1
|
Sivro M, Omerović Đ, Lazović F, Papović A. The influence of high doses of vitamin C on functional recovery and postoperative pain in patients with trochanteric fracture after intramedullary nailing during a three-month follow-up: a full-scale study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2025; 35:189. [PMID: 40355782 DOI: 10.1007/s00590-025-04332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE To determine the effects of high peri- and postoperative doses of vitamin C administration on severity of pain in postoperative period and functional outcome of the patients with trochanteric fracture treated with intramedullary nailing during a three-month follow-up. METHODS A prospective, randomised, full-scale study included 74 patients who were randomly divided into vitamin C (intervention) and control groups. In the intervention group, patients received vitamin C perioperatively by intravenous route for 2 days, and oral vitamin C for 38 days postoperatively. Baseline characteristics, postoperative metamizole consumption, visual analogue scale (VAS) score, Harris hip score (HHS) value, and the prevalence of complications were evaluated in both groups. RESULTS No significant differences were noted between the groups regarding age, gender, length of hospitalisation, and distribution in fracture type as well as in postoperative HHS values. Postoperative metamizole consumption was notably higher in the control group compared to the vitamin C group (p = 0.003). Postoperative VAS scores were higher in the control group than in the vitamin C group at all time follow-ups (p < 0.05). The group variable significantly contributed to VAS score, and age and gender variables significantly contributed to HHS value. CONCLUSION Significant reduction of subjective pain levels and lower analgesic consumption was found in patients who received vitamin C, suggesting that it should be considered as an adjuvant agent for analgesia in patients with hip fracture.
Collapse
Affiliation(s)
- Mirza Sivro
- Kantonalna Bolnica Zenica, Zenica, Bosnia and Herzegovina.
| | - Đemil Omerović
- Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Faruk Lazović
- Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Adnan Papović
- Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
2
|
Ren C, Li Y, Li M, Wang Y. Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review). Int J Oncol 2025; 66:40. [PMID: 40314093 PMCID: PMC12068847 DOI: 10.3892/ijo.2025.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/03/2025] [Indexed: 05/03/2025] Open
Abstract
Lymphoma is a malignancy of the immune system, which originates from lymphatic tissues and lymph nodes. Diffuse large B‑cell lymphoma (DLBCL) is a common type of non‑Hodgkin lymphoma, occurring in 30‑40% of all cases, which has persistent clinical challenges. The treatment of DLBCL is challenging due to its diverse genetic and biological characteristics and complex clinical physiology. Despite advancements in overall prognosis, 20‑25% of patients continue to experience relapse and 10‑15% of patients experience refractory disease. Vitamin C is a water‑soluble vitamin with antioxidant properties and notable pharmacological activity, with potential applications in cancer therapy. Pharmacological doses of vitamin C (1‑4 g/kg) can induce apoptosis in malignant cells by inhibiting and/or reversing gene mutations that are associated with hematological malignancies. For example, 10‑25% of patients with myeloid malignancies have tet methylcytosine dioxygenase 2 (TET2) gene mutations and vitamin C can regulate blood stem cell frequency and leukemia production by enhancing TET2 function. Consequently, pharmacological doses of vitamin C can inhibit the development and progression of hematological malignancies. Therefore, the present review aimed to investigate the role of vitamin C in the pathophysiology and treatment of DLBCL, whilst highlighting the potential challenges and future perspectives.
Collapse
Affiliation(s)
- Chunxiao Ren
- Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Yaqiong Li
- Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Mingrui Li
- Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Yuqun Wang
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
3
|
Lykkesfeldt J, Carr AC, Tveden-Nyborg P. The pharmacology of vitamin C. Pharmacol Rev 2025; 77:100043. [PMID: 39986139 DOI: 10.1016/j.pharmr.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
Ascorbic acid, the reduced form of vitamin C, is a ubiquitous small carbohydrate. Despite decades of focused research, new metabolic functions of this universal electron donor are still being discovered and add to the complexity of our view of vitamin C in human health. Although praised as an unsurpassed water-soluble antioxidant in plasma and cells, the most interesting functions of vitamin C seem to be its roles as specific electron donor in numerous biological reactions ranging from the well-known hydroxylation of proline to cofactor for the epigenetic master regulators ten-eleven translocation enzymes and Jumonji domain-containing histone-lysine demethylases. Some of these functions may have important implications for disease prevention and treatment and have spiked renewed interest in, eg, vitamin C's potential in cancer therapy. Moreover, some fundamental pharmacokinetic properties of vitamin C remain to be established including if other mechanisms than passive diffusion governs the efflux of ascorbate anions from the cell. Taken together, there still seems to be much to learn about the pharmacology of vitamin C and its role in health and disease. This review explores new avenues of vitamin C and integrates our present knowledge of its pharmacology. SIGNIFICANCE STATEMENT: Vitamin C is involved in multiple biological reactions of which most are essential to human health. Hundreds of millions of people are considered deficient in vitamin C according to accepted guidelines, but little is known about the long-term consequences. Although the complexity of vitamin C's physiology and pharmacology has been widely disregarded in clinical studies for decades, it seems clear that a deeper understanding of particularly its pharmacology holds the key to unravel and possibly exploit the potential of vitamin C in disease prevention and therapy.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Varga D, Szentirmai A, Szarka A. Research for a Common Thread: Insights into the Mechanisms of Six Potential Anticancer Agents. Molecules 2025; 30:1031. [PMID: 40076255 PMCID: PMC11901853 DOI: 10.3390/molecules30051031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/24/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Our research group aimed for the optimization of pharmacologic ascorbate (Ph-Asc)-induced cancer cell death. To reduce the required time and resources needed for development, an in silico system biological approach, an already approved medication, and a mild bioactive compound were used in our previous studies. It was revealed that both Ph-Asc and resveratrol (RES) caused DSBs in the DNA, and chloroquine (CQ) treatment amplified the cytotoxic effect of both Ph-Asc and RES in an autophagy independent way. In the present study, we aimed at the further clarification of the cytotoxic mechanism of Ph-Asc, CQ, and RES by comparing their DNA damaging abilities, effects on the cells' bioenergetic status, ROS, and lipid ROS generation abilities with those of the three currently investigated compounds (menadione, RSL3, H2O2). It could be assessed that the induction of DSBs is certainly a common point of their mechanism of action; furthermore, the observed cancer cell death due to the investigated treatments are independent of the bioenergetic status. Contrary to other investigated compounds, the DNA damaging effect of CQ seemed to be ROS independent. Surprisingly, the well-known ferroptosis inducer RSL3 was unable to induce lipid peroxidation in the pancreas ductal adenocarcinoma (PDAC) Mia PaCa-2 cell line. At the same time, it induced DSBs in the DNA, and the RSL3-induced cell death could not be suspended by the well-known ferroptosis inhibitors. All these observations suggest the ferroptosis resistance of this cell line. The observed DNA damaging effect of RSL3 definitely creates a new perspective in anticancer research.
Collapse
Affiliation(s)
- Dóra Varga
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (D.V.); (A.S.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Anna Szentirmai
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (D.V.); (A.S.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (D.V.); (A.S.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| |
Collapse
|
5
|
Burgess ER, Praditi C, Phillips E, Vissers MCM, Robinson BA, Dachs GU, Wiggins GAR. Role of Sodium-Dependent Vitamin C Transporter-2 and Ascorbate in Regulating the Hypoxic Pathway in Cultured Glioblastoma Cells. J Cell Biochem 2025; 126:e30658. [PMID: 39382087 PMCID: PMC11729540 DOI: 10.1002/jcb.30658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The most common and aggressive brain cancer, glioblastoma, is characterized by hypoxia and poor survival. The pro-tumour transcription factor, hypoxia-inducible factor (HIF), is regulated via HIF-hydroxylases that require ascorbate as cofactor. Decreased HIF-hydroxylase activity triggers the hypoxic pathway driving cancer progression. Tissue ascorbate accumulates via the sodium-dependent vitamin C transporter-2 (SVCT2). We hypothesize that glioblastoma cells rely on SVCT2 for ascorbate accumulation, and that knockout of this transporter would disrupt the regulation of the hypoxic pathway by ascorbate. Ascorbate uptake was measured in glioblastoma cell lines (U87MG, U251MG, T98G) by high-performance liquid chromatography. CRISPR/Cas9 was used to knockout SVCT2. Cells were treated with cobalt chloride, desferrioxamine or 5% oxygen, with/without ascorbate, and key hypoxic pathway proteins were measured using Western blot analysis. Ascorbate uptake was cell line dependent, ranging from 1.7 to 11.0 nmol/106 cells. SVCT2-knockout cells accumulated 90%-95% less intracellular ascorbate than parental cells. The hypoxic pathway was induced by all three stimuli, and ascorbate reduced this induction. In the SVCT2-knockout cells, ascorbate had limited effect on the hypoxic pathway. This study verifies that intracellular ascorbate is required to suppress the hypoxic pathway. As patient survival is related to an activated hypoxic pathway, increasing intra-tumoral ascorbate may be of clinical interest.
Collapse
Affiliation(s)
- Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunology (MI3)Heidelberg University, Medical Faculty MannheimMannheimGermany
| | - Citra Praditi
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
- Mātai Hāora, Centre for Redox Biology and Medicine, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Margreet C. M. Vissers
- Mātai Hāora, Centre for Redox Biology and Medicine, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Bridget A. Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
- Canterbury Regional Cancer and Haematology ServiceTe Whatu Ora, Waitaha/CanterburyChristchurchNew Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - George A. R. Wiggins
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| |
Collapse
|
6
|
Chen P, Lamson D, Anderson P, Drisko J, Chen Q. Combination of High-Dose Parenteral Ascorbate (Vitamin C) and Alpha-Lipoic Acid Failed to Enhance Tumor-Inhibitory Effect But Increased Toxicity in Preclinical Cancer Models. Clin Med Insights Oncol 2024; 18:11795549241283421. [PMID: 39493360 PMCID: PMC11528587 DOI: 10.1177/11795549241283421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/28/2024] [Indexed: 11/05/2024] Open
Abstract
Background Intravenous vitamin C (IVC, ascorbate [Asc]) and alpha-lipoic acid (ALA) are frequently coadministered in integrative oncology clinics, with limited understanding of combination effects or drug-drug interactions. As high-dose IVC has anticancer activity through peroxide (H2O2), it is hypothesized that IV ALA, a thiol antioxidant, might have untoward effects when combined with IVC. Methods In vitro combination index (CI) was investigated in 6 types of human cancer cells, using clinically relevant concentrations of Asc (0.625-20 mM) and ALA (0.25, 0.5, and 1 mM) evaluated by nonconstant ratio metrics. Cellular H2O2 was measured using HeLa cells expressing a fluorescent probe HyPer. Mouse xenografts of the metastatic breast cancer MDA-MB-231 were treated with intraperitoneal injections of ALA (10, 20, and 50 mg/kg) and Asc (0.2, 0.5, and 4 g/kg) at various dose levels. Results Cancer cell lines were sensitive to Asc treatment but not to ALA. There is no evidence ALA becomes a prooxidant at higher doses. The CIs showed a mixture of synergistic and antagonistic effects with different ALA and Asc combination ratios, with a "U" shape response to Asc concentrations. The ALA concentrations did not influence the CIs or cellular H2O2 formation. Adding ALA to Asc dampened the increase of H2O2. Toxicity was observed in mice receiving prolonged treatment of ALA at all doses. The Asc at all doses was nontoxic. The combination of ALA and Asc increased toxicity. The ALA at all doses did not inhibit tumor growth. The Asc at 4 g/kg inhibited tumor growth. Adding ALA 50 mg/kg to Asc 4 g/kg did not enhance the effect, but lower doses of ALA (10 or 20 mg/kg) dampened the inhibitory effect of Asc. Conclusions These data do not support the concurrent or relative concurrent use of high-dose intravenous ALA with prooxidative high-dose IVC in clinical oncology care with potentially increased toxicity.
Collapse
Affiliation(s)
- Ping Chen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Davis Lamson
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA, USA
| | | | - Jeanne Drisko
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Qi Chen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
7
|
May CN, Ow CP, Pustovit RV, Lane DJ, Jufar AH, Trask-Marino A, Peiris RM, Gunn A, Booth LC, Plummer MP, Bellomo R, Lankadeva YR. Reversal of cerebral ischaemia and hypoxia and of sickness behaviour by megadose sodium ascorbate in ovine Gram-negative sepsis. Br J Anaesth 2024; 133:316-325. [PMID: 38960833 DOI: 10.1016/j.bja.2024.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The mechanisms by which megadose sodium ascorbate improves clinical status in experimental sepsis is unclear. We determined its effects on cerebral perfusion, oxygenation, and temperature, and plasma levels of inflammatory biomarkers, nitrates, nitrites, and ascorbate in ovine Gram-negative sepsis. METHODS Sepsis was induced by i.v. infusion of live Escherichia coli for 31 h in unanaesthetised Merino ewes instrumented with a combination sensor in the frontal cerebral cortex to measure tissue perfusion, oxygenation, and temperature. Fluid resuscitation at 23 h was followed by i.v. megadose sodium ascorbate (0.5 g kg-1 over 30 min+0.5 g kg-1 h-1 for 6.5 h) or vehicle (n=6 per group). Norepinephrine was titrated to restore mean arterial pressure (MAP) to 70-80 mm Hg. RESULTS At 23 h of sepsis, MAP (mean [sem]: 85 [2] to 64 [2] mm Hg) and plasma ascorbate (27 [2] to 15 [1] μM) decreased (both P<0.001). Cerebral ischaemia (901 [58] to 396 [40] units), hypoxia (34 [1] to 19 [3] mm Hg), and hyperthermia (39.5 [0.1]°C to 40.8 [0.1]°C) (all P<0.001) developed, accompanied by malaise and lethargy. Sodium ascorbate restored cerebral perfusion (703 [121] units], oxygenation (30 [2] mm Hg), temperature (39.2 [0.1]°C) (all PTreatment<0.05), and the behavioural state to normal. Sodium ascorbate slightly reduced the sepsis-induced increase in interleukin-6, returned VEGF-A to normal (both PGroupxTime<0.01), and increased plasma ascorbate (20 000 [300] μM; PGroup<0.001). The effects of sodium ascorbate were not reproduced by equimolar sodium bicarbonate. CONCLUSIONS Megadose sodium ascorbate rapidly reversed sepsis-induced cerebral ischaemia, hypoxia, hyperthermia, and sickness behaviour. These effects were not reproduced by an equimolar sodium load.
Collapse
Affiliation(s)
- Clive N May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia.
| | - Connie P Ow
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ruslan V Pustovit
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Darius J Lane
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Alemayehu H Jufar
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Anton Trask-Marino
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Rachel M Peiris
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Adam Gunn
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Lindsea C Booth
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Mark P Plummer
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Intensive Care, Royal Adelaide Hospital, Adelaide, VIC, Australia
| | - Rinaldo Bellomo
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia; Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia; Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Yugeesh R Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Chen G, Li MY, Yang JY, Zhou ZH. Will AMPK be a potential therapeutic target for hepatocellular carcinoma? Am J Cancer Res 2024; 14:3241-3258. [PMID: 39113872 PMCID: PMC11301289 DOI: 10.62347/yavk1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer is the disease that poses the greatest threat to human health today. Among them, hepatocellular carcinoma (HCC) is particularly prominent due to its high recurrence rate and extremely low five-year postoperative survival rate. In addition to surgical treatment, radiotherapy, chemotherapy, and immunotherapy are the main methods for treating HCC. Due to the natural drug resistance of chemoradiotherapy and targeted drugs, satisfactory results have not been achieved in terms of therapeutic efficacy and cost. AMP-Activated Protein Kinase (AMPK) is a serine/threonine protein kinase. It mainly coordinates the metabolism and transformation of energy between cells, which maintaining a balance between energy supply and demand. The processes of cell growth, proliferation, autophagy, and survival all involve various reaction of cells to energy changes. The regulatory role of AMPK in cellular energy metabolism plays an important role in the occurrence, development, treatment, and prognosis of HCC. Here, we reviewed the latest progress on the regulatory role of AMPK in the occurrence and development of HCC. Firstly, the molecular structure and activation mechanism of AMPK were introduced. Secondly, the emerging regulator related to AMPK and tumors were elaborated. Next, the multitasking roles of AMPK in the occurrence and development mechanism of HCC were discussed separately. Finally, the translational implications and the challenges of AMPK-targeted therapies for HCC treatment were elaborated. In summary, these pieces of information suggest that AMPK can serve as a promising specific therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Guo Chen
- Department of Oncology, Anhui Hospital, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese MedicineHefei, Anhui, China
| | - Ming-Yuan Li
- Department of Oncology, Anhui Hospital, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese MedicineHefei, Anhui, China
| | - Jing-Yi Yang
- Department of Oncology, Feixi Hospital of Traditional Chinese MedicineFeixi, Hefei, Anhui, China
| | - Zhen-Hua Zhou
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese MedicineShanghai, China
| |
Collapse
|
9
|
Radkowski P, Derkaczew M, Mazuchowski M, Moussa A, Podhorodecka K, Dawidowska-Fidrych J, Braczkowska-Skibińska M, Synia D, Śliwa K, Wiszpolska M, Majewska M. Antibiotic-Drug Interactions in the Intensive Care Unit: A Literature Review. Antibiotics (Basel) 2024; 13:503. [PMID: 38927170 PMCID: PMC11201170 DOI: 10.3390/antibiotics13060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Interactions between drugs are a common problem in Intensive Care Unit patients, as they mainly have a critical condition that often demands the administration of multiple drugs simultaneously. Antibiotics are among the most frequently used medications, as infectious diseases are often observed in ICU patients. In this review, the most important antibiotic-drug interactions, based on the pharmacokinetic and pharmacodynamic mechanisms, were gathered together and described. In particular, some of the most important interactions with main groups of antibacterial drugs were observed in patients simultaneously prescribed oral anticoagulants, NSAIDs, loop diuretics, and valproic acid. As a result, the activity of drugs can be increased or decreased, as dosage modification might be necessary. It should be noted that these crucial interactions can help predict and avoid negative consequences, leading to better patient recovery. Moreover, since there are other factors, such as fluid therapy or albumins, which may also modify the effectiveness of antibacterial therapy, it is important for anaesthesiologists to be aware of them.
Collapse
Affiliation(s)
- Paweł Radkowski
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
- Hospital zum Heiligen Geist in Fritzlar, 34560 Fritzlar, Germany;
- Department of Anaesthesiology and Intensive Care, Regional Specialist Hospital in Olsztyn, 10-561 Olsztyn, Poland
| | - Maria Derkaczew
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
| | - Michał Mazuchowski
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
| | - Annas Moussa
- Hospital zum Heiligen Geist in Fritzlar, 34560 Fritzlar, Germany;
| | - Katarzyna Podhorodecka
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
| | | | - Małgorzata Braczkowska-Skibińska
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
| | - Daria Synia
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
| | - Karol Śliwa
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (P.R.); (M.D.); (M.M.); (K.P.); (M.B.-S.); (D.S.); (K.Ś.)
| | - Marta Wiszpolska
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| |
Collapse
|
10
|
Zhao J, Chen X, Zhang H, Liu X, Ma Y, Yao J, Jiang H, Zhou H. Quantification of nine bufadienolides of Shexiang Tongxin Dropping Pills in rat plasma and tissues using UPLC-MS/MS and its application to healthy and ischemia-reperfusion rats pharmacokinetic studies. J Pharm Biomed Anal 2024; 238:115852. [PMID: 37952449 DOI: 10.1016/j.jpba.2023.115852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/28/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Shexiang Tongxin Dropping Pill (STDP) is a well-known compound preparation used in traditional Chinese medicine for treating cardiovascular diseases. Bufadienolides are the major active compounds of toad venom and are the key to the seven medicinal herbs that comprise STDP. In this study, a reliable and sensitive high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the quantitative determination of nine bufadienolides (bufalin, gamabufotalin, resibufogenin, marinobufagin, arenobufagin, desacetylcinobufagin, telocinobufagin, hellebrigenin, and hellebrigenol) in rat plasma and tissues (heart and liver). The chromatography column used was a Waters ACQUITY UPLC HSS-T3 column with gradient elution using mobile phase consisting of acetonitrile-water (0.1% formic acid added) at a flow rate of 0.25 mL/min. This method passed the methodological validation of plasma and tissues and was successfully applied to pharmacokinetic and tissue distribution studies after oral administration of STDP in healthy and ischemia-reperfusion (I/R) rats. This indicated that most bufadienolides were well absorbed and quickly distributed in the heart and liver. The area-under-the-curve (AUC)(0-t) of most analytes increased in a dose-dependent manner. Moreover, most of the tested components showed lower plasma and higher tissue concentrations in I/R rats than in healthy rats. The above results on the oral pharmacokinetics and tissue distribution may be helpful for the clinical application of STDP.
Collapse
Affiliation(s)
- Jieping Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Xiu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hengbin Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Xiaoyan Liu
- Inner Mongolia Conba Pharmaceut Co Ltd, Hohhot, PR China
| | - Yiwen Ma
- Inner Mongolia Conba Pharmaceut Co Ltd, Hohhot, PR China
| | - Jianbiao Yao
- Zhejiang Conba Pharmaceut Co Ltd, Hangzhou, PR China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China.
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
11
|
Phogole CM, de Jong J, Lalla U, Decloedt E, Kellermann T. In vitro optimization of crushed drug-sensitive antituberculosis medication when administered via a nasogastric tube. Microbiol Spectr 2024; 12:e0287623. [PMID: 37991379 PMCID: PMC10871698 DOI: 10.1128/spectrum.02876-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/22/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE The incidence of tuberculosis (TB) in intensive care units (ICUs) can be as high as 3% in high-burden settings, translating to more than 7,500 patients admitted to the ICU annually. In resource-limited settings, the lack or absence of intravenous formulations of drug-sensitive antituberculosis medications necessitates healthcare practitioners to crush, dissolve, and administer the drugs to critically ill patients via a nasogastric tube (NGT). This off-label practice has been linked to plasma concentrations below the recommended target concentrations, particularly of rifampicin and isoniazid, leading to clinical failure and the development of drug resistance. Optimizing the delivery of crushed drug-sensitive antituberculosis medication via the NGT to critically ill patients is of utmost importance.
Collapse
Affiliation(s)
- Cassius M. Phogole
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jocelyn de Jong
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Usha Lalla
- Division of Pulmonology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eric Decloedt
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tracy Kellermann
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
12
|
Ou J, Liao Q, Du Y, Xi W, Meng Q, Li K, Cai Q, Pang CLK. SERPINE1 and SERPINB7 as potential biomarkers for intravenous vitamin C treatment in non-small-cell lung cancer. Free Radic Biol Med 2023; 209:96-107. [PMID: 37838303 DOI: 10.1016/j.freeradbiomed.2023.10.391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
High dose intravenous vitamin C (IVC) has been proposed as a pro-oxidant anticancer agent. However, there is a lack of biomarkers that are specific for this treatment. Here, we explored profiles of gene expression responding to IVC treatment in non-small cell lung cancer (NSCLC) cells as an effort for potential biomarker discovery. Genome-wide RNA-seq was performed in human NSCLC cell lines treated with pharmacological concentrations of vitamin C(VitC) for differential expression of genes. The identified genes were analyzed for correlations with patient prognosis using data from the Kaplan-Meier Plotter and the Human Protein Atlas databases. Further, tumor samples from a retrospective study of 153 NSCLC patients were analyzed with immunohistochemistry for expression of targeted genes, and patient prognosis was correlated to these genes. Two genes, namely SERPINE1 and SERPINB7 were found to be downregulated in NSCLC cells following VitC treatment. Combined patient data from the cohort analysis and online databases revealed that these 2 genes presented an unfavorable prognostic prediction of overall survival (OS) in NSCLC patients receiving standard of care. However, high expression level of these 2 genes were associated with prolonged OS in NSCLC patients receiving IVC in addition to standard of care. These data revealed that SERPINE1 and SERPINB7 have the potential to serve as predictive factors indicating favorable responses to IVC treatment in patients with NSCLC. Further validations are warranted.
Collapse
Affiliation(s)
- Junwen Ou
- Cancer Center, Clifford Hospital, Jinan University, Guangzhou, PR China.
| | - Qiulin Liao
- Pathology Department, Clifford Hospital, Jinan University, Guangzhou, PR China
| | - Yanping Du
- Cancer Center, Clifford Hospital, Jinan University, Guangzhou, PR China
| | - Wentao Xi
- Cancer Center, Clifford Hospital, Jinan University, Guangzhou, PR China
| | - Qiong Meng
- Cancer Center, Clifford Hospital, Jinan University, Guangzhou, PR China
| | - Kexin Li
- Imaging Department, Clifford Hospital, Jinan University, Guangzhou, PR China
| | - Qichun Cai
- Cancer Center, Clifford Hospital, Jinan University, Guangzhou, PR China
| | - Clifford L K Pang
- Cancer Center, Clifford Hospital, Jinan University, Guangzhou, PR China
| |
Collapse
|
13
|
Castelli G, Logozzi M, Mizzoni D, Di Raimo R, Cerio A, Dolo V, Pasquini L, Screnci M, Ottone T, Testa U, Fais S, Pelosi E. Ex Vivo Anti-Leukemic Effect of Exosome-like Grapefruit-Derived Nanovesicles from Organic Farming-The Potential Role of Ascorbic Acid. Int J Mol Sci 2023; 24:15663. [PMID: 37958646 PMCID: PMC10648274 DOI: 10.3390/ijms242115663] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Citrus fruits are a natural source of ascorbic acid, and exosome-like nanovesicles obtained from these fruits contain measurable levels of ascorbic acid. We tested the ability of grapefruit-derived extracellular vesicles (EVs) to inhibit the growth of human leukemic cells and leukemic patient-derived bone marrow blasts. Transmission electron microscopy and nanoparticle tracking analysis (NTA) showed that the obtained EVs were homogeneous exosomes, defined as exosome-like plant-derived nanovesicles (ELPDNVs). The analysis of their content has shown measurable amounts of several molecules with potent antioxidant activity. ELPDNVs showed a time-dependent antiproliferative effect in both U937 and K562 leukemic cell lines, comparable with the effect of high-dosage ascorbic acid (2 mM). This result was confirmed by a clear decrease in the number of AML blasts induced by ELPDNVs, which did not affect the number of normal cells. ELPDNVs increased the ROS levels in both AML blast cells and U937 without affecting ROS storage in normal cells, and this effect was comparable to ascorbic acid (2 mM). With our study, we propose ELPDNVs from grapefruits as a combination/supporting therapy for human leukemias with the aim to improve the effectiveness of the current therapies.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy
| | - Annamaria Cerio
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
| | - Vincenza Dolo
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Luca Pasquini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Screnci
- Banca Regionale Sangue Cordone Ombelicale, UOC Immunoematologia e Medicina Trasfusionale, Policlinico Umberto I, 00161 Rome, Italy;
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy;
- Santa Lucia Foundation, IRCCS, Neuro-Oncohematology, 00179 Rome, Italy
| | - Ugo Testa
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
| | - Elvira Pelosi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
| |
Collapse
|
14
|
Sanookpan K, Chantaravisoot N, Kalpongnukul N, Chuenjit C, Wattanathamsan O, Shoaib S, Chanvorachote P, Buranasudja V. Pharmacological Ascorbate Elicits Anti-Cancer Activities against Non-Small Cell Lung Cancer through Hydrogen-Peroxide-Induced-DNA-Damage. Antioxidants (Basel) 2023; 12:1775. [PMID: 37760080 PMCID: PMC10525775 DOI: 10.3390/antiox12091775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) poses a significant global health burden with unsatisfactory survival rates, despite advancements in diagnostic and therapeutic modalities. Novel therapeutic approaches are urgently required to improve patient outcomes. Pharmacological ascorbate (P-AscH-; ascorbate at millimolar concentration in plasma) emerged as a potential candidate for cancer therapy for recent decades. In this present study, we explore the anti-cancer effects of P-AscH- on NSCLC and elucidate its underlying mechanisms. P-AscH- treatment induces formation of cellular oxidative distress; disrupts cellular bioenergetics; and leads to induction of apoptotic cell death and ultimately reduction in clonogenic survival. Remarkably, DNA and DNA damage response machineries are identified as vulnerable targets for P-AscH- in NSCLC therapy. Treatments with P-AscH- increase the formation of DNA damage and replication stress markers while inducing mislocalization of DNA repair machineries. The cytotoxic and genotoxic effects of P-AscH- on NSCLC were reversed by co-treatment with catalase, highlighting the roles of extracellular hydrogen peroxide in anti-cancer activities of P-AscH-. The data from this current research advance our understanding of P-AscH- in cancer treatment and support its potential clinical use as a therapeutic option for NSCLC therapy.
Collapse
Affiliation(s)
- Kittipong Sanookpan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
- Nabsolute Co., Ltd., Bangkok 10330, Thailand
| | - Naphat Chantaravisoot
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (C.C.)
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nuttiya Kalpongnukul
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchapon Chuenjit
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (C.C.)
| | - Onsurang Wattanathamsan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
| | - Sara Shoaib
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Visarut Buranasudja
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Yu C, Min S, Lv F, Ren L, Yang Y, Chen L. Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose-induced oncogenic effect by downregulating the Warburg effect. Med Oncol 2023; 40:297. [PMID: 37702811 DOI: 10.1007/s12032-023-02155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
Malnutrition caused by insufficient nutritional supply may significantly hinder the quality of life among cancer patients. Sugar provides energy and nutritional support, but it also promotes cancer growth. Warburg effect is the reprogrammed glucose metabolic mode of cancer cells that meets the intensified ATP demand and biosynthesis. Vitamin C (VC) has anti-tumor effect. However, the relationship between cytotoxicity of VC on cancer cells and Warburg effect remains elusive, the effect of VC on glucose-induced oncogenic effect is also unclear. Based on colorectal cancer cell HCT116, our finding revealed that the discrepant oncogenic effect of different sugar is closely related to the intensification of Warburg effect, with glucose being the potent oncogenic component. Notably, as a potential Warburg effect inhibitor, VC suppressed cancer growth in a concentration-dependent manner and further reversed the glucose-induced oncogenic effect. Furthermore, VC protected tumor-bearing mice from insulin sensitivity impairment and inflammatory imbalance. These findings imply that VC might be a useful adjuvant treatment for cancer patients seeking to optimize nutritional support.
Collapse
Affiliation(s)
- Chang Yu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Feng Lv
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Li Ren
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - You Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Lihao Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
16
|
Martínez-Olivo AO, Zamora-Gasga VM, Medina-Torres L, Pérez-Larios A, Sáyago-Ayerdi SG, Sánchez-Burgos JA. Biofunctionalization of natural extracts, trends in biological activity and kinetic release. Adv Colloid Interface Sci 2023; 318:102938. [PMID: 37329675 DOI: 10.1016/j.cis.2023.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
The health benefits provided by plant matrices is due to the presence of certain compounds that, in studies carried out in vitro and in vivo, have shown to have biological activity in certain conditions, not only as a natural treatment against various conditions, but also for the quality of preventing chronic diseases, these compounds, already identified and studied, they can increase their biological function by undergoing structural chemical modifications or by being incorporated into polymer matrices that allow, in the first instance, to protect said compound and increase its bioaccessibility, as well as to preserve or increase the biological effects. Although the stabilization of compounds is an important aspect, it is also the study of the kinetic parameters of the system that contains them, since, due to these studies, the potential application to these systems can be designated. In this review we will address some of the work focused on obtaining compounds with biological activity from plant sources, the functionalization of extracts through double emulsions and nanoemulsions, as well as their toxicity and finally the pharmacokinetic aspects of entrapment systems.
Collapse
Affiliation(s)
- Abraham Osiris Martínez-Olivo
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Víctor Manuel Zamora-Gasga
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Luis Medina-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, Mexico
| | - Alejandro Pérez-Larios
- Universidad de Guadalajara, Centro Universitario de los Altos, División de Ciencias Agropecuarias e Ingenierías, Laboratorio de Materiales, Agua y Energía, Av. Rafael Casillas Aceves 1200, C.P. 47600, Tepatitlán de Morelos, Mexico
| | - Sonia Guadalupe Sáyago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Jorge Alberto Sánchez-Burgos
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico.
| |
Collapse
|
17
|
Honore PM, Blackman S, Bousbiat I, Perriens E, Attou R. Up to 100 g of Intravenous Vitamin C Appears to be Safe and Elicits No Adverse Effects but Needs Further Evaluation in High-Risk Groups. Clin Pharmacokinet 2022; 61:1199-1202. [PMID: 35908007 DOI: 10.1007/s40262-022-01156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick M Honore
- ICU Department, Centre Hospitalier Universitaire Brugmann-Brugmann University Hospital, ULB University, Place Van Gehuchtenplein, 4, 1020, Brussels, Belgium.
| | - Sydney Blackman
- ICU Department, Centre Hospitalier Universitaire Brugmann-Brugmann University Hospital, ULB University, Place Van Gehuchtenplein, 4, 1020, Brussels, Belgium
| | - Ibrahim Bousbiat
- ICU Department, Centre Hospitalier Universitaire Brugmann-Brugmann University Hospital, ULB University, Place Van Gehuchtenplein, 4, 1020, Brussels, Belgium
| | - Emily Perriens
- ICU Department, Centre Hospitalier Universitaire Brugmann-Brugmann University Hospital, ULB University, Place Van Gehuchtenplein, 4, 1020, Brussels, Belgium
| | - Rachid Attou
- ICU Department, Centre Hospitalier Universitaire Brugmann-Brugmann University Hospital, ULB University, Place Van Gehuchtenplein, 4, 1020, Brussels, Belgium
| |
Collapse
|