be safe and effective means of treating depression. This review targets the neurochemistry and pathophysiological concerns of depression, strategies and problems of conventional therapies, and also recent advances in the metallic, lipid, and polymer-based nanoformulations for a variety of antidepressants. A detailed discussion of the expediency of various nanoformulations like liposomes, nanostructured lipid carriers, solid lipid nanoparticles, ethosomes, nanocapsules, dendrimer, gold and silver nanoparticles are addressed in the current review. In essence, nanoformulations hold great promises for the treatment of depression as they provide a platform with high penetration potential, targeted transmission, and improved protection and efficacy.
Collapse
Affiliation(s)
- Rashmin B Patel
- Department of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT - Campus, Changa, 388421, Anand, Gujarat, India
| | - Hiteshree R Rao
- Department of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT - Campus, Changa, 388421, Anand, Gujarat, India
| | - Dinesh V Thakkar
- Department of Pharmaceutical Chemistry, A.R. College of Pharmacy & G. H. Patel Institute of Pharmacy, Vallabh Vidya Nagar, 388120, Anand, Gujarat, India
| | - Mrunali R Patel
- Department of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT - Campus, Changa, 388421, Anand, Gujarat, India.
| |
Collapse
|
11
|
Tailoring of P-glycoprotein for effective transportation of actives across blood-brain-barrier. J Control Release 2021; 335:398-407. [PMID: 34087246 DOI: 10.1016/j.jconrel.2021.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022]
Abstract
P-Glycoprotein serves as a gatekeeper in the blood-brain-barrier wherein, it shows a vital part in the elimination of xenobiotics, drugs, foreign molecules etc. and guards the central nervous system from infections and external toxic molecules by functioning as an efflux transporter. It plays an essential role in various brain-related conditions like Parkinsonism, Alzheimer's disease, depression, cancer, etc. and terminates the entry of therapeutic agents across blood-brain-barrier which remains a significant challenge serving as major hindrance in pharmacotherapy of disease. The physiological structure and topology of P-glycoprotein and its relation with blood-brain-barrier and central nervous system gives an idea for targeting nanocarriers across the barrier into brain. This review article provides an overview of current understanding of the nanoformulations-based P-gp trafficking strategies like nanocarriers, stem cell therapy, drugs, substrates, polymeric materials, chemical compounds as well as naturally occurring active constituents for improving drug transport in brain across blood-brain-barrier and contributing in effective nanotherapeutic development for treatment of CNS disorders.
Collapse
|
12
|
Kosugi Y, Mizuno K, Santos C, Sato S, Hosea N, Zientek M. Direct Comparison of the Prediction of the Unbound Brain-to-Plasma Partitioning Utilizing Machine Learning Approach and Mechanistic Neuropharmacokinetic Model. AAPS JOURNAL 2021; 23:72. [PMID: 34008121 PMCID: PMC8131289 DOI: 10.1208/s12248-021-00604-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022]
Abstract
The mechanistic neuropharmacokinetic (neuroPK) model was established to predict unbound brain-to-plasma partitioning (Kp,uu,brain) by considering in vitro efflux activities of multiple drug resistance 1 (MDR1) and breast cancer resistance protein (BCRP). Herein, we directly compare this model to a computational machine learning approach utilizing physicochemical descriptors and efflux ratios of MDR1 and BCRP-expressing cells for predicting Kp,uu,brain in rats. Two different types of machine learning techniques, Gaussian processes (GP) and random forest regression (RF), were assessed by the time and cluster-split validation methods using 640 internal compounds. The predictivity of machine learning models based on only molecular descriptors in the time-split dataset performed worse than the cluster-split dataset, whereas the models incorporating MDR1 and BCRP efflux ratios showed similar predictivity between time and cluster-split datasets. The GP incorporating MDR1 and BCRP in the time-split dataset achieved the highest correlation (R2 = 0.602). These results suggested that incorporation of MDR1 and BCRP in machine learning is beneficial for robust and accurate prediction. Kp,uu,brain prediction utilizing the neuroPK model was significantly worse compared to machine learning approaches for the same dataset. We also investigated the predictivity of Kp,uu,brain using an external independent test set of 34 marketed drugs. Compared to machine learning models, the neuroPK model showed better predictive performance with R2 of 0.577. This work demonstrates that the machine learning model for Kp,uu,brain achieves maximum predictive performance within the chemical applicability domain, whereas the neuroPK model is applicable more widely beyond the chemical space covered in the training dataset.
Collapse
Affiliation(s)
- Yohei Kosugi
- Global DMPK, Takeda California Inc., San Diego, California, 92121, USA.
| | - Kunihiko Mizuno
- Global DMPK, Takeda California Inc., San Diego, California, 92121, USA
| | - Cipriano Santos
- Global DMPK, Takeda California Inc., San Diego, California, 92121, USA
| | - Sho Sato
- Global DMPK, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Natalie Hosea
- Global DMPK, Takeda California Inc., San Diego, California, 92121, USA
| | - Michael Zientek
- Global DMPK, Takeda California Inc., San Diego, California, 92121, USA
| |
Collapse
|
13
|
Parvathaneni V, Elbatanony RS, Shukla SK, Kulkarni NS, Kanabar DD, Chauhan G, Ayehunie S, Chen ZS, Muth A, Gupta V. Bypassing P-glycoprotein mediated efflux of afatinib by cyclodextrin complexation – Evaluation of intestinal absorption and anti-cancer activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
15
|
Vázquez M, Guevara N, Maldonado C, Guido PC, Schaiquevich P. Potential Pharmacokinetic Drug-Drug Interactions between Cannabinoids and Drugs Used for Chronic Pain. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3902740. [PMID: 32855964 PMCID: PMC7443220 DOI: 10.1155/2020/3902740] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
Choosing an appropriate treatment for chronic pain remains problematic, and despite the available medication for its treatment, still, many patients complain about pain and appeal to the use of cannabis derivatives for pain control. However, few data have been provided to clinicians about the pharmacokinetic drug-drug interactions of cannabinoids with other concomitant administered medications. Therefore, the aim of this brief review is to assess the interactions between cannabinoids and pain medication through drug transporters (ATP-binding cassette superfamily members) and/or metabolizing enzymes (cytochromes P450 and glucuronyl transferases).
Collapse
Affiliation(s)
- Marta Vázquez
- Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Natalia Guevara
- Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Maldonado
- Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Paulo Cáceres Guido
- Unidad de Farmacocinética Clínica, Farmacia, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Paula Schaiquevich
- Medicina de Precisión, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
16
|
Vaidya B, Shukla SK, Kolluru S, Huen M, Mulla N, Mehra N, Kanabar D, Palakurthi S, Ayehunie S, Muth A, Gupta V. Nintedanib-cyclodextrin complex to improve bio-activity and intestinal permeability. Carbohydr Polym 2018; 204:68-77. [PMID: 30366544 DOI: 10.1016/j.carbpol.2018.09.080] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/19/2022]
Abstract
Cyclodextrin complex of nintedanib was prepared aiming for increased bio-activity and improved transport across intestinal membrane with reduced p-glycoprotein (p-gp) efflux. Based on preliminary phase solubility studies and molecular modeling, sulfobutyl ether derivative of β-cyclodextrin (SBE-β-CD, Captisol®) was selected to prepare inclusion complex. Complexation was confirmed using FTIR, 1H NMR, DSC, and XRD. Bioactivity of the formed complex was tested using lung fibroblast cells, WI-38 for anti-proliferative activity and effect on collagen deposition and cells migration. In-vitro permeability studies were performed using epiIntestinal tissue model to assess the effect of complexation on transport and p-gp efflux. Results of the study demonstrated that cyclodextrin complexation increased stability of nintedanib in PBS (pH 7.4) and simulated intestinal fluid (SIF). Further, bioactivity of nintedanib also improved. Interestingly, complexation has increased transport of nintedanib across intestinal membrane and reduced efflux ratio, suggesting the role of cyclodextrin complexation in modulating p-gp efflux.
Collapse
Affiliation(s)
- Bhuvaneshwar Vaidya
- School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711, United States
| | - Snehal K Shukla
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Srikanth Kolluru
- School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711, United States
| | - Melanie Huen
- School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711, United States
| | - Nihal Mulla
- College of Pharmacy and Health Sciences, Drake University, Des Moines, IA 50311, United States
| | - Neelesh Mehra
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, United States
| | - Dipti Kanabar
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Srinath Palakurthi
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, United States
| | | | - Aaron Muth
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Vivek Gupta
- School of Pharmacy, Keck Graduate Institute, Claremont, CA 91711, United States; College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States.
| |
Collapse
|
17
|
Raper J, Morrison RD, Daniels JS, Howell L, Bachevalier J, Wichmann T, Galvan A. Metabolism and Distribution of Clozapine-N-oxide: Implications for Nonhuman Primate Chemogenetics. ACS Chem Neurosci 2017; 8:1570-1576. [PMID: 28324647 DOI: 10.1021/acschemneuro.7b00079] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The use of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in neuroscience has rapidly expanded in rodent studies but has lagged behind in nonhuman primate (NHP) experiments, slowing the development of this method for therapeutic use in humans. One reason for the slow adoption of DREADD technology in primates is that the pharmacokinetic properties and bioavailability of clozapine-n-oxide (CNO), the most commonly used ligand for human muscarinic (hM) DREADDs, are not fully described in primates. We report an extensive pharmacokinetic study using subcutaneous (SC) administration of CNO in five adult rhesus monkeys. CNO reached maximal plasma and cerebrospinal fluid (CSF) concentrations within 2 h after injection, with an observed dose-dependent increase in levels following a 3 and 10 mg/kg SC dose. Since CSF concentrations were below values predicted from unbound plasma concentrations, we investigated whether CNO was restricted from the CNS through active transport at the blood-brain barrier. In vitro assessment demonstrated that CNO is a substrate for P-glycoprotein (Pgp; efflux ratio, 20), thus providing a likely mechanism limiting CNO levels in the CNS. Furthermore, CNO is metabolized to the psychoactive compounds clozapine and n-desmethylclozapine in monkeys. The concentrations of clozapine detected in the CSF are sufficient to activate several types of receptor (including the hM-DREADDs). Our results suggest that CNO metabolism and distribution may interfere with reproducibility and interpretation of DREADD-related experiments in NHPs and calls for a re-evaluation of the use of CNO in DREADD-related experiments in NHPs along with the need to test alternative compounds.
Collapse
Affiliation(s)
- Jessica Raper
- Yerkes National Primate Research Center, Atlanta, Georgia 30329, United States
| | - Ryan D. Morrison
- Sano Informed Prescribing, Inc. Franklin, Tennessee 37067, United States
| | - J. Scott Daniels
- Sano Informed Prescribing, Inc. Franklin, Tennessee 37067, United States
| | - Leonard Howell
- Yerkes National Primate Research Center, Atlanta, Georgia 30329, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Jocelyne Bachevalier
- Yerkes National Primate Research Center, Atlanta, Georgia 30329, United States
- Department of Psychology, Emory University, Atlanta, Georgia 30322, United States
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Atlanta, Georgia 30329, United States
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
- Udall Center of Excellence for Parkinson’s
Disease Research, Emory University, Atlanta, Georgia 30329, United States
| | - Adriana Galvan
- Yerkes National Primate Research Center, Atlanta, Georgia 30329, United States
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
- Udall Center of Excellence for Parkinson’s
Disease Research, Emory University, Atlanta, Georgia 30329, United States
| |
Collapse
|
18
|
Abstract
P-glycoprotein (P-gp), the gene product of ABCB1, is a drug transporter at the blood–brain barrier and could be a limiting factor for entrance of antidepressants into the brain, the target site of antidepressant action. Animal studies showed that brain concentrations of many antidepressants depend on P-gp. In humans, ABCB1 genotyping in the treatment of depression rests on the assumption that genetic variations in ABCB1 explain individual differences in antidepressant response via their effects on P-gp expression at the blood–brain barrier. High P-gp expression is hypothesized to lead to lower and often insufficient brain concentrations of P-gp substrate antidepressants. In this review, we summarize 32 studies investigating the question of whether ABCB1 polymorphisms predict clinical efficacy and/or tolerability of antidepressants in humans and evaluate the clinical application status of ABCB1 genotyping in depression treatment.
Collapse
Affiliation(s)
- Tanja Maria Brückl
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2–10, 80804 Munich, Germany
| | - Manfred Uhr
- Clinical Laboratory, Max Planck Institute of Psychiatry, Kraepelinstr. 2–10, 80804 Munich, Germany
| |
Collapse
|
19
|
Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev 2016; 101:89-98. [PMID: 27182629 PMCID: PMC4910824 DOI: 10.1016/j.addr.2016.05.007] [Citation(s) in RCA: 432] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022]
Abstract
The Rule of 5 methodology appears to be as useful today in defining drugability as when it was proposed, but recognizing that the database that we used includes only drugs that successfully reached the market. We do not view additional criteria necessary nor did we find significant deficiencies in the four Rule of 5 criteria originally proposed by Lipinski and coworkers. BDDCS builds upon the Rule of 5 and can quite successfully predict drug disposition characteristics for drugs both meeting and not meeting Rule of 5 criteria. More recent expansions of classification systems have been proposed and do provide useful qualitative and quantitative predictions for clearance relationships. However, the broad range of applicability of BDDCS beyond just clearance predictions gives a great deal of further usefulness for the combined Rule of 5/BDDCS system.
Collapse
Affiliation(s)
- Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, USA
| | - Chelsea M Hosey
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, USA
| | - Oleg Ursu
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tudor I Oprea
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|