1
|
Rahmat AK, Irmasari, Nafiah Z, Ikawati Z. Pharmacogenetics to optimize immunosuppressant therapy in systemic lupus erythematosus: a scoping review. Pharmacogenomics 2025:1-14. [PMID: 40208755 DOI: 10.1080/14622416.2025.2490464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease requiring immunosuppressive medications to control symptoms and prevent organ damage. This review explores the influence of genetic polymorphisms on the pharmacokinetics and therapeutic responses of immunosuppressants in SLE. A total of 37 studies were reviewed, focusing on mycophenolic acid, tacrolimus, azathioprine, glucocorticoids, and cyclophosphamide. Genetic variants in UGT1A9, UGT2B7, CYP3A5, ABCB1,ABCC2 and TPMT significantly affect drug metabolism, efficacy, and toxicity. For instance, ABCB1 polymorphisms influence drug transport and bioavailability, impacting tacrolimus and glucocorticoid response, while ABCC2 variants alter MPA clearance, potentially affecting therapeutic outcomes, UGT1A9 and UGT2B7 variants influence mycophenolic acid metabolism, CYP3A5 impacts tacrolimus dosing, TPMT determines azathioprine metabolism, and CYP2C19 and CYP2B6 affect cyclophosphamide processing. These genetic differences can alter treatment effectiveness and risk of adverse effects. However, most pharmacogenetic studies focus on organ transplantation, leaving a critical gap in SLE-specific research, particularly among diverse populations. Addressing this gap is essential to optimizing personalized treatment for SLE. Integrating pharmacogenetics into clinical practice holds great potential to enhance the safety, efficacy, and outcomes of immunosuppressive therapy in SLE. This review highlights the urgent need for further studies to advance precision medicine for SLE patients.
Collapse
Affiliation(s)
- Alim Khodimul Rahmat
- Doctor's Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Master's Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Irmasari
- Master's Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Zahrotun Nafiah
- Master's Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Zullies Ikawati
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Mohamed ME, Saqr A, Al-Kofahi M, Onyeaghala G, Remmel RP, Staley C, Dorr CR, Teigen L, Guan W, Madden H, Munoz J, Vo D, Sanchez B, El-Rifai R, Oetting WS, Matas AJ, Israni AK, Jacobson PA. Limited Sampling Strategies Fail to Accurately Predict Mycophenolic Acid Area Under the Curve in Kidney Transplant Recipients and the Impact of Enterohepatic Recirculation. Ther Drug Monit 2025; 47:174-182. [PMID: 39047238 DOI: 10.1097/ftd.0000000000001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Therapeutic drug monitoring for mycophenolic acid (MPA) is challenging due to difficulties in measuring the area under the curve (AUC). Limited sampling strategies (LSSs) have been developed for MPA therapeutic drug monitoring but come with risk of unacceptable performance. The authors hypothesized that the poor predictive performance of LSSs were due to the variability in MPA enterohepatic recirculation (EHR). This study is the first to evaluate LSSs models performance in the context of EHR. METHODS Adult kidney transplant recipients (n = 84) receiving oral mycophenolate mofetil underwent intensive MPA pharmacokinetic sampling. MPA AUC 0-12hr and EHR were determined. Published MPA LSSs in kidney transplant recipients receiving tacrolimus were evaluated for their predictive performance in estimating AUC 0-12hr in our full cohort and separately in individuals with high and low EHR. RESULTS None of the evaluated LSS models (n = 12) showed good precision or accuracy in predicting MPA AUC 0-12hr in the full cohort. In the high EHR group, models with late timepoints had better accuracy but low precision, except for 1 model with late timepoints at 6 and 10 hours postdose, which had marginally acceptable precision. For all models, the good guess of predicted AUC 0-12hr (±15% of observed AUC 0-12hr ) was highly variable (range, full cohort = 19%-61.9%; high EHR = 4.5%-65.9%; low EHR = 27.5%-62.5%). CONCLUSIONS The predictive performance of the LSS models varied according to EHR status. Timepoints ≥5 hours postdose in LSS models are essential to capture EHR. Models and strategies that incorporate EHR during development are required to accurately ascertain MPA exposure.
Collapse
Affiliation(s)
- Moataz E Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Abdelrahman Saqr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Mahmoud Al-Kofahi
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
- Gilead Sciences, Inc., Foster City, California
| | - Guillaume Onyeaghala
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota
- Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Christopher Staley
- Department of Surgery, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Casey R Dorr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota
- Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, Minnesota
- Department of Medicine, Hennepin Healthcare, Minneapolis, Minnesota
| | - Levi Teigen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota
| | - Weihua Guan
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Henry Madden
- Department of Surgery, Clinical Trials Office, University of Minnesota, Minneapolis, Minnesota
| | - Julia Munoz
- Department of Surgery, Clinical Trials Office, University of Minnesota, Minneapolis, Minnesota
| | - Duy Vo
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota
| | - Bryan Sanchez
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota
| | - Rasha El-Rifai
- Division of Nephrology, Department of Medicine, School of Medicine, University of Minnesota, Minneapolis; and
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Arthur J Matas
- Department of Surgery, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ajay K Israni
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota
- Department of Medicine, Hennepin Healthcare, Minneapolis, Minnesota
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
3
|
Tague LK, Anthony H, Salama NN, Hachem RR, Gage BF, Gelman AE. An integrated sampling strategy for therapeutic mycophenolic acid monitoring in lung transplant recipients. J Heart Lung Transplant 2025; 44:46-56. [PMID: 39293551 DOI: 10.1016/j.healun.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Mycophenolic Acid (MPA) is the most used anti-proliferative in lung transplantation, but its pharmacokinetic (PK) variability has precluded therapeutic drug monitoring. Both genetic and clinical factors have been implicated in MPA variability. This study aimed to integrate genetic and clinical factors with PK measurements to quantify MPA exposure. METHODS We performed 12-hour pharmacokinetic analysis on 60 adult lung transplant recipients maintained on MPA for immunosuppression. We genotyped a SLCO1B3 polymorphisms previously associated MPA metabolism and collected relevant clinical data. We calculated area under the curve (AUC0-12) and performed univariate linear regression analysis to evaluate its association with genetic, clinical, and pharmacokinetic variables. We performed lasso regression analysis to create final AUC estimation tools. RESULTS PK-only measurements obtained 2, 3, and 8 hours after MPA administration (C2, C3, and C8) were strongly associated with MPA AUC0-12 (R267%, 67% and 68% respectively). Clinical and genetic factors associated with MPA AUC0-12 included the MPA dose (p = 0.001), transplant diagnosis (p = 0.015), SLCO1B3 genotype (p = 0.049), and body surface area (p = 0.050). The best integrated single-sampling strategy included C2 and achieved an R2 value of 80%. The best integrated limited-sampling strategy included C0, C0.25, and C2 and achieved an R2 value of 90%. CONCLUSIONS An integrated limited sampling strategy (LSS) for MPA allows increased accuracy in prediction of MPA AUC0-12 compared to PK-only modeling. Validation of this model will allow for clinically feasible MPA therapeutic drug monitoring and help advance precision management of MPA.
Collapse
Affiliation(s)
- Laneshia K Tague
- Division of Pulmonary and Critical Care, Department of Medicine, Washington University, St. Louis, Missouri.
| | - Hephzibah Anthony
- Division of Pulmonary and Critical Care, Department of Medicine, Washington University, St. Louis, Missouri
| | - Noha N Salama
- St. Louis College of Pharmacy at the University of Health Sciences and Pharmacy, St. Louis, Missouri
| | - Ramsey R Hachem
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Brian F Gage
- Division of General Medical Sciences, Department of Medicine, Washington University, St. Louis, Missouri
| | - Andrew E Gelman
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University, St. Louis, Missouri; Department of Pathology and Immunology, Washington University, St. Louis, Missouri
| |
Collapse
|
4
|
Nađ Škegro S, Penezić L, Šimičević L, Hudolin T, Kaštelan Ž, Božina N, Trkulja V. The reduced function allele SLCO1B1 c.521T>C is of no practical relevance for the renal graft function over the first post-transplant year in patients treated with mycophenolic acid. Pharmacogenet Genomics 2024; 34:226-235. [PMID: 39101384 DOI: 10.1097/fpc.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
OBJECTIVE It is unclear whether renal transplant recipients treated with mycophenolic acid (MPA) who carry the reduced-function allele at polymorphism SLCO1B1 c.521T>C differ from their wild-type peers regarding renal outcomes and tolerability. We aimed to estimate the effect of this polymorphism on the graft function (estimated glomerular filtration rate, eGFR) over the first 12 post-transplant months in patients on MPA-based maintenance immunosuppression. METHODS In a 12-month observational cohort study, consecutive adult patients were repeatedly assessed for eGFR. The SLCO1B1 c.521C>T variant allele carriers (exposed) and wild-type subjects (controls) were balanced on a range of demographic, medical, and genetic variables at baseline, and eGFR trajectory was estimated with further adjustment for time-varying covariates. A subset of patients were assessed for exposure to MPA 5-7 days after the transplantation. RESULTS The adjusted eGFR slopes from day 1 to day 28 (daily), and from day 28 to day 365 (monthly) were practically identical in exposed (n = 86) and control (n = 168) patients [geometric means ratios (GMR) = 0.99, 95% confidence interval (CI) = 0.92-1.06 and GMR = 0.98, 0.94-1.01, respectively]. The rates of adverse renal outcomes and possible MPA-related adverse effects were low, and similar in exposed and controls [rate ratios (RR) = 0.94, 0.49-1.84 and RR = 1.08, 0.74-1.58, respectively]. The pharmacokinetic analysis did not signal meaningful differences regarding exposure to MPA, overall (exposed n = 23, control n = 45), if cotreated with cyclosporine (n = 17 vs. n = 26) or with tacrolimus (n = 8 vs. n = 17). CONCLUSIONS In patients treated with MPA, variant allele SLCO1B1 c.521T>C appears of no practical relevance regarding the 12-month renal graft function, MPA safety and exposure to MPA at early steady-state.
Collapse
Affiliation(s)
| | - Luka Penezić
- Department of Urology, University Hospital Center Zagreb
| | - Livija Šimičević
- Divison of Pharmacogenomics and Therapy Individualization University Hospital Center Zagreb and Department of Biochemistry and Clinical Chemistry, Zagreb University School of Medicine
| | - Tvrtko Hudolin
- Department of Urology, University Hospital Center Zagreb
- Department of Urology, Zagreb University School of Medicine
| | - Željko Kaštelan
- Department of Urology, University Hospital Center Zagreb
- Department of Urology, Zagreb University School of Medicine
| | - Nada Božina
- Department of Pharmacology, Zagreb University School of Medicine, Zagreb Croatia
| | - Vladimir Trkulja
- Department of Pharmacology, Zagreb University School of Medicine, Zagreb Croatia
| |
Collapse
|
5
|
Penezić L, Nađ-Škegro S, Hadžavdić A, Ganoci L, Kaštelan Ž, Trkulja V, Božina N. Inosine monophosphate dehydrogenase type 2 polymorphism IMPDH2 3757T>C (rs11706052) and 12-month evolution of the graft function in renal transplant recipients on mycophenolate-based immunosuppression. THE PHARMACOGENOMICS JOURNAL 2024; 24:15. [PMID: 38769303 DOI: 10.1038/s41397-024-00335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Variant allele at the inosine monophosphate dehydrogenase type 2 polymorphism IMPDH2 3757T>C has been associated with increased enzyme activity and reduced susceptibility to mycophenolic acid (MPA) in vitro. It has been suggested associated with an increased risk of acute rejection in renal transplant recipients on MPA-based immunosuppression, but not unambiguously. We assessed one-year evolution of the estimated glomerular filtration rate (eGFR) in transplanted variant allele carriers and wild-type subjects, while controlling for a number of demographic, pharmacogenetic, (co)morbidity, and treatment baseline and time-varying covariates. The eGFR slopes to day 28 (GMR = 1.01, 95% CI 0.93-1.09), and between days 28 and 365 (GMR = 1.01, 95% CI 0.99-1.02) were practically identical in 52 variant carriers and 202 wild-type controls. The estimates (95%CIs) remained within the limits of ±20% difference even after adjustment for a strong hypothetical effect of unmeasured confounders. Polymorphism IMPDH2 3757T>C does not affect the renal graft function over the 1st year after transplantation.
Collapse
Affiliation(s)
- Luka Penezić
- Department of Urology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Sandra Nađ-Škegro
- Department of Urology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ayla Hadžavdić
- Teaching Institute for Emergency Medicine of Istria County, Zagreb, Croatia
| | - Lana Ganoci
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Željko Kaštelan
- Department of Urology, University Hospital Center Zagreb, Zagreb, Croatia
- Department of Urology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vladimir Trkulja
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Nada Božina
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
6
|
Yow HY, Ikawati M, Siswanto S, Hermawan A, Rahmat AK, Tan JSL, Tee YC, Ng KP, Ikawati Z. Influence of genetic polymorphisms on pharmacokinetics and treatment response of mycophenolic acid: a scoping review. Pharmacogenomics 2024; 25:259-288. [PMID: 38884938 PMCID: PMC11388138 DOI: 10.1080/14622416.2024.2344430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
This scoping review explores the impact of genetic polymorphisms on the pharmacokinetics and treatment responses of mycophenolic acid (MPA), an immunosuppressant. The study includes 83 articles from 1226 original studies, focusing on transplantation (n = 80) and autoimmune disorders (n = 3). Genetic variants in uridine 5'-diphospho-glucuronosyltransferase (UGT1A9, UGT1A8 and UGT2B7) and transmembrane transporters (ABCC2, SLCO1B1, SLCO1B3 and ABCB1) significantly affected MPA's pharmacokinetics and susceptibility to its adverse effect. Whereas variants in several genes including UGT1A9, UGT2B7, IMPDH1 and IMPDH2 have been associated with a higher risk of transplant rejection. However, there is a lack of studies on MPA's impact on autoimmune disorders and limited research on the Asian population. The findings underscore the need for further research on MPA's impact across different populations and diseases, particularly among other Asian ethnic groups, to advance personalized medicine in MPA therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Muthi Ikawati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Soni Siswanto
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
- Advanced Pharmaceutical Sciences Laboratory, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Alim Khodimul Rahmat
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Janet Sui-Ling Tan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ying-Chew Tee
- Rheumatology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kok-Peng Ng
- Nephrology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zullies Ikawati
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| |
Collapse
|
7
|
Morris SA, Nguyen DG, Patel JN. Pharmacogenomics in allogeneic hematopoietic stem cell transplantation: Implications on supportive therapies and conditioning regimens. Best Pract Res Clin Haematol 2023; 36:101470. [PMID: 37353294 DOI: 10.1016/j.beha.2023.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 06/25/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation mortality has declined over the years, though prevention and management of treatment-related toxicities and post-transplant complications remains challenging. Applications of pharmacogenomic testing can potentially mitigate adverse drug outcomes due to interindividual variability in drug metabolism and response. This review summarizes clinical pharmacogenomic applications relevant to hematopoietic stem cell transplantation, including antifungals, immunosuppressants, and supportive care management, as well as emerging pharmacogenomic evidence with conditioning regimens.
Collapse
Affiliation(s)
- Sarah A Morris
- Department of Cancer Pharmacology & Pharmacogenomics Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| | - D Grace Nguyen
- Department of Cancer Pharmacology & Pharmacogenomics Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| | - Jai N Patel
- Department of Cancer Pharmacology & Pharmacogenomics Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| |
Collapse
|
8
|
Borić-Bilušić AA, Božina N, Lalić Z, Lovrić M, Nađ-Škegro S, Penezić L, Barišić K, Trkulja V. Loss of Function ABCG2 c.421C>A (rs2231142) Polymorphism Increases Steady-State Exposure to Mycophenolic Acid in Stable Renal Transplant Recipients: An Exploratory Matched Cohort Study. Adv Ther 2023; 40:601-618. [PMID: 36434147 DOI: 10.1007/s12325-022-02378-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Polymorphism ABCG2 c.421C>A (rs2231142) results in reduced activity of the important drug efflux transporter breast cancer-resistance protein (BCRP/ABCG2). One study has suggested that it may affect enterohepatic recirculation of mycophenolic acid (MPA). We evaluated the effect of rs2231142 on steady-state exposure to MPA in renal transplant recipients. METHODS Consecutive, stable adult (age ≥ 16 years) renal transplant recipients on standard MPA-based immunosuppressant protocols (N = 68; 43 co-treated with cyclosporine, 25 with tacrolimus) underwent routine therapeutic drug monitoring after a week of initial treatment, and were genotyped for ABCG2 c.421C>A and 11 polymorphisms in genes encoding enzymes and transporters implicated in MPA pharmacokinetics. ABCG2 c.421C>A variant versus wild-type (wt) patients were matched with respect to demographic, biopharmaceutic, and genetic variables (full optimal combined with exact matching) and compared for dose-adjusted steady-state MPA pharmacokinetics [frequentist and Bayes (skeptical neutral prior) estimates of geometric means ratios, GMR]. RESULTS Raw data (12 variant versus 56 wt patients) indicated around 40% higher total exposure (frequentist GMR = 1.45, 95% CI 1.10-1.91; Bayes = 1.38, 95% CrI 1.07-1.81) and around 30% lower total body clearance (frequentist GMR = 0.66, 0.58-0.90; Bayes = 0.71, 0.53-0.95) in variant carriers than in wt controls. The estimates were similar in matched data (11 variant versus 43 wt patients): exposure GMR = 1.41 (1.11-1.79) frequentist, 1.39 (1.15-1.81) Bayes, with 90.7% and 85.5% probability of GMR > 1.20, respectively; clearance GMR = 0.73 (0.58-0.93) frequentist, 0.71 (0.54-0.95) Bayes. Sensitivity analysis indicated low susceptibility of the estimates to unmeasured confounding. CONCLUSIONS Loss-off-function polymorphism ABCG2 c.421C>A increases steady-state exposure to MPA in stable renal transplant patients.
Collapse
Affiliation(s)
- A Ana Borić-Bilušić
- Agency for Medicinal Products and Medical Devices of Croatia, Zagreb, Croatia
| | - Nada Božina
- Department of Pharmacology, Zagreb University School of Medicine, Šalata 11, 10000, Zagreb, Croatia
| | - Zdenka Lalić
- Department of Laboratory Diagnostics, Analytical Toxicology and Pharmacology Division, University Hospital Center Zagreb, Zagreb, Croatia
| | - Mila Lovrić
- Department of Laboratory Diagnostics, Analytical Toxicology and Pharmacology Division, University Hospital Center Zagreb, Zagreb, Croatia
| | - Sandra Nađ-Škegro
- Department of Urology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Luka Penezić
- Department of Urology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Karmela Barišić
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, Zagreb University, Zagreb, Croatia
| | - Vladimir Trkulja
- Department of Pharmacology, Zagreb University School of Medicine, Šalata 11, 10000, Zagreb, Croatia.
| |
Collapse
|
9
|
Zhong J, Yang K, Zhang M, Wu J, Liu L. SLCO1B3 T334G polymorphisms and mycophenolate mofetil-related adverse reactions in kidney transplant recipients. Pharmacogenomics 2023; 24:83-91. [PMID: 36475448 DOI: 10.2217/pgs-2022-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: The correlation between SLCO1B3 T334G polymorphisms and mycophenolate mofetil (MMF) adverse reactions in kidney recipients is unknown. Methods: A single-center, retrospective study was performed in which 111 patients were divided into four groups according to the type of adverse effect experienced. The clinical data and concentrations of MMF at different months after transplantation were statistically analyzed. Results: The G allele in the gastrointestinal reaction group was significantly higher than that in the no adverse effects group (p < 0.05). Logistic regression model showed that the SLCO1B3 T334G genotype was an independent risk factor for gastrointestinal reactions caused by MMF. Conclusion: Patients with the SLCO1B3 T334G GG genotype were more likely to experience gastrointestinal reactions.
Collapse
Affiliation(s)
- Jianxun Zhong
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China
| | - Kun Yang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China
| | - Mi Zhang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China
| | - Jianhua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China
| | - Liang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China
| |
Collapse
|
10
|
Chen CC, Chang WC, Lin SH. Mycophenolate-Induced Hepatotoxicity Precipitates Tacrolimus Nephrotoxicity in a Kidney Transplant Recipient: A Case Report. Transplant Proc 2022; 54:2739-2743. [DOI: 10.1016/j.transproceed.2022.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 10/16/2022] [Indexed: 11/10/2022]
|
11
|
Chariyavilaskul P, Phaisal W, Kittanamongkolchai W, Rukrung C, Anutrakulchai S, Avihingsanon Y. Pharmacokinetics and pharmacodynamics profiles of enteric-coated mycophenolate sodium in female patients with difficult-to-treat lupus nephritis. Clin Transl Sci 2022; 15:1776-1786. [PMID: 35570339 PMCID: PMC9283741 DOI: 10.1111/cts.13295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Relapsed or resistant lupus nephritis (LN) is considered a difficult-to-treat type of LN, and enteric-coated mycophenolate sodium (EC-MPS) has been used in this condition. Therapeutic drug monitoring using the area under the plasma mycophenolic acid concentration from 0 to 12 h postdose (MPA-AUC0-12h ) ≥45 μg.h/ml is a useful approach to achieve the highest efficiency. This study assessed EC-MPS's pharmacokinetic (PK) and pharmacodynamic (PD) profiles and investigated an optimal level of the single time point of plasma MPA concentration. Nineteen biopsy-proven patients with class III/IV LN received 1440 mg/day of EC-MPS for 24 weeks. PK (maximum plasma MPA concentration [Cmax ], time to Cmax , and MPA-AUC0-12h ) and PD (activity of inosine-5'-monophosphate dehydrogenase [IMPDH]) parameters were measured at weeks 2, 8, 16, and 24. We found that IMPDH activity decreased from baseline by 31-42% within 2-4 h after dosing, coinciding with the increased plasma MPA concentration. MPA-AUC0-12h ≥45 μg.h/ml was best predicted by a single time point MPA concentration at C0.5, C2, C3, C4, and C8 (r2 = 0.516, 0.514, 0.540, 0.611, and 0.719, respectively), independent of dose, albumin, urine protein/creatinine ratio, and urinalysis. The MPA-C0.5 cutoff of 2.03 g/ml yielded the highest overall sensitivity of 85% and specificity of 88.2% in predicting MPA-AUC0-12h ≥45 μg.h/ml. A single timepoint of plasma MPA-C0.5 ≥2.03 μg/ml may help guide EC-MPS adjustment to achieve adequate drug exposure. Further study of EC-MPS used to validate this cutoff is warranted.
Collapse
Affiliation(s)
- Pajaree Chariyavilaskul
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Weeraya Phaisal
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wonngarm Kittanamongkolchai
- Maha Chakri Sirindhorn Clinical Research Center Under the Royal Patronage, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Renal Immunology and Transplantation Research Unit, Chulalongkorn University, Bangkok, Thailand.,Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chutima Rukrung
- Maha Chakri Sirindhorn Clinical Research Center Under the Royal Patronage, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sirirat Anutrakulchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Knon Kaen, Thailand
| | - Yingyos Avihingsanon
- Renal Immunology and Transplantation Research Unit, Chulalongkorn University, Bangkok, Thailand.,Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Cheng L, Yao P, Weng B, Yang M, Wang Q. Meta-analysis of the associations of IMPDH and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking mycophenolic acid. Eur J Clin Pharmacol 2022; 78:1227-1238. [PMID: 35524809 DOI: 10.1007/s00228-022-03311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/05/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the associations of IMPDH and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking mycophenolic acid (MPA). METHODS PubMed, Web of Science, Embase, Cochrane Library, Wanfang Data, and the China Academic Journal Network Publishing Database were systematically searched for studies investigating the associations of IMPDH1, IMPDH2, and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking MPA. Associations were evaluated by pooled odds ratios (ORs) and effect sizes (ESs) with 95% confidence intervals (CIs). RESULTS Twelve studies were included in the analysis, including a total of 2342 kidney transplant recipients. The results showed that compared with the TC + CC variant genotypes, the TT genotype of IMPDH2 3757 T > C was significantly associated with a higher risk of rejection (ES = 1.60, 95% CI = 1.07-2.40, P = 0.021), while there was no significant association of the IMPDH2 3757 T > C polymorphism with acute rejection within 1 year in kidney transplant recipients (OR = 1.49, 95% CI = 0.79-2.80, P = 0.217; ES = 1.44, 95% CI = 0.88-2.36, P = 0.142). The GG genotypes of IMPDH1 125G > A and IMPDH1 106G > A were significantly associated with a higher risk of rejection (ES = 1.91, 95% CI = 1.11-3.28, P = 0.019) and acute rejection within 1 year (ES = 2.12, 95% CI = 1.45-3.10, P < 0.001) than the variant genotypes GA + AA. The TT genotype of UGT1A9 275 T > A showed a decreased risk of rejection compared with the variant genotypes TA + AA (ES = 0.44, 95% CI = 0.23-0.84, P = 0.013). CONCLUSIONS IMPDH1, IMPDH2, and UGT1A9 polymorphisms were associated with rejection in kidney transplant recipients, and the genetic backgrounds of patients should be considered when using MPA.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pu Yao
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Bangbi Weng
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ming Yang
- Department of Pharmacy, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Qian Wang
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
13
|
Hamza MS, Shouman SA, Abdelfattah R, Moussa HS, Omran MM. Determination of the Cut-off Value for Imatinib Plasma Levels Linked to Occurrence of Bone Pain in CML Patients. Drug Des Devel Ther 2022; 16:1595-1604. [PMID: 35669281 PMCID: PMC9166450 DOI: 10.2147/dddt.s365646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Marwa S Hamza
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
- Correspondence: Marwa S Hamza, Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt, Email
| | - Samia A Shouman
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Raafat Abdelfattah
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Heba S Moussa
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Liu S, Hou L, Li C, Zhao Y, Yao X, Zhang X, Tian X. Contributions of UDP-Glucuronosyltransferases to Human Hepatic and Intestinal Metabolism of Ticagrelor and Inhibition of UGTs and Cytochrome P450 Enzymes by Ticagrelor and its Glucuronidated Metabolite. Front Pharmacol 2021; 12:761814. [PMID: 34721047 PMCID: PMC8552062 DOI: 10.3389/fphar.2021.761814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Ticagrelor is the first reversibly binding, direct-acting, oral P2Y12 receptor inhibitor. The contribution of UDP-glucuronosyltransferases (UGTs) enzymes to the metabolism of ticagrelor to its glucuronide conjugation, ticagrelor-O-glucuronide, in human liver microsomes (HLM) and human intestinal microsomes (HIM), was well characterized in the current study. The inhibition potential of human major UGTs by ticagrelor and ticagrelor-O-glucuronide was explored. The inhibitory effects of ticagrelor-O-glucuronide on cytochrome P450s (CYPs) enzymes were investigated as well. Ticagrelor glucuronidation exhibits substrate inhibition kinetics in both HLM and HIM with apparent Km values of 5.65 and 2.52 μM, Vmax values of 8.03 and 0.90 pmol min−1·mg protein−1, Ksi values of 1,343.0 and 292.9 respectively. The in vitro intrinsic clearances (Vmax/Km) for ticagrelor glucuronidation by HLM and HIM were 1.42 and 0.36 μl min−1·mg protein−1, respectively. Study with recombinant human UGTs suggested that multiple UGT isoforms including UGT1A9, UGT1A7, UGT1A3, UGT1A4, UGT1A1, UGT2B7 and UGT1A8 are involved in the conversion of ticagrelor to ticagrelor-O-glucuronide with UGT1A9 showing highest catalytic activity. The results were further supported by the inhibition studies on ticagrelor glucuronidation with typical UGT inhibitors in pooled HLM and HIM. Little or no inhibition of UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 and UGT2B7 by ticagrelor and ticagrelor-O-glucuronide was noted. Ticagrelor-O-glucuronide also exhibited limited inhibitory effects toward CYP2C8, CYP2D6 and CYP3A4. In contrast, ticagrelor-O-glucuronide weakly inhibited CYP2B6, CYP2C9 and CYP2C19 activity with apparent IC50 values of 45.0, 20.0 and 18.8 μM, respectively. The potential of ticagrelor-O-glucuronide to cause drug-drug interactions warrant further study.
Collapse
Affiliation(s)
- Shuaibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Hou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cai Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yibo Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xia Yao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|