1
|
Wang L, Feng L, Prabahar K, Hernández-Wolters B, Wang Z. The effect of phytosterol supplementation on lipid profile: A critical umbrella review of interventional meta-analyses. Phytother Res 2024; 38:507-519. [PMID: 37905579 DOI: 10.1002/ptr.8052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023]
Abstract
Despite multiple investigations assessing the impact of phytosterol supplementation on serum lipid levels, there is still a great deal of debate regarding the benefits of this intervention in the management of dyslipidemia. Therefore, we aimed at clarifying this dilemma by conducting the present umbrella review of interventional meta-analyses. Scopus, PubMed, Web of Science, and EMBASE were used to search for pertinent publications on the effect of phytosterol supplementation on the lipid profile in humans up to June 2023. To compute the overall effect size (ES) and confidence intervals (CI), the random-effects model was used. The I2 statistic and Cochrane's Q-test were applied to estimate the heterogeneity among the studies. Seventeen meta-analyses with 23 study arms were included in the umbrella meta-analysis. Data pooled from the 23 eligible arms revealed that phytosterol supplementation reduces low-density lipoprotein cholesterol (LDL-C) (ES = -11.47 mg/dL; 95% CI: -12.76, -10.17, p < 0.001), total cholesterol (TC) (ES = -13.02 mg/dL; 95% CI: -15.68, -10.37, p < 0.001), and triglyceride (TG) (ES = -3.77 mg/dL; 95% CI: -6.04, -1.51, p = 0.001). Subgroup analyses showed that phytosterol administration with dosage ≥2 g/day and duration over 8 weeks and in hypercholesterolemic subjects was more likely to decrease LDL-C, TC, and TG. Phytosterol administration did not significantly modify HDL-C (ES = 0.18 mg/dL; 95% CI: -0.13, -0.51, p = 258) levels when compared to controls. The present umbrella meta-analysis confirms that phytosterol administration significantly reduces LDL-C, TC, and TG, with a greater effect with doses of ≥2 g/day and treatment duration >8 weeks, suggesting its possible application as a complementary therapy for cardiovascular risk reduction. Further studies are needed to determine the efficacy of phytosterols in patients with specific health conditions, as well as to ascertain the adverse effects, the maximum tolerable dose, and the maximum recommended duration of phytosterol administration.
Collapse
Affiliation(s)
- Le Wang
- Department of Emergency Medicine, People's Hospital of Huaiyin. Jinan, Jinan, China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Feng
- Department of Rehabilitation Medicine, Jinan Huaiyin People's Hospital, Jinan, China
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Benjamin Hernández-Wolters
- School of medicine, University Center for Health Science, Universidad de Guadalajara, Guadalajara, Mexico
| | - Zhenxing Wang
- Department of Cardiovascular Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Qi L, Chen J, Li X, Qi X, Ding C, Chen X, Gu X, Xiao W, Zhao S, Dong Y, Zheng M, Huang K, Tang L, Guo X, Wang F, Fu G, Li J, Huo Y. Efficacy and safety of hybutimibe in combination with atorvastatin for treatment of hypercholesteremia among patients with atherosclerotic cardiovascular disease risk equivalent: A multicenter, randomized, double-blinded phase III study. Front Cardiovasc Med 2022; 9:888604. [PMID: 36072875 PMCID: PMC9443664 DOI: 10.3389/fcvm.2022.888604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background To evaluate the safety and efficacy of hybutimibe plus atorvastatin for lipid control in hypercholesterolemia patients with atherosclerotic cardiovascular disease risk equivalent. Methods In this double-blind phase III study, we 1:1 randomly assigned 255 hypercholesterolemia patients with atherosclerotic cardiovascular disease to receive hybutimibe plus atorvastatin or placebo plus atorvastatin. The primary endpoint was the rate of change of plasma low-density lipoprotein-cholesterol (LDL-C) level at 12 weeks from baseline. The secondary endpoints were plasma total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterol (HDL-C), non-HDL-C, apoprotein (Apo) B, and 2-, 4-, 8-, and 12-week Apo A1 levels change rate and rates of change of plasma LDL-C levels at 2, 4, and 8 weeks from baseline. Results From April 2016 to January 2018, 128 in the hybutimibe plus atorvastatin group and 125 in the atorvastatin group were included in modified intention-to-treat (mITT) analysis. After 12 weeks of treatment, LDL-C level changed from 2.61 mmol/L (±0.30) at baseline to 2.18 mmol/L (±0.45) in the hybutimibe plus atorvastatin group and from 2.58 (±0.31) mmol/L to 2.40 (± 0.46) mmol/L in the atorvastatin group (P < 0.0001), in mITT. The change rate in the hybutimibe plus atorvastatin group was significantly higher than that in the atorvastatin group (P < 0.0001); the estimated mean rates of change were -16.39 (95% confidence interval: -19.04, -13.74) and -6.75 (-9.48, -4.02), respectively. Consistently, in per-protocol set (PPS) analysis, the rate of change of LDL-C in the hybutimibe plus atorvastatin group was significantly higher than that in atorvastatin group. Significant decreases in the change rates of non-HDL-C, TC, and Apo B at 2, 4, 8, and 12 weeks (all P < 0.05) were observed for hybutimibe plus atorvastatin, while the differences were not significant for HDL-C, TG, and Apo-A1 (all P > 0.05). During the study period, no additional side effects were reported. Conclusions Hybutimibe combined with atorvastatin resulted in significant improvements in LDL-C, non-HDL-C, TC, and Apo B compared with atorvastatin alone. The safety and tolerability were also acceptable, although additional benefits of hybutimibe plus atorvastatin were not observed compared with atorvastatin alone in HDL-C, TG, and Apo-A1.
Collapse
Affiliation(s)
- Litong Qi
- Department of Cardiology, The First Hospital of Peking University, Beijing, China
| | - Jiyan Chen
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoyong Qi
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Chunhua Ding
- Department of Cardiology, Aerospace Central Hospital, Beijing, China
| | - Xiaoping Chen
- Department of Cardiology, Western China Hospital of Sichuan University, Chengdu, China
| | - Xiang Gu
- Cardiology Department, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Wenliang Xiao
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuiping Zhao
- Cardiovascular Department, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yugang Dong
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kai Huang
- Deparrtment of Cardiology, Xiehe Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangqiu Tang
- Department of Cardiology, Yue Bei People's Hospital, Shaoguan, China
| | - Xiaomei Guo
- Department of Cardiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Department of Cardiology, Beijing Hospital, Beijing, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junxia Li
- Senior Department of Cardiology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yong Huo
- Department of Cardiology, The First Hospital of Peking University, Beijing, China
| |
Collapse
|
3
|
Kumar N, Surani S, Udeani G, Mathew S, John S, Sajan S, Mishra J. Drug-induced liver injury and prospect of cytokine based therapy; A focus on IL-2 based therapies. Life Sci 2021; 278:119544. [PMID: 33945827 DOI: 10.1016/j.lfs.2021.119544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is one of the most frequent sources of liver failure and the leading cause of liver transplant. Common non-prescription medications such as non-steroidal anti-inflammatory drugs (NSAIDs), acetaminophen, and other prescription drugs when taken at more than the recommended doses may lead to DILI. The severity of DILI is affected by factors such as age, ethnicity, race, gender, nutritional status, on-going liver diseases, renal function, pregnancy, alcohol consumption, and drug-drug interactions. Characteristics of DILI-associated inflammation include apoptosis and necrosis of hepatocytes and hepatic infiltration of pro-inflammatory immune cells. If untreated or if the inflammation continues, DILI and associated hepatic inflammation may lead to development of hepatocarcinoma. The therapeutic approach for DILI-associated hepatic inflammation depends on whether the inflammation is acute or chronic. Discontinuing the causative medication, vaccination, and special dietary supplementation are some of the conventional approaches to treat DILI. In this review, we discuss a concise overview of DILI-associated liver complications, and current therapeutic options with special emphasis on biologics including the scope of cytokine therapy in hepatic repair and resolution of inflammation caused by over- the-counter (OTC) or prescription drugs.
Collapse
Affiliation(s)
- Narendra Kumar
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America.
| | - Salim Surani
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - George Udeani
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - Sara Mathew
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - Sharon John
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - Soniya Sajan
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - Jayshree Mishra
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America.
| |
Collapse
|
4
|
Roberts R, Fair J. A Less than Provocative Approach for the Primary Prevention of CAD. J Cardiovasc Transl Res 2021; 15:95-102. [PMID: 34128181 DOI: 10.1007/s12265-021-10144-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD) risk increases in proportion to the magnitude and duration of exposure to plasma low-density lipoprotein cholesterol (LDL-C), doubling every additional decade of exposure. Early primary prevention is three times more effective than initiated later. Several clinical trials show plasma LDL-C of 15-40 mg/dL is more effective and equally safe as the Current Cardiovascular Clinical Practice Guidelines (CCCPG) recommended target of 70mg/dL. The cholesterol in the blood is the excess synthesized by the cells and secreted into the blood for disposal in the liver. The CCCPG is inadequate since traditional risk factors (TRF) are not detectable until the sixth and seventh decade. The genetic risk score (GRS) evaluated in 1 million individuals as a risk stratifier for CAD is superior to TRF. Genetic risk for CAD was reduced by 30-50% by statin therapy, PCSK9 inhibitors, and lifestyle changes. The GRS does not change during one's lifetime and is inexpensive. Incorporating genetic risk stratification into CCCPG would induce a paradigm shift in the primary prevention of CAD.
Collapse
Affiliation(s)
- Robert Roberts
- College of Medicine, The University of Arizona, Phoenix, USA. .,School of Medicine, Creighton University, Phoenix, USA. .,Dignity Health, St. Joseph's Hospital and Medical Center, 500 W Thomas Rd, Phoenix, AZ, 85013, USA.
| | - Jacques Fair
- College of Medicine, The University of Arizona, Phoenix, USA.,School of Medicine, Creighton University, Phoenix, USA.,Dignity Health, St. Joseph's Hospital and Medical Center, 500 W Thomas Rd, Phoenix, AZ, 85013, USA
| |
Collapse
|
5
|
Roberts R, Fair J. Genetics, its role in preventing the pandemic of coronary artery disease. Clin Cardiol 2021; 44:771-779. [PMID: 34080689 PMCID: PMC8207986 DOI: 10.1002/clc.23627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 01/14/2023] Open
Abstract
Epidemiologists have claimed for decades that about 50% of predisposition for coronary artery disease (CAD) is genetic. Advances in technology made possible the discovery of hundreds of genetic risk variants predisposing to CAD. Multiple clinical trials have shown that cardiac events can be prevented by drugs to lower plasma low-density lipoprotein cholesterol (LDL-C). A major barrier to primary prevention is the lack of markers to identify those individuals at risk prior to the development of symptoms of the disease. Conventional risk factors are age-dependent, occurring mostly in the sixth or seventh decade, which is less than desirable for early primary prevention. A polygenic risk score, derived from the number of genetic risk variants predisposing to CAD inherited by an individual, has been evaluated in over 1 million individuals. The risk for CAD is stratified into high, intermediate, and low. Polygenic risk scores derived from retrospective genotyping of several clinical trials evaluating the effect of statin therapy or PCSK9 inhibitors show the genetic risk is reduced 40%-50% by decreasing plasma LDL-C. Prospective randomized placebo-controlled clinical trials document a 40%-50% reduction in cardiac events in individuals at high genetic risk associated with favorable lifestyle changes and increased physical activity. The polygenic risk score is not age-dependent and remains the same throughout life. Thus, the GRS is superior to conventional risk factors in identifying asymptomatic individuals at risk for CAD early in life for primary prevention. These results indicate clinical embracement of the GRS in primary prevention would be a paradigm shift in the treatment of the number one killer, CAD.
Collapse
Affiliation(s)
- Robert Roberts
- College of Medicine, Phoenix, St. Joseph's Hospital and Medical Center, The University of Arizona, Phoenix, Arizona, USA
| | - Jacques Fair
- College of Medicine, Phoenix, St. Joseph's Hospital and Medical Center, The University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
6
|
Kongmalai T, Chuanchaiyakul N, Sripatumtong C, Tansit T, Srinoulprasert Y, Klinsukon N, Thongtang N. The effect of temperature on the stability of PCSK-9 monoclonal antibody: an experimental study. Lipids Health Dis 2021; 20:21. [PMID: 33632254 PMCID: PMC7905620 DOI: 10.1186/s12944-021-01447-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PCSK9 monoclonal antibody lowers plasma PCSK9 and LDL-cholesterol levels. The manufacturers recommend drug storage at 2-8 °C, and not above 25 °C. This study aimed to investigate drug stability at various temperatures that this drug could be exposed to during medication handling and transportation in tropical countries. METHODS Alirocumab and evolocumab were tested in 3 study conditions: room temperature (RT), cooler device with cold pack, and freeze-thaw for 9 and 18 h. Heated drugs were used as negative control. Free plasma PCSK9 levels from 9 hyperlipidemia subjects were measured with ELISA. RESULTS Average subject age was 49.2 ± 18.4 years. Percent PCSK9 inhibition significantly declined in heated drugs compared to baseline. Average RT during the study period was 30.4 ±2.6 °C. Change in percent PCSK9 inhibition of PCSK9 mAb at RT from baseline was - 5.8 ± 4.4% (P = 0.005) and - 11.0 ± 8.9% (P = 0.006) for alirocumab at 9 h and 18 h, and - 9.7 ± 11.8% (P = 0.04) and - 15.1 ± 14.3% (P = 0.01) for evolocumab at 9 and 18 h, respectively. In contrast, there were no significant changes in percent PCSK9 inhibition from baseline when PCSK9 mAb was stored in a cooler. In freeze-thaw condition, changes in percent PCSK9 inhibition from baseline to 9 and 18 h were - 5.2 ± 2.9% (P = 0.001) and - 2.6 ± 4.9% (P = 0.16) for alirocumab, and - 1.8 ± 4.2% (P = 0.24) and 0.4 ± 6.1% (P = 0.83) for evolocumab. CONCLUSION Proper drug storage according to manufacturer's recommendation is essential. Drug storage at RT in tropical climate for longer than 9 h significantly decreased drug efficacy; however, storage in a cooler device with cold pack for up to 18 h is safe.
Collapse
Affiliation(s)
- Tanawan Kongmalai
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Nalinee Chuanchaiyakul
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Chattip Sripatumtong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tunsuda Tansit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yuttana Srinoulprasert
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nareerak Klinsukon
- Division of Endocrinology and Metabolism, Phyathai Hospital, Bangkok, Thailand
| | - Nuntakorn Thongtang
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand. .,Division of Endocrinology and Metabolism, Phyathai Hospital, Bangkok, Thailand.
| |
Collapse
|
7
|
Zhang X, Xing L, Jia X, Pang X, Xiang Q, Zhao X, Ma L, Liu Z, Hu K, Wang Z, Cui Y. Comparative Lipid-Lowering/Increasing Efficacy of 7 Statins in Patients with Dyslipidemia, Cardiovascular Diseases, or Diabetes Mellitus: Systematic Review and Network Meta-Analyses of 50 Randomized Controlled Trials. Cardiovasc Ther 2020; 2020:3987065. [PMID: 32411300 PMCID: PMC7201823 DOI: 10.1155/2020/3987065] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/30/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The drug efficacy may differ among different statins, and evidence from head-to-head comparisons is sparse and inconsistent. The study is aimed at comparing the lipid-lowering/increasing effects of 7 different statins in patients with dyslipidemia, cardiovascular diseases, or diabetes mellitus by conducting systematic review and network meta-analyses (NMA) of the lipid changes after certain statins' use. METHODS In this study, we searched four electronic databases for randomized controlled trials (RCTs) published through February 25, 2020, comparing the lipid-lowering efficacy of no less than two of the included statins (or statin vs. placebo). Three reviewers independently extracted data in duplicate. Firstly, mixed treatment overall comparison analyses, in the form of frequentist NMAs, were conducted using STATA 15.0 software. Then, subgroup analyses were conducted according to different baseline diseases. At last, sensitivity analyses were conducted according to age and follow-up duration. The trial was registered with PROSPERO (number CRD42018108799). RESULTS As a result, seven statin monotherapy treatments in 50 studies (51956 participants) were used for the analyses. The statins included simvastatin (SIM), fluvastatin (FLU), atorvastatin (ATO), rosuvastatin (ROS), lovastatin (LOV), pravastatin (PRA), and pitavastatin (PIT). In terms of LDL-C lowering, rosuvastatin ranked 1st with a surface under cumulated ranking (SUCRA) value of 93.1%. The comparative treatment efficacy for LDL-C lowering was ROS>ATO>PIT>SIM>PRA>FLU>LOV>PLA. All of the other ranking and NMA results were reported in SUCRA plots and league tables. CONCLUSIONS According to the NMAs, it can be concluded that rosuvastatin ranked 1st in LDL-C, ApoB-lowering efficacy and ApoA1-increasing efficacy. Lovastatin ranked 1st in TC- and TG-lowering efficacy, and fluvastatin ranked 1st in HDL-C-increasing efficacy. The results should be interpreted with caution due to some limitations in our review. However, they can provide references and evidence-based foundation for drug selection in both statin monotherapies and statin combination therapies.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China
| | - Lu Xing
- Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China
- Department of Pharmacy, China Pharmaceutical University, Nanjing 210000, China
| | - Xiaona Jia
- Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaocong Pang
- Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China
| | - Qian Xiang
- Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China
| | - Xia Zhao
- Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China
| | - Lingyue Ma
- Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China
| | - Zhiyan Liu
- Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Kun Hu
- Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China
| | - Zhe Wang
- Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China
| | - Yimin Cui
- Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
8
|
Prediction and management of CAD risk based on genetic stratification. Trends Cardiovasc Med 2019; 30:328-334. [PMID: 31543237 DOI: 10.1016/j.tcm.2019.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Discovery of genetic risk variants for CAD and their assembly on a computerized microarray enables a genetic risk score (GRS) to be expressed as a single number. Utilizing this array, genetic risk stratification has been performed in over 1 million cases and controls. The genetic score based on one's DNA can be determined anytime from birth on and is independent of age and conventional risk factors. Utilizing the GRS, one can select those at highest risk and would benefit most from primary prevention. Clinical trials have shown that modifying lifestyle or using statin therapy reduces the risk for CAD by approximately 50%. The use of the GRS for primary prevention will have a transformative effect on preventing the spread of CAD.
Collapse
|
9
|
Lipoprotein(a): Current Evidence for a Physiologic Role and the Effects of Nutraceutical Strategies. Clin Ther 2019; 41:1780-1797. [DOI: 10.1016/j.clinthera.2019.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/01/2019] [Accepted: 06/02/2019] [Indexed: 12/24/2022]
|
10
|
Abstract
Despite significant risk reduction with statin therapy, there remains a residual cardiovascular risk. It has been seen that aggressive statin therapy in high risk patients may not lower the low-density lipoprotein cholesterol to goal in up to 40% of patients. Niacin is a potent high-density lipoprotein cholesterol-raising drug, and has been proposed as an attractive approach to reduce cardiac events in patients with or at risk of atherosclerotic cardiovascular disease. However, previous evidence for niacin has been challenged by negative outcomes in two large, randomized, controlled trials comparing niacin to placebo with background statin therapy. In this review, summarize the currently available evidence for the role of niacin treatment for reducing the risk of cardiovascular events in current practice.
Collapse
Affiliation(s)
- Abhishek Sharma
- Division of Cardiology, Rush University Medical Center, Chicago, IL, USA - .,Institute of Cardiovascular Research and Technology, Brooklyn, NY, USA -
| | - Nidhi Madan
- Division of Cardiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
11
|
Mohammaddin A, Rohra DK, Mortaja S, Abanmi S, Al Saati O, Cahusac PM, Khawaja RA, Al-Selaihem A, Al-Omran Y. Effects of camel milk in dyslipidaemia: A randomised clinical trial. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Patel V, Joharapurkar A, Kshirsagar S, Sutariya B, Patel M, Pandey D, Patel H, Ranvir R, Kadam S, Patel D, Bahekar R, Jain M. Coagonist of GLP-1 and glucagon decreases liver inflammation and atherosclerosis in dyslipidemic condition. Chem Biol Interact 2018; 282:13-21. [DOI: 10.1016/j.cbi.2018.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/13/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
|
13
|
How Low to Go With Glucose, Cholesterol, and Blood Pressure in Primary Prevention of CVD. J Am Coll Cardiol 2017; 70:2171-2185. [DOI: 10.1016/j.jacc.2017.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/22/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
|
14
|
Chang Y, Zhou S, Li E, Zhao W, Ji Y, Wen X, Sun H, Yuan H. Fragment-based discovery of novel pentacyclic triterpenoid derivatives as cholesteryl ester transfer protein inhibitors. Eur J Med Chem 2017; 126:143-153. [DOI: 10.1016/j.ejmech.2016.09.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 02/02/2023]
|
15
|
Kones R, Howell S, Rumana U. n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: Principles, Practices, Pitfalls, and Promises - A Contemporary Review. Med Princ Pract 2017; 26:497-508. [PMID: 29186721 PMCID: PMC5848472 DOI: 10.1159/000485837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Amidst voluminous literature, inconsistencies and opposing results have confused rather than clarified cardiologists' ability to assess the potential benefits of n-3 polyunsaturated fatty acids (n-3 PUFA). In perspective, there are common themes that emerge from n-3 PUFA studies, even as imperfect as they may be. The approach taken was to identify and unite these themes into a manageable, cohesive, evidence-based, yet useful synthesis. In all reviews and meta-analyses, the selection of component studies and assumptions influences outcomes. This overarching principle must be combined with the totality of the data, particularly when evidence is incompletely understood and gaps in knowledge must be bridged. Both the older literature and the most recent rigorous meta-analyses indicate that n-3 PUFA are highly pleiotropic agents with many documented positive physiological effects. Concordance among preclinical, observational, randomized clinical trials and meta-analyses is impressive. These agents have modest, statistically significant benefits which accrue over time. Given their favorable safety profile, a risk reduction of about 10% justifies their potential use in cardiovascular disease.
Collapse
Affiliation(s)
- Richard Kones
- The Cardiometabolic Research Institute, Texas, USA
- *Richard Kones MD, FAHA, FESC, FRSM, FCCP, FAGS, FRSH, FRSB, Cardiometabolic Research Institute, 8181 Fannin Street, Building 3, Unit 314, Houston, TX 77054-2913 (USA), E-Mail
| | - Scott Howell
- Department of Medicine, BMU School of Medicine, Winston-Salem, North Carolina, USA
| | - Umme Rumana
- The Cardiometabolic Research Institute, Texas, USA
- University of Texas Health Science Center Houston, Houston, Texas, USA
| |
Collapse
|
16
|
Subbotin VM. Excessive intimal hyperplasia in human coronary arteries before intimal lipid depositions is the initiation of coronary atherosclerosis and constitutes a therapeutic target. Drug Discov Today 2016; 21:1578-1595. [PMID: 27265770 DOI: 10.1016/j.drudis.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
|
17
|
Jiang Q, Hao R, Wang W, Gao H, Wang C. SIRT1/Atg5/autophagy are involved in the antiatherosclerosis effects of ursolic acid. Mol Cell Biochem 2016; 420:171-84. [PMID: 27514536 DOI: 10.1007/s11010-016-2787-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to investigate the antiatherosclerosis effects of ursolic acid (UA) in high-fat diet-fed quails (Coturnix coturnix) and potential mechanism. Quails were treated with high-fat diet (14 % pork oil, 1 % cholesterol w/w) with or without UA (50, 150, or 300 mg/kg/day) for 10 weeks. Serum lipid profile was assessed at 0, 4.5, and 10 weeks. After 10 weeks, serum antioxidant status and morphology of aorta were assessed. Additionally, human umbilical vein endothelial cells (HUVECs) were exposed to 100 μg/ml oxidized low-density lipoprotein (ox-LDL) for 24 h, with or without pretreatment with UA (5, 10 or 20 μM) for 16 h, autophagy inhibitor 3-MA 5 mM for 2 h, or SIRT1 inhibitor EX-527 10 μM for 2 h. Cell viability and oxidative stress status were assessed and autophagy status was determined. Acetylation of lysine residue on Atg5 was assessed with immunoprecipitation. In results, high-fat diet negatively affected serum lipid profile and antioxidant status in quails and induced significant histological changes. Cotreatment with UA remarkably alleviated such changes. In HUVECs, ox-LDL treatment induced significant cytotoxicity along with oxidative stress, while UA cotreatment alleviated such changes significantly. UA treatment induced autophagy, enhanced SIRT1 expression, and decreased acetylation of lysine residue on Atg5. Cotreatment with 3-MA or EX-527 effectively abolished UA's protective effects. In summary, UA exerted antiatherosclerosis effects in quails and protected HUVECs from ox-LDL induced cytotoxicity, and the mechanism is associated with increased SIRT1 expression, decreased Atg5 acetylation on lysine residue, and increased autophagy.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Pharmacology, Qingdao University Medical College, Boya Building Room 422, 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Ranran Hao
- Department of Pharmacology, Qingdao University Medical College, Boya Building Room 422, 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Wencheng Wang
- The Institute of Human Nutrition Medical College, 38 Dengzhou Road, Qingdao, 266071, Shandong, China
| | - Hui Gao
- Department of Pharmacology, Qingdao University Medical College, Boya Building Room 422, 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Chunbo Wang
- Department of Pharmacology, Qingdao University Medical College, Boya Building Room 422, 308 Ningxia Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
18
|
Effects of plant stanol or sterol-enriched diets on lipid profiles in patients treated with statins: systematic review and meta-analysis. Sci Rep 2016; 6:31337. [PMID: 27539156 PMCID: PMC4990897 DOI: 10.1038/srep31337] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/18/2016] [Indexed: 01/14/2023] Open
Abstract
Efficacy and safety data from trials with suitable endpoints have shown that non-statin medication in combination with a statin is a potential strategy to further reduce cardiovascular events. We aimed to evaluate the overall effect of stanol- or sterol-enriched diets on serum lipid profiles in patients treated with statins by conducting a meta-analysis of randomized controlled trials (RCTs). We used the PubMed, Cochrane library and ClinicalTrials.gov databases to search for literature published up to December 2015. Trials were included in the analysis if they were RCTs evaluating the effect of plant stanols or sterols in patients under statin therapy that reported corresponding data on serum lipid profiles. We included 15 RCTs involving a total of 500 participants. Stanol- or sterol-enriched diets in combination with statins, compared with statins alone, produced significant reductions in total cholesterol of 0.30 mmol/L (95% CI −0.36 to −0.25) and low-density lipoprotein (LDL) cholesterol of 0.30 mmol/L (95% CI −0.35 to −0.25), but not in high-density lipoprotein cholesterol or triglycerides. These results persisted in the subgroup analysis. Our meta-analysis provides further evidence that stanol- or sterol-enriched diets additionally lower total cholesterol and LDL-cholesterol levels in patients treated with statins beyond that achieved by statins alone.
Collapse
|
19
|
Abstract
Since their introduction, statin (HMG-CoA reductase inhibitor) drugs have advanced the practice of cardiology to unparalleled levels. Even so, coronary heart disease (CHD) still remains the leading cause of death in developed countries, and is predicted to soon dominate the causes of global mortality and disability as well. The currently available non-statin drugs have had limited success in reversing the burden of heart disease, but new information suggests they have roles in sizeable subpopulations of those affected. In this review, the status of approved non-statin drugs and the significant potential of newer drugs are discussed. Several different ways to raise plasma high-density lipoprotein (HDL) cholesterol (HDL-C) levels have been proposed, but disappointments are now in large part attributed to a preoccupation with HDL quantity, rather than quality, which is more important in cardiovascular (CV) protection. Niacin, an old drug with many antiatherogenic properties, was re-evaluated in two imperfect randomized controlled trials (RCTs), and failed to demonstrate clear effectiveness or safety. Fibrates, also with an attractive antiatherosclerotic profile and classically used for hypertriglyceridemia, lacks evidence-based proof of efficacy, save for a subgroup of diabetic patients with atherogenic dyslipidemia. Omega-3 fatty acids fall into this category as well, even with an impressive epidemiological evidence base. Omega-3 research has been plagued with methodological difficulties yielding tepid, uncertain, and conflicting results; well-designed studies over longer periods of time are needed. Addition of ezetimibe to statin therapy has now been shown to decrease levels of low-density lipoprotein (LDL) cholesterol (LDL-C), accompanied by a modest decrease in the number of CV events, though without any improvement in CV mortality. Importantly, the latest data provide crucial evidence that LDL lowering is central to the management of CV disease. Of drugs that inhibit cholesteryl ester transfer protein (CETP) tested thus far, two have failed and two remain under investigation and may yet prove to be valuable therapeutic agents. Monoclonal antibodies to proprotein convertase subtilisin/kexin type 9, now in phase III trials, lower LDL-C by over 50 % and are most promising. These drugs offer new ability to lower LDL-C in patients in whom statin drug use is, for one reason or another, limited or insufficient. Mipomersen and lomitapide have been approved for use in patients with familial hypercholesterolemia, a more common disease than appreciated. Anti-inflammatory drugs are finally receiving due attention in trials to elucidate potential clinical usefulness. All told, even though statins remain the standard of care, non-statin drugs are poised to assume a new, vital role in managing dyslipidemia.
Collapse
|