1
|
Fan CY, McAllister BB, Stokes-Heck S, Harding EK, Pereira de Vasconcelos A, Mah LK, Lima LV, van den Hoogen NJ, Rosen SF, Ham B, Zhang Z, Liu H, Zemp FJ, Burkhard R, Geuking MB, Mahoney DJ, Zamponi GW, Mogil JS, Ousman SS, Trang T. Divergent sex-specific pannexin-1 mechanisms in microglia and T cells underlie neuropathic pain. Neuron 2025; 113:896-911.e9. [PMID: 39892387 DOI: 10.1016/j.neuron.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Chronic pain is a leading cause of disability, affecting more women than men. Different immune cells contribute to this sexual divergence, but the mechanisms, especially in females, are not well defined. We show that pannexin-1 (Panx1) channels on microglia and T cells differentially cause mechanical allodynia, a debilitating symptom of neuropathic pain. In male rodents, Panx1 drives vascular endothelial growth factor-A (VEGF-A) release from microglia. Cell-specific knockdown of microglial Panx1 or pharmacological blockade of the VEGF receptor attenuated allodynia in nerve-injured males. In females, nerve injury increased spinal CD8+ T cells and leptin levels. Leptin release from female-derived CD8+ T cells was Panx1 dependent, and intrathecal leptin-neutralizing antibody injection sex-specifically reversed allodynia. Adoptive transfer of female-derived CD8+ T cells caused robust allodynia, which was prevented by a leptin-neutralizing antibody or leptin small interfering RNA (siRNA) knockdown. Panx1-targeted approaches may alleviate neuropathic pain in both sexes, while T cell- and leptin-directed treatments could have sex-dependent benefits for women.
Collapse
Affiliation(s)
- Churmy Y Fan
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Aliny Pereira de Vasconcelos
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Laura K Mah
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute For Chronic Diseases, University of Calgary, Calgary, Canada
| | - Lucas V Lima
- Departments of Psychology and Anesthesia and Faculty of Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sarah F Rosen
- Departments of Psychology and Anesthesia and Faculty of Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Boram Ham
- Departments of Psychology and Anesthesia and Faculty of Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Zizhen Zhang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Hongrui Liu
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Annie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Franz J Zemp
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Annie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Regula Burkhard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute For Chronic Diseases, University of Calgary, Calgary, Canada
| | - Markus B Geuking
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute For Chronic Diseases, University of Calgary, Calgary, Canada
| | - Douglas J Mahoney
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute For Chronic Diseases, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Annie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jeffrey S Mogil
- Departments of Psychology and Anesthesia and Faculty of Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Shalina S Ousman
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Department of Cell Biology & Anatomy, University of Calgary, Calgary, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| |
Collapse
|
2
|
Su Y, Verkhratsky A, Yi C. Targeting connexins: possible game changer in managing neuropathic pain? Trends Mol Med 2024; 30:642-659. [PMID: 38594094 DOI: 10.1016/j.molmed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Neuropathic pain is a chronic debilitating condition caused by nerve injury or a variety of diseases. At the core of neuropathic pain lies the aberrant neuronal excitability in the peripheral and/or central nervous system (PNS and CNS). Enhanced connexin expression and abnormal activation of connexin-assembled gap junctional channels are prominent in neuropathic pain along with reactive gliosis, contributing to neuronal hypersensitivity and hyperexcitability. In this review, we delve into the current understanding of how connexin expression and function contribute to the pathogenesis and pathophysiology of neuropathic pain and argue for connexins as potential therapeutic targets for neuropathic pain management.
Collapse
Affiliation(s)
- Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, China.
| |
Collapse
|