1
|
García-Parra B, Guiu JM, Povedano MÓ, Modamio P. A scoping review of the role of managed entry agreements in upcoming drugs for amyotrophic lateral sclerosis: learning from the case of spinal muscular atrophy. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:48-57. [PMID: 39254482 DOI: 10.1080/21678421.2024.2400522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION The therapeutic options for spinal muscular atrophy (SMA) are encouraging. However, there is currently no cure for amyotrophic lateral sclerosis (ALS). The clinical and economic uncertainty surrounding innovative treatments for rare neurodegenerative diseases makes it necessary to understand managed entry agreements (MEAs). The aim of this study was to review whether models of MEAs in SMA could be extrapolated to ALS. METHODS We performed a scoping review with information on MEAs on SMA in Web of Science (WOS), PubMed, Lyfegen Library, the National Institute for Health and Care Excellence (NICE), and the Canadian Agency for Drugs and Technologies in Health (CADTH). RESULTS We found 45 results in WOS and PubMed. After an initial survey, 10 were reviewed to assess eligibility, and three were selected. We obtained 44 results from Lyfegen Library, and three results each from NICE and CADTH. CONCLUSION The main objective of MEAs is to reduce uncertainty in the financing of drugs with a high budgetary impact and clinical concerns, as is the case with drugs for SMA and ALS. While the information available on MEAs in SMA is scarce, some conceptual models are publicly available. MEAs for long-term treatments for SMA could be used for the design of MEAs in ALS because of their similarities in economic and clinical uncertainty.
Collapse
Affiliation(s)
- Beliu García-Parra
- Clinical Neurophysiology Section - Neurology Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Guiu
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Clinical Pharmacy and Pharmaceutical Care Unit, University of Barcelona, Barcelona, Spain, and
| | - MÓnica Povedano
- Clinical Neurophysiology Section - Neurology Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Motor Neuron Diseases Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Modamio
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Clinical Pharmacy and Pharmaceutical Care Unit, University of Barcelona, Barcelona, Spain, and
| |
Collapse
|
2
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
3
|
Wang R, Li M, Wu Z, Gong W, Zhang M, Liu Y, Yao Y, Ji Y. PBA alleviates cadmium-induced mouse spermatogonia apoptosis by suppressing endoplasmic reticulum stress. Toxicol In Vitro 2024; 96:105784. [PMID: 38242296 DOI: 10.1016/j.tiv.2024.105784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/17/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVE Endoplasmic reticulum (ER) stress mediates Cd-caused germ cell apoptosis in testis. The effects of 4-phenylbutyric acid (PBA), a classical chaperone, were investigated on Cd-induced apoptosis in mouse GC-1 spermatogonia cells. METHODS The cells were pretreated with PBA before Cd exposure. TUNEL and flow cytometry assays were applied to determine apoptosis. Some key biomarkers of ER stress were analyzed using RT-PCR and western blot. RESULTS as expected, the apoptotic cells exposed to Cd apparently increased. The mRNA and protein expression levels of GRP78 and ATF6α, were elevated in the Cd groups. Additional experiments displayed that Cd notably increased IRE1α and JNK phosphorylation, and upregulated XBP-1 mRNA and protein expression. Moreover, p-eIF2α and CHOP expressions were clearly elevated in the Cd groups. Interestingly, PBA almost completely inhibited ER stress and protected spermatogonia against apoptosis induced by Cd. CONCLUSION PBA alleviated Cd-induced ER stress and spermatogonia apoptosis, and may have the therapeutic role in Cd-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Rong Wang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Department of Histology and Embryology, Anhui Medical University, Hefei, China
| | - Mengyuan Li
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The People's Hospital of Bozhou, Anhui, China
| | - Wenjing Gong
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mingming Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yehao Liu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University; Hefei Anhui, China
| | - Yuyou Yao
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University; Hefei Anhui, China.
| | - Yanli Ji
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University; Hefei Anhui, China.
| |
Collapse
|
4
|
Chatterjee B, Fatima F, Seth S, Sinha Roy S. Moderate Elevation of Homocysteine Induces Endothelial Dysfunction through Adaptive UPR Activation and Metabolic Rewiring. Cells 2024; 13:214. [PMID: 38334606 PMCID: PMC10854856 DOI: 10.3390/cells13030214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 02/10/2024] Open
Abstract
Elevation of the intermediate amino acid metabolite Homocysteine (Hcy) causes Hyperhomocysteinemia (HHcy), a metabolic disorder frequently associated with mutations in the methionine-cysteine metabolic cycle as well as with nutritional deficiency and aging. The previous literature suggests that HHcy is a strong risk factor for cardiovascular diseases. Severe HHcy is well-established to correlate with vascular pathologies primarily via endothelial cell death. Though moderate HHcy is more prevalent and associated with an increased risk of cardiovascular abnormalities in later part of life, its precise role in endothelial physiology is largely unknown. In this study, we report that moderate elevation of Hcy causes endothelial dysfunction through impairment of their migration and proliferation. We established that unlike severe elevation of Hcy, moderate HHcy is not associated with suppression of endothelial VEGF/VEGFR transcripts and ROS induction. We further showed that moderate HHcy induces a sub-lethal ER stress that causes defective endothelial migration through abnormal actin cytoskeletal remodeling. We also found that sub-lethal increase in Hcy causes endothelial proliferation defect by suppressing mitochondrial respiration and concomitantly increases glycolysis to compensate the consequential ATP loss and maintain overall energy homeostasis. Finally, analyzing a previously published microarray dataset, we confirmed that these hallmarks of moderate HHcy are conserved in adult endothelial cells as well. Thus, we identified adaptive UPR and metabolic rewiring as two key mechanistic signatures in moderate HHcy-associated endothelial dysfunction. As HHcy is clinically associated with enhanced vascular inflammation and hypercoagulability, identifying these mechanistic pathways may serve as future targets to regulate endothelial function and health.
Collapse
Affiliation(s)
- Barun Chatterjee
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Fabeha Fatima
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
| | - Surabhi Seth
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
5
|
Okano H, Morimoto S, Kato C, Nakahara J, Takahashi S. Induced pluripotent stem cells-based disease modeling, drug screening, clinical trials, and reverse translational research for amyotrophic lateral sclerosis. J Neurochem 2023; 167:603-614. [PMID: 37952981 DOI: 10.1111/jnc.16005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
It has been more than 10 years since the hopes for disease modeling and drug discovery using induced pluripotent stem cell (iPSC) technology boomed. Recently, clinical trials have been conducted with drugs identified using this technology, and some promising results have been reported. For amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, several groups have identified candidate drugs, ezogabine (retigabine), bosutinib, and ropinirole, using iPSCs-based drug discovery, and clinical trials using these drugs have been conducted, yielding interesting results. In our previous study, an iPSCs-based drug repurposing approach was utilized to show the potential of ropinirole hydrochloride (ROPI) in reducing ALS-specific pathological phenotypes. Recently, a phase 1/2a trial was conducted to investigate the effects of ropinirole on ALS further. This double-blind, randomized, placebo-controlled study confirmed the safety and tolerability of and provided evidence of its ability to delay disease progression and prolong the time to respiratory failure in ALS patients. Furthermore, in the reverse translational research, in vitro characterization of patient-derived iPSCs-motor neurons (MNs) mimicked the therapeutic effects of ROPI in vivo, suggesting the potential application of this technology to the precision medicine of ALS. Interestingly, RNA-seq data showed that ROPI treatment suppressed the sterol regulatory element-binding protein 2-dependent cholesterol biosynthesis pathway. Therefore, this pathway may be involved in the therapeutic effect of ROPI on ALS. The possibility that this pathway may be involved in the therapeutic effect of ALS was demonstrated. Finally, new future strategies for ALS using iPSCs technology will be discussed in this paper.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
6
|
Elmansy MF, Reidl CT, Rahaman M, Özdinler PH, Silverman RB. Small molecules targeting different cellular pathologies for the treatment of amyotrophic lateral sclerosis. Med Res Rev 2023; 43:2260-2302. [PMID: 37243319 PMCID: PMC10592673 DOI: 10.1002/med.21974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease in which the motor neuron circuitry displays progressive degeneration, affecting mostly the motor neurons in the brain and in the spinal cord. There are no effective cures, albeit three drugs, riluzole, edaravone, and AMX0035 (a combination of sodium phenylbutyrate and taurursodiol), have been approved by the Food and Drug Administration, with limited improvement in patients. There is an urgent need to build better and more effective treatment strategies for ALS. Since the disease is very heterogenous, numerous approaches have been explored, such as targeting genetic mutations, decreasing oxidative stress and excitotoxicity, enhancing mitochondrial function and protein degradation mechanisms, and inhibiting neuroinflammation. In addition, various chemical libraries or previously identified drugs have been screened for potential repurposing in the treatment of ALS. Here, we review previous drug discovery efforts targeting a variety of cellular pathologies that occur from genetic mutations that cause ALS, such as mutations in SOD1, C9orf72, FUS, and TARDP-43 genes. These mutations result in protein aggregation, which causes neuronal degeneration. Compounds used to target cellular pathologies that stem from these mutations are discussed and comparisons among different preclinical models are presented. Because the drug discovery landscape for ALS and other motor neuron diseases is changing rapidly, we also offer recommendations for a novel, more effective, direction in ALS drug discovery that could accelerate translation of effective compounds from animals to patients.
Collapse
Affiliation(s)
- Mohamed F. Elmansy
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Organometallic and Organometalloid Chemistry, National Research Centre, Cairo, Egypt
| | - Cory T. Reidl
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - Mizzanoor Rahaman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - P. Hande Özdinler
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
7
|
Li R, Li F, Wang X, Bai M, Fu H, Yan Z, Yang X, Zhu Y. 4-Phenylbutyric acid may prevent mouse ovarian and uterine damage due to procymidone-induced alteration of circRNA Scar and circZc3h4 levels by controlling excessive unfolded protein response. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105631. [PMID: 37945263 DOI: 10.1016/j.pestbp.2023.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
Procymidone (PCM) below the no-observed-adverse-effect-level (NOAEL) has previously been proven to induce ovarian and uterine damage in adolescent mice due to its raised circRNA Scar, decreased circZc3h4, and overactivated unfolded protein response (UPR). Also, 4-phenylbutyric acid (4-PBA) inhibits histone deacetylase and endoplasmic reticulum stress, reduces UPR, improves metabolism, and ensures homeostasis within the endoplasmic reticulum. In this study, 20, 40 and 80 mM of 4-PBA were utilized respectively to intervene the damage caused by 1.0 × 10-5 M PCM to ovaries and uterus in vitro culture. Besides, 100 mg/kg /d 4-PBA was intraperitoneally injected to female adolescent mice before, during and after oral administration of 100 mg/kg /d PCM for prevention and cure to observe tissue changes in the ovaries and uteri, and levels of circRNA Scar, circZc3h4 and UPR members. Our findings demonstrated that in vitro experiments, all doses of 4-PBA could inhibit ovarian and uterine damage caused by PCM, and the effect of 80 mM was especially noticeable. In the in vivo experiments, the best results were obtained when PCM was given with simultaneous 4-PBA intervention, i.e., minimal ovarian and uterine damage. Both in vivo and in vitro, 4-PBA in the ovary and uterus resulted in decreased circRNA Scar levels, increased circZc3h4 abundance, and moderately elevated levels of UPR members. So, it is suggested that 4-PBA moderately activates UPR, partially or completely antagonizing the elevated circRNA Scar and decreased circZc3h4 and consequently preventing PCM-induced ovarian and uterine damage effectively in adolescent mice.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China; College of Medicine, Yichun University, Yichun 336000, Jiangxi, China
| | - Fan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China
| | - Xuning Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China
| | - Mingxin Bai
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China
| | - Hu Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Zhengli Yan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| | - Yongfei Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
8
|
Kaur B, Sharma PK, Chatterjee B, Bissa B, Nattarayan V, Ramasamy S, Bhat A, Lal M, Samaddar S, Banerjee S, Roy SS. Defective quality control autophagy in Hyperhomocysteinemia promotes ER stress and consequent neuronal apoptosis through proteotoxicity. Cell Commun Signal 2023; 21:258. [PMID: 37749555 PMCID: PMC10518934 DOI: 10.1186/s12964-023-01288-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/19/2023] [Indexed: 09/27/2023] Open
Abstract
Homocysteine (Hcy), produced physiologically in all cells, is an intermediate metabolite of methionine and cysteine metabolism. Hyperhomocysteinemia (HHcy) resulting from an in-born error of metabolism that leads to accumulation of high levels of Hcy, is associated with vascular damage, neurodegeneration and cognitive decline. Using a HHcy model in neuronal cells, primary cortical neurons and transgenic zebrafish, we demonstrate diminished autophagy and Hcy-induced neurotoxicity associated with mitochondrial dysfunction, fragmentation and apoptosis. We find this mitochondrial dysfunction is due to Hcy-induced proteotoxicity leading to ER stress. We show this sustained proteotoxicity originates from the perturbation of upstream autophagic pathways through an aberrant activation of mTOR and that protetoxic stress act as a feedforward cues to aggravate a sustained ER stress that culminate to mitochondrial apoptosis in HHcy model systems. Using chemical chaperones to mitigate sustained ER stress, Hcy-induced proteotoxicity and consequent neurotoxicity were rescued. We also rescue neuronal lethality by activation of autophagy and thereby reducing proteotoxicity and ER stress. Our findings pave the way to devise new strategies for the treatment of neural and cognitive pathologies reported in HHcy, by either activation of upstream autophagy or by suppression of downstream ER stress. Video Abstract.
Collapse
Affiliation(s)
- Bhavneet Kaur
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Pradeep Kumar Sharma
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Barun Chatterjee
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Bhawana Bissa
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Present address: Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Vasugi Nattarayan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
| | - Soundhar Ramasamy
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Ajay Bhat
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Megha Lal
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | | | | | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India.
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Zhang JY, Wang YT, Sun L, Wang SQ, Chen ZS. Synthesis and clinical application of new drugs approved by FDA in 2022. MOLECULAR BIOMEDICINE 2023; 4:26. [PMID: 37661221 PMCID: PMC10475455 DOI: 10.1186/s43556-023-00138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
The pharmaceutical industry had a glorious year in 2022, with a total of 37 new drugs including 20 new chemical entities (NCEs) and 17 new biological entities (NBEs) approved by the Food and Drug Administration (FDA). These drugs are mainly concentrated in oncology, central nervous system, antiinfection, hematology, cardiomyopathy, dermatology, digestive system, ophthalmology, MRI enhancer and other therapeutic fields. Of the 37 drugs, 25 (68%) were approved through an expedited review pathway, and 19 (51%) were approved to treat rare diseases. These newly listed drugs have unique structures and new mechanisms of action, which can serve as lead compounds for designing new drugs with similar biological targets and enhancing therapeutic efficacy. This review aims to outline the clinical applications and synthetic methods of 19 NCEs newly approved by the FDA in 2022, but excludes contrast agent (Xenon Xe-129). We believe that an in-depth understanding of the synthetic methods of drug molecules will provide innovative and practical inspiration for the development of new, more effective, and practical synthetic techniques. According to the therapeutic areas of these 2022 FDA-approved drugs, we have classified these 19 NCEs into seven categories and will introduce them in the order of their approval for marketing.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China
- Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lu Sun
- Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
- Zhongshan Hospital Affiliated to Dalian University, Dalian, 116001, China.
| | - Sai-Qi Wang
- Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
10
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
11
|
Kayki-Mutlu G, Aksoyalp ZS, Wojnowski L, Michel MC. A year in pharmacology: new drugs approved by the US Food and Drug Administration in 2022. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1619-1632. [PMID: 36951997 PMCID: PMC10034907 DOI: 10.1007/s00210-023-02465-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
While new drug approvals by the U.S. Food and Drug Administration (FDA) had remained stable or even increased in the first 2 years of the COVID-19 pandemic, the 37 newly approved drugs in 2022 are considerably less than the 53 and 50 new drugs approved in 2020 and 2021, respectively, and less than the rolling 10-year average of 43. As in previous years of this annual review, we assign these new drugs to one of three levels of innovation: first drug against a condition ("first-in-indication"), first drug using a novel molecular mechanism ("first-in-class"), and "next-in-class," i.e., a drug using an already exploited molecular mechanism. We identify two "first-in-indication" (ganaxolon and teplizumab), 20 (54%) "first-in-class," and 17 (46%) "next-in-class" drugs. By treatment area, rare diseases and cancer drugs were once again the most prevalent (partly overlapping) therapeutic areas. Other continuing trends were the use of accelerated regulatory approval pathways and the reliance on biopharmaceuticals (biologics).
Collapse
Affiliation(s)
- Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zinnet Sevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Universitätsmedizin Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55118 Mainz, Germany
| | - Martin C. Michel
- Department of Pharmacology, University Medical Center, Universitätsmedizin Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55118 Mainz, Germany
| |
Collapse
|
12
|
Ciećwierska K, Lulé D, Bielecki M, Helczyk O, Maksymowicz-Śliwińska A, Finsel J, Nieporęcki K, Andersen PM, Ludolph AC, Kuźma-Kozakiewicz M. Quality of life and depression in patients with amyotrophic lateral sclerosis - does the country of origin matter? BMC Palliat Care 2023; 22:72. [PMID: 37312136 DOI: 10.1186/s12904-023-01189-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Given the inevitable relentless progressing nature of amyotrophic lateral sclerosis (ALS), it is essential to identify factors influencing patients' wellbeing. The study aimed to prospectively assess factors influencing the quality of life (QoL) and depression in ALS patients compared to healthy controls (HCs) from Poland, Germany and Sweden and their relationship to socio-demographic and clinical factors. METHODS 314 ALS patients (120 from Poland, 140 from Germany, 54 from Sweden) and 311 age-, sex- and education-level-matched HCs underwent standardized interviews for quality of life, depression, functional status and pain. RESULTS Patients from all three countries showed similar levels of functional impairment (ALSFRS-R). Overall, ALS patients assessed their quality of life as lower compared to HCs (p < 0.001 for the anamnestic comparative self-assessment (ACSA), p = 0.002 for the Schedule for the evaluation of the subjective quality of life - SEIQoL- direct weighting (SEIQoL-DW). Also, the German and Swedish patients, but not the Polish, reported higher depression levels than the corresponding HCs (p < 0.001). Analysis of ALS groups revealed that functional impairment was related to a lower quality of life (ACSA) and higher depression levels among German ALS patients. Longer time since diagnosis predicted lower depression and (in male subjects) higher quality of life. CONCLUSIONS ALS patients assess their quality of life and mood lower than healthy individuals within the studied countries. The relationships between clinical and demographic factors are moderated by country of provenance, which bears implications for the design and interpretation of scientific and clinical studies, which should reflect the complexity and heterogeneity of mechanisms determining QoL.
Collapse
Affiliation(s)
- Katarzyna Ciećwierska
- Department of Neurology, University Clinical Center of Medical University of Warsaw, Warsaw, Poland
| | - Dorothée Lulé
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Maksymilian Bielecki
- Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Olga Helczyk
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Julia Finsel
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Krzysztof Nieporęcki
- Department of Neurology, University Clinical Center of Medical University of Warsaw, Warsaw, Poland
| | - Peter M Andersen
- Institute of Clinical Sciences, Neuroscience, Umeå University, Umeå, Sweden
| | | | - Magdalena Kuźma-Kozakiewicz
- Department of Neurology, University Clinical Center of Medical University of Warsaw, Warsaw, Poland.
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland.
- Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
13
|
Malar DS, Thitilertdecha P, Ruckvongacheep KS, Brimson S, Tencomnao T, Brimson JM. Targeting Sigma Receptors for the Treatment of Neurodegenerative and Neurodevelopmental Disorders. CNS Drugs 2023; 37:399-440. [PMID: 37166702 PMCID: PMC10173947 DOI: 10.1007/s40263-023-01007-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
The sigma-1 receptor is a 223 amino acid-long protein with a recently identified structure. The sigma-2 receptor is a genetically unrelated protein with a similarly shaped binding pocket and acts to influence cellular activities similar to the sigma-1 receptor. Both proteins are highly expressed in neuronal tissues. As such, they have become targets for treating neurological diseases, including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), Rett syndrome (RS), developmental and epileptic encephalopathies (DEE), and motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). In recent years, there have been many pre-clinical and clinical studies of sigma receptor (1 and 2) ligands for treating neurological disease. Drugs such as blarcamesine, dextromethorphan and pridopidine, which have sigma-1 receptor activity as part of their pharmacological profile, are effective in treating multiple aspects of several neurological diseases. Furthermore, several sigma-2 receptor ligands are under investigation, including CT1812, rivastigmine and SAS0132. This review aims to provide a current and up-to-date analysis of the current clinical and pre-clinical data of drugs with sigma receptor activities for treating neurological disease.
Collapse
Affiliation(s)
- Dicson S Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokphorn S Ruckvongacheep
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - James M Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Room 409, ChulaPat-1 Building, 154 Rama 1 Road, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Gautam M, Genç B, Helmold B, Ahrens A, Kuka J, Makrecka-Kuka M, Günay A, Koçak N, Aguilar-Wickings IR, Keefe D, Zheng G, Swaminathan S, Redmon M, Zariwala HA, Özdinler PH. SBT-272 improves TDP-43 pathology in ALS upper motor neurons by modulating mitochondrial integrity, motility, and function. Neurobiol Dis 2023; 178:106022. [PMID: 36716828 DOI: 10.1016/j.nbd.2023.106022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Mitochondrial defects are one of the common underlying causes of neuronal vulnerability in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), and TDP-43 pathology is the most commonly observed proteinopathy. Disrupted inner mitochondrial membrane (IMM) reported in the upper motor neurons (UMNs) of ALS patients with TDP-43 pathology is recapitulated in the UMNs of well-characterized hTDP-43 mouse model of ALS. The construct validity, such as shared and common cellular pathology in mice and human, offers a unique opportunity to test treatment strategies that may translate to patients. SBT-272 is a well-tolerated brain-penetrant small molecule that stabilizes cardiolipin, a phospholipid found in IMM, thereby restoring mitochondrial structure and respiratory function. We investigated whether SBT-272 can improve IMM structure and health in UMNs diseased with TDP-43 pathology in our well-characterized UMN reporter line for ALS. We found that SBT-272 significantly improved mitochondrial structural integrity and restored mitochondrial motility and function. This led to improved health of diseased UMNs in vitro. In comparison to edaravone and AMX0035, SBT-272 appeared more effective in restoring health of diseased UMNs. Chronic treatment of SBT-272 for sixty days starting at an early symptomatic stage of the disease in vivo led to a significant reduction in astrogliosis, microgliosis, and TDP-43 pathology in the ALS motor cortex. Our results underscore the therapeutic potential of SBT-272, especially within the context of TDP-43 pathology and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mukesh Gautam
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Barış Genç
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Benjamin Helmold
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Angela Ahrens
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Janis Kuka
- Latvian Institute of Organic Synthesis (LIOS), Aizkraukles Street 21, LV-2006 Riga, Latvia
| | - Marina Makrecka-Kuka
- Latvian Institute of Organic Synthesis (LIOS), Aizkraukles Street 21, LV-2006 Riga, Latvia
| | - Aksu Günay
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Nuran Koçak
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Izaak R Aguilar-Wickings
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Dennis Keefe
- Stealth BioTherapeutics, 140 Kendrick St Building C, Needham, MA 02494, USA
| | - Guozhu Zheng
- Stealth BioTherapeutics, 140 Kendrick St Building C, Needham, MA 02494, USA
| | - Suchitra Swaminathan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 420 E Superior St, Chicago, IL 60611, USA.; Robert H. Lurie Comprehensive Cancer Research Center, Feinberg School of Medicine, Northwestern University, 675 N St Clair Fl 21 Ste 100, Chicago, IL 60611, USA
| | - Martin Redmon
- Stealth BioTherapeutics, 140 Kendrick St Building C, Needham, MA 02494, USA
| | - Hatim A Zariwala
- Stealth BioTherapeutics, 140 Kendrick St Building C, Needham, MA 02494, USA
| | - P Hande Özdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Research Center, Feinberg School of Medicine, Northwestern University, 675 N St Clair Fl 21 Ste 100, Chicago, IL 60611, USA; Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2205 Tech Dr, Evanston, IL 60208, USA..
| |
Collapse
|
15
|
Pain O, Jones A, Al Khleifat A, Agarwal D, Hramyka D, Karoui H, Kubica J, Llewellyn DJ, Ranson JM, Yao Z, Iacoangeli A, Al-Chalabi A. Harnessing Transcriptomic Signals for Amyotrophic Lateral Sclerosis to Identify Novel Drugs and Enhance Risk Prediction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.18.23284589. [PMID: 36747854 PMCID: PMC9901068 DOI: 10.1101/2023.01.18.23284589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. This study integrates the latest ALS genome-wide association study (GWAS) summary statistics with functional genomic annotations with the aim of providing mechanistic insights into ALS risk loci, inferring drug repurposing opportunities, and enhancing prediction of ALS risk and clinical characteristics. Methods Genes associated with ALS were identified using GWAS summary statistic methodology including SuSiE SNP-based fine-mapping, and transcriptome- and proteome-wide association study (TWAS/PWAS) analyses. Using several approaches, gene associations were integrated with the DrugTargetor drug-gene interaction database to identify drugs that could be repurposed for the treatment of ALS. Furthermore, ALS gene associations from TWAS were combined with observed blood expression in two external ALS case-control datasets to calculate polytranscriptomic scores and evaluate their utility for prediction of ALS risk and clinical characteristics, including site of onset, age at onset, and survival. Results SNP-based fine-mapping, TWAS and PWAS identified 117 genes associated with ALS, with TWAS and PWAS providing novel mechanistic insights. Drug repurposing analyses identified five drugs significantly enriched for interactions with ALS associated genes, with directional analyses highlighting α-glucosidase inhibitors may exacerbate ALS pathology. Additionally, drug class enrichment analysis showed calcium channel blockers may reduce ALS risk. Across the two observed expression target samples, ALS polytranscriptomic scores significantly predicted ALS risk (R2 = 4%; p-value = 2.1×10-21). Conclusions Functionally-informed analyses of ALS GWAS summary statistics identified novel mechanistic insights into ALS aetiology, highlighted several therapeutic research avenues, and enabled statistically significant prediction of ALS risk.
Collapse
Affiliation(s)
- Oliver Pain
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Ashley Jones
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Devika Agarwal
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Dzmitry Hramyka
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hajer Karoui
- Multiple Sclerosis and Parkinson’s Tissue Bank, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jędrzej Kubica
- Laboratory of Structural Bioinformatics, Institute of Evolutionary Biology, University of Warsaw, Poland
- Laboratory of Theory of Biopolimers, Faculty of Chemistry, University of Warsaw, Poland
| | - David J. Llewellyn
- University of Exeter Medical School, Exeter, United Kingdom
- Alan Turing Institute, London, United Kingdom
| | | | - Zhi Yao
- LifeArc, Stevenage, United Kingdom
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
16
|
Sales de Campos P, Olsen WL, Wymer JP, Smith BK. Respiratory therapies for Amyotrophic Lateral Sclerosis: A state of the art review. Chron Respir Dis 2023; 20:14799731231175915. [PMID: 37219417 PMCID: PMC10214054 DOI: 10.1177/14799731231175915] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition noteworthy for upper and lower motor neuron death. Involvement of respiratory motor neuron pools leads to progressive pathology. These impairments include decreases in neural activation and muscle coordination, progressive airway obstruction, weakened airway defenses, restrictive lung disease, increased risk of pulmonary infections, and weakness and atrophy of respiratory muscles. These neural, airway, pulmonary, and neuromuscular changes deteriorate integrated respiratory-related functions including sleep, cough, swallowing, and breathing. Ultimately, respiratory complications account for a large portion of morbidity and mortality in ALS. This state-of-the-art review highlights applications of respiratory therapies for ALS, including lung volume recruitment, mechanical insufflation-exsufflation, non-invasive ventilation, and respiratory strength training. Therapeutic acute intermittent hypoxia, an emerging therapeutic tool for inducing respiratory plasticity will also be introduced. A focus on emerging evidence and future work underscores the common goal to continue to improve survival for patients living with ALS.
Collapse
Affiliation(s)
- Priscila Sales de Campos
- Breathing Research and Therapeutics
Center, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Wendy L Olsen
- Breathing Research and Therapeutics
Center, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Electrical and
Computer Engineering, University of Florida, Gainesville, FL, USA
| | - James P Wymer
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Barbara K Smith
- Breathing Research and Therapeutics
Center, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Li Y, Lin S, Gu Z, Chen L, He B. Zinc-dependent deacetylases (HDACs) as potential targets for treating Alzheimer’s disease. Bioorg Med Chem Lett 2022; 76:129015. [DOI: 10.1016/j.bmcl.2022.129015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
|