1
|
Yin X, Rang X, Hong X, Zhou Y, Xu C, Fu J. Immune cells transcriptome-based drug repositioning for multiple sclerosis. Front Immunol 2022; 13:1020721. [PMID: 36341423 PMCID: PMC9630342 DOI: 10.3389/fimmu.2022.1020721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Finding target genes and target pathways of existing drugs for drug repositioning in multiple sclerosis (MS) based on transcriptomic changes in MS immune cells. Materials and Methods Based on transcriptome data from Gene Expression Omnibus (GEO) database, differentially expressed genes (DEGs) in MS patients without treatment were identified by bioinformatics analysis according to the type of immune cells, as well as DEGs in MS patients before and after drug administration. Hub target genes of the drug for MS were analyzed by constructing the protein-protein interaction network, and candidate drugs targeting 2 or more hub target genes were obtained through the connectivity map (CMap) database and Drugbank database. Then, the enriched pathways of MS patients without treatment and the enriched pathways of MS patients before and after drug administration were intersected to obtain the target pathways of the drug for MS, and the candidate drugs targeting 2 or more target pathways were obtained through Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results We obtained 50 hub target genes for CD4+ T cells in Fingolimod for MS, 15 hub target genes for Plasmacytoid dendritic cells (pDCs) and 7 hub target genes for Peripheral blood mononuclear cells (PBMC) in interferon-β (IFN-β) for MS. 6 candidate drugs targeting two or more hub targets (Fostamatinib, Copper, Artenimol, Phenethyl isothiocyanate, Aspirin and Zinc) were obtained. In addition, we obtained 4 target pathways for CD19+ B cells and 15 target pathways for CD4+ T cells in Fingolimod for MS, 7 target pathways for pDCs and 6 target pathways for PBMC in IFN-β for MS, most of which belong to the immune system and viral infectious disease pathways. We obtained 69 candidate drugs targeting two target pathways. Conclusion We found that applying candidate drugs that target both the “PI3K-Akt signaling pathway” and “Chemokine signaling pathway” (e.g., Nemiralisib and Umbralisib) or applying tyrosine kinase inhibitors (e.g., Fostamatinib) may be potential therapies for the treatment of MS.
Collapse
Affiliation(s)
- Xinyue Yin
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinming Rang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangxiang Hong
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yinglian Zhou
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- *Correspondence: Jin Fu, ; Chaohan Xu,
| | - Jin Fu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jin Fu, ; Chaohan Xu,
| |
Collapse
|
2
|
Palominos PE, Lineburger IB, Xavier RM. Emerging protein kinase inhibitors for the treatment of rheumatoid arthritis. Expert Opin Emerg Drugs 2021; 26:303-321. [PMID: 34365877 DOI: 10.1080/14728214.2021.1964472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Protein tyrosine kinase inhibitors are emergent drugs in the treatment of rheumatoid arthritis (RA); they block the signal transduction in immune cells preventing the production and release of pro-inflammatory cytokines. AREAS COVERED The current research aims to review the role of Janus, Bruton's and spleen kinase inhibitors for the treatment of RA. Mechanism of action, rationale for usage, and the main efficacy and safety outcomes in phase II and III clinical trials are described. EXPERT OPINION In RA, the development of Bruton kinase inhibitors was interrupted because they failed to demonstrate superiority versus placebo. The spleen kinase inhibitors had their development deprioritized because their risk/benefit profile was unfavorable compared to janus kinase inhibitors (JAKi). JAKi proved to be effective in treatment naïve patients and in those with previous failure to methotrexate and/or biological therapy. There still remain important points about JAKi that need more studies: the clinical importance of JAKi selectivity should be further evaluated in head-to-head trials and the safety profile of JAKi, mainly regarding the risk of malignancy and thromboembolic events, must be analyzed in long-term real-life studies.
Collapse
|
3
|
Wu J, Zhu Z, Yu Q, Ding C. Tyrosine kinase inhibitors for the treatment of rheumatoid arthritis: phase I to Ⅱ clinical trials. Expert Opin Investig Drugs 2019; 28:1113-1123. [PMID: 31738612 DOI: 10.1080/13543784.2019.1692812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Rheumatoid arthritis (RA) is a chronic, refractory disorder caused by autoimmunity in the synovial joints. Disease-modifying anti-rheumatic drugs (DMARDs) and biologicals offer remission in only two-thirds of RA patients within 3 months, hence new therapeutic approaches are necessary. Tyrosine kinase inhibitors (TKIs) are newly developed small molecule drugs which have demonstrated encouraging results in this disease.Areas covered: The key findings from phase I and II clinical trials that have investigated the use of novel TKIs in the treatment of RA are discussed. We examined the literature published between January 2014 to January 2019 using electronic databases including PubMed, Web of Science, Medline, Embase, and Google Scholar. Additional information about phase I and II trials on the ClinicalTrial.gov website up to January 2019 was also retrieved.Expert opinion: JAK inhibitors are promising drugs with sound efficacy and acceptable safety and may be beneficial to patients who do not respond to DMARDs and biologicals. The response rates among RA patients to TKIs are diverse; genetic and environmental factors may be involved in the varying responses which are closely related to the pathogenesis of RA. Future studies may reveal the underlying mechanisms of resistance and non-response.
Collapse
Affiliation(s)
- Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohua Zhu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
4
|
|
5
|
Ma TKW, McAdoo SP, Tam FWK. Targeting the tyrosine kinase signalling pathways for treatment of immune-mediated glomerulonephritis: from bench to bedside and beyond. Nephrol Dial Transplant 2017; 32:i129-i138. [PMID: 28391340 PMCID: PMC5410974 DOI: 10.1093/ndt/gfw336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022] Open
Abstract
Glomerulonephritis (GN) affects patients of all ages and is an important cause of morbidity and mortality. Non-selective immunosuppressive drugs have been used in immune-mediated GN but often result in systemic side effects and occasionally fatal infective complications. There is increasing evidence from both preclinical and clinical studies that abnormal activation of receptor and non-receptor tyrosine kinase signalling pathways are implicated in the pathogenesis of immune-mediated GN. Activation of spleen tyrosine kinase (SYK), Bruton's tyrosine kinase (BTK), platelet-derived growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR) and discoidin domain receptor 1 (DDR1) have been demonstrated in anti-GBM disease. SYK is implicated in the pathogenesis of ANCA-associated GN. SYK, BTK, PDGFR, EFGR, DDR1 and Janus kinase are implicated in the pathogenesis of lupus nephritis. A representative animal model of IgA nephropathy (IgAN) is lacking. Based on the results from in vitro and human renal biopsy study results, a phase II clinical trial is ongoing to evaluate the efficacy and safety of fostamatinib (an oral SYK inhibitor) in high-risk IgAN patient. Various tyrosine kinase inhibitors (TKIs) have been approved for cancer treatment. Clinical trials of TKIs in GN may be justified given their long-term safety data. In this review we will discuss the current unmet medical needs in GN treatment and research as well as the current stage of development of TKIs in GN treatment and propose an accelerated translational research approach to investigate whether selective inhibition of tyrosine kinase provides a safer and more efficacious option for GN treatment.
Collapse
Affiliation(s)
- Terry King-Wing Ma
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK.,Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Stephen P McAdoo
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Frederick Wai Keung Tam
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| |
Collapse
|
6
|
Ma TKW, McAdoo SP, Tam FWK. Spleen Tyrosine Kinase: A Crucial Player and Potential Therapeutic Target in Renal Disease. Nephron Clin Pract 2016; 133:261-9. [PMID: 27476075 DOI: 10.1159/000446879] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/24/2016] [Indexed: 02/06/2023] Open
Abstract
Spleen tyrosine kinase (Syk), a 72 kDa cytoplasmic non-receptor protein-tyrosine kinase, plays an important role in signal transduction in a variety of cell types. Ever since its discovery in the early 1990s, there has been accumulating evidence to suggest a pathogenic role of Syk in various allergic disorders, autoimmune diseases and malignancies. Additionally, there is emerging data from both pre-clinical and clinical studies that Syk is implicated in the pathogenesis of proliferative glomerulonephritis (GN), including anti-glomerular basement membrane disease, anti-neutrophil cytoplasmic antibody-associated GN, lupus nephritis and immunoglobulin A nephropathy (IgAN). Moreover, recent animal studies have shed light on the importance of Syk in mediating acute renal allograft rejection, Epstein Barr virus-associated post-transplant lymphoproliferative disease and kidney fibrosis. Fostamatinib, an oral Syk inhibitor, has undergone clinical testing in rheumatoid arthritis, refractory immune thrombocytopenic purpura, leukemia and lymphoma. The recent STOP-IgAN trial showed that the addition of non-selective immunosuppressive therapy to intensive supportive care did not improve clinical outcomes in high-risk IgAN patients. A Syk-targeted approach may be beneficial and is currently being evaluated in a phase II randomized controlled trial. In this review, we will discuss the pathogenic role of Syk and potential use of Syk inhibitor in a variety of renal diseases.
Collapse
Affiliation(s)
- Terry King-Wing Ma
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
7
|
Carlson HA, Smith RD, Damm-Ganamet KL, Stuckey JA, Ahmed A, Convery MA, Somers DO, Kranz M, Elkins PA, Cui G, Peishoff CE, Lambert MH, Dunbar JB. CSAR 2014: A Benchmark Exercise Using Unpublished Data from Pharma. J Chem Inf Model 2016; 56:1063-77. [PMID: 27149958 DOI: 10.1021/acs.jcim.5b00523] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 2014 CSAR Benchmark Exercise was the last community-wide exercise that was conducted by the group at the University of Michigan, Ann Arbor. For this event, GlaxoSmithKline (GSK) donated unpublished crystal structures and affinity data from in-house projects. Three targets were used: tRNA (m1G37) methyltransferase (TrmD), Spleen Tyrosine Kinase (SYK), and Factor Xa (FXa). A particularly strong feature of the GSK data is its large size, which lends greater statistical significance to comparisons between different methods. In Phase 1 of the CSAR 2014 Exercise, participants were given several protein-ligand complexes and asked to identify the one near-native pose from among 200 decoys provided by CSAR. Though decoys were requested by the community, we found that they complicated our analysis. We could not discern whether poor predictions were failures of the chosen method or an incompatibility between the participant's method and the setup protocol we used. This problem is inherent to decoys, and we strongly advise against their use. In Phase 2, participants had to dock and rank/score a set of small molecules given only the SMILES strings of the ligands and a protein structure with a different ligand bound. Overall, docking was a success for most participants, much better in Phase 2 than in Phase 1. However, scoring was a greater challenge. No particular approach to docking and scoring had an edge, and successful methods included empirical, knowledge-based, machine-learning, shape-fitting, and even those with solvation and entropy terms. Several groups were successful in ranking TrmD and/or SYK, but ranking FXa ligands was intractable for all participants. Methods that were able to dock well across all submitted systems include MDock,1 Glide-XP,2 PLANTS,3 Wilma,4 Gold,5 SMINA,6 Glide-XP2/PELE,7 FlexX,8 and MedusaDock.9 In fact, the submission based on Glide-XP2/PELE7 cross-docked all ligands to many crystal structures, and it was particularly impressive to see success across an ensemble of protein structures for multiple targets. For scoring/ranking, submissions that showed statistically significant achievement include MDock1 using ITScore1,10 with a flexible-ligand term,11 SMINA6 using Autodock-Vina,12,13 FlexX8 using HYDE,14 and Glide-XP2 using XP DockScore2 with and without ROCS15 shape similarity.16 Of course, these results are for only three protein targets, and many more systems need to be investigated to truly identify which approaches are more successful than others. Furthermore, our exercise is not a competition.
Collapse
Affiliation(s)
- Heather A Carlson
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church St., Ann Arbor, Michigan 48109-1065, United States
| | - Richard D Smith
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church St., Ann Arbor, Michigan 48109-1065, United States
| | - Kelly L Damm-Ganamet
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church St., Ann Arbor, Michigan 48109-1065, United States
| | - Jeanne A Stuckey
- Center for Structural Biology, University of Michigan , 3358E Life Sciences Institute, 210 Washtenaw Ave., Ann Arbor, Michigan 48109-2216, United States
| | - Aqeel Ahmed
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church St., Ann Arbor, Michigan 48109-1065, United States
| | - Maire A Convery
- Computational and Structural Sciences, Medicines Research Centre, GlaxoSmithKline Research & Development , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Donald O Somers
- Computational and Structural Sciences, Medicines Research Centre, GlaxoSmithKline Research & Development , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Michael Kranz
- Computational and Structural Sciences, Medicines Research Centre, GlaxoSmithKline Research & Development , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Patricia A Elkins
- Computational and Structural Sciences, GlaxoSmithKline Research & Development , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Guanglei Cui
- Computational and Structural Sciences, GlaxoSmithKline Research & Development , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Catherine E Peishoff
- Computational and Structural Sciences, GlaxoSmithKline Research & Development , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Millard H Lambert
- Computational and Structural Sciences, GlaxoSmithKline Research & Development , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - James B Dunbar
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church St., Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
8
|
Filkova M, Cope A, Mant T, Galloway J. Is there a role of synovial biopsy in drug development? BMC Musculoskelet Disord 2016; 17:172. [PMID: 27094362 PMCID: PMC4837502 DOI: 10.1186/s12891-016-1028-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/09/2016] [Indexed: 12/27/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease which causes significant pain, joint deformity, functional disability. The pathological hallmark of RA is inflammation of the synovium characterized by involvement of inflammatory and resident stromal cells, soluble mediators and signalling pathways leading to irreversible joint destruction. The treatment goal in RA has evolved over the last decade towards a target of disease remission that is achieved in less than a third of patients in clinical trials. The lack of therapeutic response to current treatments is suggestive of alternative drivers of RA pathogenesis that might serve as promising therapeutic targets. There are data to justify the use of synovial tissue in early drug development. Synovial tissue represents an appropriate compartment to be studied in patients with inflammatory arthritis and provides information that is distinct from peripheral blood. Modern techniques have made the procedure much more accessible and ultrasound guided biopsies represent a safe and acceptable option. Advances in analytic technologies allowing transcriptomic level of analysis can provide unique inside to target organ/tissue following the exposure to investigational medicinal product. However, there are still caveats with regard to both the choice of technique and analytical methods. Therefore the significance of synovial biopsy remains to be determined in future clinical trials. The aim of the current debate is to explore the potential for accessing and evaluating synovial tissue in early drug development, to summarize lessons we have learned from clinical trials and to discuss the challenges that have arisen so far.
Collapse
Affiliation(s)
- Maria Filkova
- Academic Department of Rheumatology, Weston Education Centre, King's College London, Cutcombe Road, SE5 9RJ, London, UK
| | - Andrew Cope
- Academic Department of Rheumatology, Weston Education Centre, King's College London, Cutcombe Road, SE5 9RJ, London, UK
| | - Tim Mant
- Quintiles Drug Research Unit at Guy's Hospital, London, UK
| | - James Galloway
- Academic Department of Rheumatology, Weston Education Centre, King's College London, Cutcombe Road, SE5 9RJ, London, UK.
| |
Collapse
|
9
|
Sardar S, Andersson Å. Old and new therapeutics for Rheumatoid Arthritis: in vivo models and drug development. Immunopharmacol Immunotoxicol 2016; 38:2-13. [PMID: 26769136 DOI: 10.3109/08923973.2015.1125917] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Development of novel drugs for treatment of chronic inflammatory diseases is to a large extent dependent on the availability of good experimental in vivo models in order to perform preclinical tests of new drugs and for the identification of novel drug targets. Here, we review a number of existing rodent models for Rheumatoid Arthritis in the context of how these models have been utilized for developing established therapy in Rheumatoid Arthritis and, furthermore, the present use of animal models for studies of novel drug candidates. We have studied the literature in the field for the use of in vivo models during development of anti-rheumatic drugs; from Methotrexate to various antibody treatments, to novel drugs that are, or have recently been, in clinical trials. For novel drugs, we have explored websites for clinical trials. Although a single Rheumatoid Arthritis in vivo model cannot mirror the complexity of disease development, there exist a number of good animal models for Rheumatoid Arthritis, each defining some parts in disease development, which are useful for studies of drug response. We find that many of the established drugs were not tested in in vivo models before being used in the clinic, but rather animal models have been subsequently used to find mechanisms for efficacy. Finally, we report a number of novel drugs, tested in preclinical in vivo models, presently in clinical trials.
Collapse
Affiliation(s)
- Samra Sardar
- a Department Of Drug Design and Pharmacology , Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Åsa Andersson
- a Department Of Drug Design and Pharmacology , Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
10
|
Spleen Tyrosine Kinase Mediates EGFR Signaling to Regulate Keratinocyte Terminal Differentiation. J Invest Dermatol 2016; 136:192-201. [DOI: 10.1038/jid.2015.381] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 07/31/2015] [Accepted: 08/19/2015] [Indexed: 11/09/2022]
|
11
|
Wiestner A. BCR pathway inhibition as therapy for chronic lymphocytic leukemia and lymphoplasmacytic lymphoma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:125-134. [PMID: 25696845 DOI: 10.1182/asheducation-2014.1.125] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic lymphocytic leukemia (CLL) and lymphoplasmacytic lymphoma (LPL) are malignancies of mature B cells. In LPL, mutations of the adaptor protein MYD88 (L265P) in the Toll-like receptor pathway have been recognized recently as being a hallmark of the disease and indicate a dependence of the tumor on this pathway. In CLL, functional studies have implicated BCR activation in the tissue microenvironment as a pivotal pathway in the pathogenesis. Bruton's tyrosine kinase (BTK) and the PI3Kδ isoform are essential for BCR signaling and also seem to be required for signal transduction in LPL cells, even if the role of BCR signaling in this disease remains less well defined. Ibrutinib, a covalent inhibitor of BTK approved by the Food and Drug Administration as a second-line treatment for CLL, and idelalisib, a selective inhibitor of PI3Kδ, achieve excellent clinical responses in both diseases irrespective of classic markers indicating high-risk disease. Several additional inhibitors targeting BTK and PI3Kδ, as well as the spleen tyrosine kinase, have entered clinical trials. This review discusses the biologic basis for kinase inhibitors as targeted therapy for CLL and LPL and summarizes the clinical experience with these agents.
Collapse
Affiliation(s)
- Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
12
|
Blüml S, Redlich K, Smolen JS. Mechanisms of tissue damage in arthritis. Semin Immunopathol 2014; 36:531-40. [PMID: 25212687 DOI: 10.1007/s00281-014-0442-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/31/2014] [Indexed: 01/17/2023]
Abstract
The destruction of articular structures in the course of inflammatory arthritides such as rheumatoid arthritis (RA) or seronegative spondyloarthropathies is the most serious direct consequence of these diseases. Indeed, joint damage constitutes the "organ damage" of RA and-just like in all other diseases with organ involvement-such damage will usually be irreversible, cause permanent loss of function and subsequent disability. Research has identified a number of mechanisms and mediators of damage to articular structures such as bone and cartilage, ranging from proinflammatory cytokines, signal transduction pathways and cells types, which will be discussed in this review.
Collapse
Affiliation(s)
- Stephan Blüml
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
13
|
Barrera-Vargas A, Gómez-Martín D, Alcocer-Varela J. T cell receptor-associated protein tyrosine kinases: the dynamics of tolerance regulation by phosphorylation and its role in systemic lupus erythematosus. Hum Immunol 2014; 75:945-52. [PMID: 25173412 DOI: 10.1016/j.humimm.2014.08.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/10/2014] [Accepted: 08/21/2014] [Indexed: 01/27/2023]
Abstract
There are different abnormalities that lead to the autoreactive phenotype in T cells from systemic lupus erythematosus (SLE) patients. Proximal signaling, involving the T-cell receptor (TCR) and its associated protein tyrosine kinases (PTKs), is significantly affected in SLE. This ultimately leads to aberrant responses, which include enhanced tyrosine phosphorylation and calcium release, as well as decreased IL-2 secretion. Lck, ZAP70 and Syk, which are PTKs with a major role in proximal signaling, all present abnormal functioning that contributes to an altered T cell response in these patients. A number of other molecules, especially regulatory proteins, are also involved. This review will focus on the PTKs that participate in proximal signaling, with specific emphasis on their relevance in maintaining peripheral tolerance, their abnormalities in SLE and how these contribute to an altered T cell response.
Collapse
Affiliation(s)
- Ana Barrera-Vargas
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| | - Jorge Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| |
Collapse
|