1
|
Okada Y, Sato Y, Shinomiya R, Miyake T, Takahashi T, Yokoyama R, Mitsui Y, Tomonari T, Okamoto K, Sogabe M, Miyamoto H, Kawano Y, Takayama T. Conditions for effective use of liposomal irinotecan with fluorouracil and leucovorin in unresectable pancreatic cancer after FOLFIRINOX treatment. Int J Clin Oncol 2025:10.1007/s10147-024-02677-y. [PMID: 40266453 DOI: 10.1007/s10147-024-02677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/01/2024] [Indexed: 04/24/2025]
Abstract
BACKGROUND Liposomal irinotecan + fluorouracil/leucovorin (nal-IRI + 5FU/LV) is commonly used as a second- or later-line treatment for pancreatic ductal adenocarcinoma (PDAC) and offers survival benefits. However, its efficacy and safety in patients previously treated with FOLFIRINOX, which includes irinotecan, remain unclear. We evaluated the efficacy and safety of nal-IRI + 5FU/LV in patients with unresectable PDAC who received previous FOLFIRINOX therapy and those who did not. METHODS This retrospective observational study included 42 patients with PDAC who were treated with nal-IRI + 5FU/LV (October 2020-November 2023). Patients were grouped based on prior FOLFIRINOX treatment. RESULTS The progression-free survival (PFS) in patients who previously received modified FOLFIRINOX (mFFX) therapy was shorter than that in patients who did not (2.5 vs. 3.5 months, P = 0.07). When patients with greater than- and less than the cut-off value of irinotecan-free interval (IFI) were classified into the long and short IFI groups, respectively, PFS was significantly longer in the long-IFI group than that in the short IFI group (4.0 vs. 2.1 months, P = 0.01). Moreover, the C-reactive protein/albumin ratio (CAR) was also a significant predictor of PFS (P = 0.03). Furthermore, both factors were found to be independent factors influencing PFS in the univariate Cox regression analysis (P = 0.02 and P = 0.04). CONCLUSION Nal-IRI + 5FU/LV therapy may be a safe and effective option as a second- or later-line treatment, particularly for patients who have not previously received mFFX therapy. For patients who received prior mFFX exposure, a longer IFI and lower CAR may indicate greater potential benefit, thus aiding in more personalized treatment approaches.
Collapse
Affiliation(s)
- Yasuyuki Okada
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Yasushi Sato
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan.
- Department of Community Medicine for Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Ryo Shinomiya
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Takanori Miyake
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Taku Takahashi
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Reiko Yokoyama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Yasuhiro Mitsui
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsu Tomonari
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Sogabe
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Yutaka Kawano
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
2
|
Brown MB, Blair HA. Liposomal Irinotecan: A Review as First-Line Therapy in Metastatic Pancreatic Adenocarcinoma. Drugs 2025; 85:255-262. [PMID: 39820839 DOI: 10.1007/s40265-024-02133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/19/2025]
Abstract
Liposomal irinotecan (Onivyde®), also known as liposomal pegylated irinotecan, has been developed with the intent of maximising anti-tumour efficacy and minimising drug-related toxicities compared with conventional formulations of this topoisomerase 1 inhibitor. In combination with fluorouracil, leucovorin and oxaliplatin (NALIRIFOX), liposomal irinotecan is approved in the USA and the EU for first-line therapy of eligible patients with metastatic pancreatic adenocarcinoma. In a phase III clinical trial, NALIRIFOX significantly improved overall survival (OS) and progression free survival (PFS) compared with gemcitabine plus nanoparticle albumin bound paclitaxel (nab-paclitaxel) as first-line treatment of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). The safety profile of NALIRIFOX was generally manageable, with diarrhoea, hypokalaemia and neutropenia being the most common grade ≥ 3 treatment-emergent adverse events. Although further analyses will help position the liposomal irinotecan-containing regimen NALIRIFOX in first-line treatment of metastatic pancreatic adenocarcinoma, current evidence indicates that it is a useful addition to treatment options in this patient population.
Collapse
Affiliation(s)
- Michael B Brown
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| | - Hannah A Blair
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand
| |
Collapse
|
3
|
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges. Mol Cancer 2025; 24:26. [PMID: 39827147 PMCID: PMC11748575 DOI: 10.1186/s12943-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Clinically, multimodal therapies are adopted worldwide for the management of cancer, which continues to be a leading cause of death. In recent years, immunotherapy has firmly established itself as a new paradigm in cancer care that activates the body's immune defense to cope with cancer. Immunotherapy has resulted in significant breakthroughs in the treatment of stubborn tumors, dramatically improving the clinical outcome of cancer patients. Multiple forms of cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapy and cancer vaccines, have become widely available. However, the effectiveness of these immunotherapies is not much satisfying. Many cancer patients do not respond to immunotherapy, and disease recurrence appears to be unavoidable because of the rapidly evolving resistance. Moreover, immunotherapies can give rise to severe off-target immune-related adverse events. Strategies to remove these hindrances mainly focus on the development of combinatorial therapies or the exploitation of novel immunotherapeutic mediations. Nanomaterials carrying anticancer agents to the target site are considered as practical approaches for cancer treatment. Nanomedicine combined with immunotherapies offers the possibility to potentiate systemic antitumor immunity and to facilitate selective cytotoxicity against cancer cells in an effective and safe manner. A myriad of nano-enabled cancer immunotherapies are currently under clinical investigation. Owing to gaps between preclinical and clinical studies, nano-immunotherapy faces multiple challenges, including the biosafety of nanomaterials and clinical trial design. In this review, we provide an overview of cancer immunotherapy and summarize the evidence indicating how nanomedicine-based approaches increase the efficacy of immunotherapies. We also discuss the key challenges that have emerged in the era of nanotechnology-based cancer immunotherapy. Taken together, combination nano-immunotherapy is drawing increasing attention, and it is anticipated that the combined treatment will achieve the desired success in clinical cancer therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
4
|
Ho KW, Liu YL, Liao TY, Liu ES, Cheng TL. Strategies for Non-Covalent Attachment of Antibodies to PEGylated Nanoparticles for Targeted Drug Delivery. Int J Nanomedicine 2024; 19:10045-10064. [PMID: 39371476 PMCID: PMC11453133 DOI: 10.2147/ijn.s479270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Polyethylene glycol (PEG)-modified nanoparticles (NPs) often struggle with reduced effectiveness against metastasis and liquid tumors due to limited tumor cell uptake and therapeutic efficacy. To address this, actively targeted liposomes with enhanced tumor selectivity and internalization are being developed to improve uptake and treatment outcomes. Using bi-functional proteins to functionalize PEGylated NPs and enhance targeted drug delivery through non-covalent attachment methods has emerged as a promising approach. Among these, the one-step and two-step targeting strategies stand out for their simplicity, efficiency, and versatility. The one-step strategy integrates streptavidin-tagged antibodies or bispecific antibodies (bsAbs: PEG/DIG × marker) directly into PEGylated NPs. This method uses the natural interactions between antibodies and PEG for stable, specific binding, allowing the modification of biotin/Fc-binding molecules like protein A, G, or anti-Fc peptide. Simply mixing bsAbs with PEGylated NPs improves tumor targeting and internalization. The two-step strategy involves first accumulating bsAbs (PEG/biotin × tumor marker) on the tumor cell surface, triggering an initial attack via antibody-dependent and complement-dependent cytotoxicity. These bsAbs then capture PEGylated NPs, initiating a second wave of internalization and cytotoxicity. Both strategies aim to enhance the targeting capabilities of PEGylated NPs by enabling specific recognition and binding to disease-specific markers or receptors. This review provides potential pathways for accelerating clinical translation in the development of targeted nanomedicine.
Collapse
Affiliation(s)
- Kai-Wen Ho
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ling Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Yi Liao
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - En-Shuo Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Cao Z, Wang W, Yang Z, Liu Y, Sun L, Zhang L, Li Z. Discovery of the FXR/CES2 dual modulator LE-77 for the treatment of irinotecan-induced delayed diarrhea. Bioorg Chem 2024; 153:107852. [PMID: 39362081 DOI: 10.1016/j.bioorg.2024.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Irinotecan (CPT-11) is a widely utilized topoisomerase I inhibitor in the treatment of colorectal cancer and other malignant tumors. However, severe and even life-threatening dose-limiting toxicity-delayed diarrhea affects the clinical application of CPT-11. The standard treatment for CPT-11-induced delayed diarrhea is prompt use of loperamide (LPA), however LPA can also cause constipation, diarrhea and even intestinal obstruction and has a high failure rate. Carboxylesterase 2 (CES2) is the main enzyme in the intestinal transformation of CPT-11, which can convert CPT-11 into toxic metabolite SN-38 and produce intestinal toxicity. Inhibiting CES2 activity can block the hydrolysis process of CPT-11 in the intestine and reduce SN-38 accumulation. Additionally, Farnesoid X receptor (FXR) agonists have anti-inflammatory, anti-secretory, and protective functions on intestinal barrier integrity that could potentially alleviate diarrhea. In this study, we investigated for the first time the anti-delayed diarrhea effect of FXR agonists, and the first time identified LE-77 as a potent dual modulator that activates FXR and inhibits CES2 through high-throughput screening. In the CPT-11-induced delayed diarrhea model, LE-77 demonstrated a dual modulator mechanism by activating FXR and inhibiting CES2, thereby reducing the accumulation of SN-38 in the intestine, alleviating intestinal inflammation, preserving intestinal mucosal integrity, and ultimately alleviating delayed diarrhea.
Collapse
Affiliation(s)
- Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lidan Sun
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Cui J, Qin S, Zhou Y, Zhang S, Sun X, Zhang M, Cui J, Fang W, Gu K, Li Z, Wang J, Chen X, Yao J, Zhou J, Wang G, Bai Y, Xiao J, Qiu W, Wang B, Xia T, Wang C, Kong L, Yin J, Zhang T, Shen X, Fu D, Gao C, Wang H, Wang Q, Wang L. Irinotecan hydrochloride liposome HR070803 in combination with 5-fluorouracil and leucovorin in locally advanced or metastatic pancreatic ductal adenocarcinoma following prior gemcitabine-based therapy (PAN-HEROIC-1): a phase 3 trial. Signal Transduct Target Ther 2024; 9:248. [PMID: 39300077 PMCID: PMC11412970 DOI: 10.1038/s41392-024-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
Liposomal irinotecan has shown promising antitumor activity in patients with advanced or metastatic pancreatic ductal adenocarcinoma (PDAC) who have undergone prior gemcitabine-based therapies. This randomized, double-blind, parallel-controlled, multicenter phase 3 study (NCT05074589) assessed the efficacy and safety of liposomal irinotecan HR070803 combined with 5-fluorouracil (5-FU) and leucovorin (LV) in this patient population. Patients with unresectable, locally advanced, or metastatic PDAC who had previously received gemcitabine-based therapies were randomized 1:1 to receive either HR070803 (60 mg/m2 anhydrous irinotecan hydrochloride, equal to 56.5 mg/m2 free base) or placebo, both in combination with 5-FU (2000 mg/m2) and LV (200 mg/m2), all given intravenously every two weeks. The primary endpoint of the study was overall survival (OS). A total of 298 patients were enrolled and received HR070803 plus 5-FU/LV (HR070803 group, n = 149) or placebo plus 5-FU/LV (placebo group, n = 149). Median OS was significantly improved in the HR070803 group compared to the placebo group (7.4 months [95% CI 6.1-8.4] versus 5.0 months [95% CI 4.3-6.0]; HR 0.63 [95% CI 0.48-0.84]; two-sided p = 0.0019). The most common grade ≥ 3 adverse events in the HR070803 group were increased gamma-glutamyltransferase (19.0% versus 11.6% in placebo group) and decreased neutrophil count (12.9% versus 0 in placebo group). No treatment-related deaths occurred in the HR070803 group, while the placebo group reported one treatment-related death (abdominal infection). HR070803 in combination with 5-FU/LV has shown promising efficacy and manageable safety in advanced or metastatic PDAC in the second-line setting, representing a potential option in this patient population.
Collapse
Affiliation(s)
- Jiujie Cui
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shukui Qin
- GI Cancer Center, Nanjing Tianyinshan Hospital, China Pharmaceutical University, Nanjing, China.
| | - Yuhong Zhou
- Medical Oncology, Zhongshan Hospital Affiliated with Fudan University, Shanghai, China
| | - Shuang Zhang
- Department of Biotherapy, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, China
| | - Xiaofeng Sun
- Internal Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Mingjun Zhang
- Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiuwei Cui
- Department of Oncology, The First Hospital of Jilin University, Changchun, China
| | - Weijia Fang
- Medical Oncology III, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kangsheng Gu
- Medical Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhihua Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jufeng Wang
- Department of Oncology, The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Jun Yao
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Gang Wang
- Department of Oncology, The First Affiliated Hospital of USTC Anhui Provincial Hospital, Hefei, China
| | - Yuxian Bai
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Juxiang Xiao
- Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bangmao Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Xia
- Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Chunyue Wang
- Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Li Kong
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiajun Yin
- General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xionghu Shen
- Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Deliang Fu
- Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuntao Gao
- Pancreatic Surgery, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Huan Wang
- Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Quanren Wang
- Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Liwei Wang
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
7
|
Basar E, Mead H, Shum B, Rauter I, Ay C, Skaletz-Rorowski A, Brockmeyer NH. Biological Barriers for Drug Delivery and Development of Innovative Therapeutic Approaches in HIV, Pancreatic Cancer, and Hemophilia A/B. Pharmaceutics 2024; 16:1207. [PMID: 39339243 PMCID: PMC11435036 DOI: 10.3390/pharmaceutics16091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Biological barriers remain a major obstacle for the development of innovative therapeutics. Depending on a disease's pathophysiology, the involved tissues, cell populations, and cellular components, drugs often have to overcome several biological barriers to reach their target cells and become effective in a specific cellular compartment. Human biological barriers are incredibly diverse and include multiple layers of protection and obstruction. Importantly, biological barriers are not only found at the organ/tissue level, but also include cellular structures such as the outer plasma membrane, the endolysosomal machinery, and the nuclear envelope. Nowadays, clinicians have access to a broad arsenal of therapeutics ranging from chemically synthesized small molecules, biologicals including recombinant proteins (such as monoclonal antibodies and hormones), nucleic-acid-based therapeutics, and antibody-drug conjugates (ADCs), to modern viral-vector-mediated gene therapy. In the past decade, the therapeutic landscape has been changing rapidly, giving rise to a multitude of innovative therapy approaches. In 2018, the FDA approval of patisiran paved the way for small interfering RNAs (siRNAs) to become a novel class of nucleic-acid-based therapeutics, which-upon effective drug delivery to their target cells-allow to elegantly regulate the post-transcriptional gene expression. The recent approvals of valoctocogene roxaparvovec and etranacogene dezaparvovec for the treatment of hemophilia A and B, respectively, mark the breakthrough of viral-vector-based gene therapy as a new tool to cure disease. A multitude of highly innovative medicines and drug delivery methods including mRNA-based cancer vaccines and exosome-targeted therapy is on the verge of entering the market and changing the treatment landscape for a broad range of conditions. In this review, we provide insights into three different disease entities, which are clinically, scientifically, and socioeconomically impactful and have given rise to many technological advancements: acquired immunodeficiency syndrome (AIDS) as a predominant infectious disease, pancreatic carcinoma as one of the most lethal solid cancers, and hemophilia A/B as a hereditary genetic disorder. Our primary objective is to highlight the overarching principles of biological barriers that can be identified across different disease areas. Our second goal is to showcase which therapeutic approaches designed to cross disease-specific biological barriers have been promising in effectively treating disease. In this context, we will exemplify how the right selection of the drug category and delivery vehicle, mode of administration, and therapeutic target(s) can help overcome various biological barriers to prevent, treat, and cure disease.
Collapse
Affiliation(s)
- Emre Basar
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | | | - Bennett Shum
- GenePath LLC, Sydney, NSW 2067, Australia
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia
| | | | - Cihan Ay
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Adriane Skaletz-Rorowski
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | - Norbert H. Brockmeyer
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| |
Collapse
|
8
|
Zhang T, Tian E, Xiong Y, Shen X, Li Z, Yan X, Yang Y, Zhou Z, Wang Y, Wang P. Development of a RNA-protein complex based smart drug delivery system for 9-hydroxycamptothecin. Int J Biol Macromol 2024; 276:133871. [PMID: 39009257 DOI: 10.1016/j.ijbiomac.2024.133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Camptothecin (CPT) is a monoterpenoid indole alkaloid with a wide spectrum of anticancer activity. However, its application is hindered by poor solubility, lack of targeting specificity, and severe side effects. Structural derivatization of CPT and the development of suitable drug delivery systems are potential strategies for addressing these issues. In this study, we discovered that the protein Cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) from Homo sapiens catalyzes CPT to yield 9-hydroxycamptothecin (9-HCPT), which exhibits increased water solubility and cytotoxicity. We then created a RNA-protein complex based drug delivery system with enzyme and pH responsiveness and improved the targeting and stability of the nanomedicine through protein module assembly. The subcellular localization of nanoparticles can be visualized using fluorescent RNA probes. Our results not only identified the protein CYP1A1 responsible for the structural derivatization of CPT to synthesize 9-HCPT but also offered potential strategies for enhancing the utilization of silk-based drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Tong Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ernuo Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, East China University of Science and Technology, Shanghai 200037, China
| | - Ying Xiong
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Shen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200037, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
9
|
Chen BS, Chan SY, Bteich F, Kuang C, Meyerhardt JA, Ma KSK. Safety and efficacy of liposomal irinotecan as the second-line treatment for advanced pancreatic cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2024; 201:104386. [PMID: 38735505 DOI: 10.1016/j.critrevonc.2024.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION Nanoliposomal irinotecan (nal-IRI) is a novel regimen for pancreatic cancer, featuring a longer half-life and an increased area under the concentration-time curve. This study aims to assess the safety and efficacy of nal-IRI as a second-line treatment for advanced pancreatic cancer. METHODS A systemic literature search was conducted based on articles published before September 26th, 2023 in databases, including PubMed, Cochrane Library, EMBASE and Web of Science. The fixed effects model was used to calculate the pooled mean difference for overall survival (OS) and progression-free survival (PFS), as well as the pooled odds ratio for the overall response rate (ORR) and the risk of adverse events. RESULTS A total of 21 studies, including 3044 patients with locally advanced unresectable or metastatic pancreatic cancers, were considered eligible. The use of nal-IRI, combined with 5-fluorouracil and leucovorin, resulted in significantly improved PFS (pooled mean difference=1.01 months, 95 % confidence interval [CI]=0.97-1.05, p<0.01) and OS (pooled mean difference=0.29 months, 95 %CI=0.18-0.39, p<0.01), as well as significantly better ORR (pooled odds ratio=2.06, 95 %CI=1.30-3.27, p=0.002) compared to other second-line regimens. Nonetheless, an increased risk of grade 3 or greater neutropenia, anemia, hypokalemia, diarrhea, and vomiting was also noted. CONCLUSION Second-line treatments based on nal-IRI exhibited significantly improved PFS, OS, and ORR compared to other available treatments in advanced pancreatic cancer. Further research is necessary to corroborate these findings and define the role of nal-IRI in both first and later lines of therapy.
Collapse
Affiliation(s)
- Brian Shiian Chen
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shu-Yen Chan
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fernand Bteich
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chaoyuan Kuang
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffery A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Kevin Sheng-Kai Ma
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Kalra J, Baker J, Sun X, Kyle A, Minchinton A, Bally MB. Accumulation of liposomes in metastatic tumor sites is not necessary for anti-cancer drug efficacy. J Transl Med 2024; 22:621. [PMID: 38961395 PMCID: PMC11223361 DOI: 10.1186/s12967-024-05428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The tumor microenvironment is profoundly heterogeneous particularly when comparing sites of metastases. Establishing the extent of this heterogeneity may provide guidance on how best to design lipid-based drug delivery systems to treat metastatic disease. Building on our previous research, the current study employs a murine model of metastatic cancer to explore the distribution of ~ 100 nm liposomes. METHODS Female NCr nude mice were inoculated with a fluorescently labeled, Her2/neu-positive, trastuzumab-resistant breast cancer cell line, JIMT-1mkate, either in the mammary fat pad to create an orthotopic tumor (OT), or via intracardiac injection (IC) to establish tumors throughout the body. Animals were dosed with fluorescent and radio-labeled liposomes. In vivo and ex vivo fluorescent imaging was used to track liposome distribution over a period of 48 h. Liposome distribution in orthotopic tumors was compared to sites of tumor growth that arose following IC injection. RESULTS A significant amount of inter-vessel heterogeneity for DiR distribution was observed, with most tumor blood vessels showing little to no presence of the DiR-labelled liposomes. Further, there was limited extravascular distribution of DiR liposomes in the perivascular regions around DiR-positive vessels. While all OT tumors contained at least some DiR-positive vessels, many metastases had very little or none. Despite the apparent limited distribution of liposomes within metastases, two liposomal drug formulations, Irinophore C and Doxil, showed similar efficacy for both the OT and IC JIMT-1mkate models. CONCLUSION These findings suggest that liposomal formulations achieve therapeutic benefits through mechanisms that extend beyond the enhanced permeability and retention effect.
Collapse
Affiliation(s)
- Jessica Kalra
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Jennifer Baker
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - XuXin Sun
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Alastair Kyle
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Andrew Minchinton
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marcel B Bally
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- NanoMedicine Innovation Network, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Sofi FA, Tabassum N. Natural product inspired leads in the discovery of anticancer agents: an update. J Biomol Struct Dyn 2023; 41:8605-8628. [PMID: 36255181 DOI: 10.1080/07391102.2022.2134212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
Natural products have emerged as major leads for the discovery and development of new anti-cancer drugs. The plant-derived anti-cancer drugs account for approximately 60% and the quest for new anti-cancer agents is in progress. Anti-cancer leads have been isolated from plants, animals, marine organisms, and microorganisms from time immemorial. The process of semisynthetic modifications of the parent lead has led to the generation of new anti-cancer agents with improved therapeutic efficacy and minimal side effects. The various chemo-informatics tools, bioinformatics, high-throughput screening, and combinatorial synthesis are able to deliver the new natural product lead molecules. Plant-derived anticancer agents in either late preclinical development or early clinical trials include taxol, vincristine, vinblastine, topotecan, irinotecan, etoposide, paclitaxel, and docetaxel. Similarly, anti-cancer agents from microbial sources include dactinomycin, bleomycin, mitomycin C, and doxorubicin. In this review, we highlighted the importance of natural products leads in the discovery and development of novel anti-cancer agents. The semisynthetic modifications of the parent lead to the new anti-cancer agent are also presented. Further, the leads in the preclinical settings with the potential to become effective anticancer agents are also reviewed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
12
|
Cao Z, Liu Y, Chen S, Wang W, Yang Z, Chen Y, Jiao S, Huang W, Chen L, Sun L, Li Z, Zhang L. Discovery of novel carboxylesterase 2 inhibitors for the treatment of delayed diarrhea and ulcerative colitis. Biochem Pharmacol 2023; 215:115742. [PMID: 37567318 DOI: 10.1016/j.bcp.2023.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human carboxylesterase 2 (hCES2) is an enzyme that metabolizes irinotecan to SN-38, a toxic metabolite considered a significant source of side effects (lethal delayed diarrhea). The hCES2 inhibitors could block the hydrolysis of irinotecan in the intestine and thus reduce the exposure of intestinal SN-38, which may alleviate irinotecan-associated diarrhea. However, existing hCES2 inhibitors (except loperamide) are not used in clinical applications due to lack of validity or acceptable safety. Therefore, developing more effective and safer drugs for treating delayed diarrhea is urgently needed. This study identified a lead compound 1 with a novel scaffold by high-throughput screening in our in-house library. After a comprehensive structure-activity relationship study, the optimal compound 24 was discovered as an efficient and highly selective hCES2 inhibitor (hCES2: IC50 = 6.72 μM; hCES1: IC50 > 100 μM). Further enzyme kinetics study indicated that compound 24 is a reversible inhibitor of hCES2 with competitive inhibition mode (Ki = 6.28 μM). The cell experiments showed that compound 24 could reduce the level of hCES2 in living cells (IC50 = 6.54 μM). The modeling study suggested that compound 24 fitted very well with the binding pocket of hCES2 by forming multiple interactions. Notably, compound 24 can effectively treat irinotecan-induced delayed diarrhea and DSS-induced ulcerative colitis, and its safety has also been verified in subtoxic studies. Based on the overall pharmacological and preliminary safety profiles, compound 24 is worthy of further evaluation as a novel agent for irinotecan-induced delayed diarrhea.
Collapse
Affiliation(s)
- Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lianru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lidan Sun
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, PR China.
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
13
|
Gupta A, De Jesus-Acosta A, Zheng L, Lee V, Kamel I, Le D, Pishvaian M, Laheru D. Clinical outcomes of liposomal irinotecan in advanced pancreatic adenocarcinoma patients previously treated with conventional irinotecan-based chemotherapy: a real-world study. Front Oncol 2023; 13:1250136. [PMID: 37700832 PMCID: PMC10494436 DOI: 10.3389/fonc.2023.1250136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Background The efficacy of combination chemotherapy beyond the first-line setting remains modest in patients with advanced pancreatic adenocarcinoma (PAC). Evidence from recent clinical studies has shown that liposomal irinotecan (nal-IRI) plus 5-fluorouracil (5-FU) and leucovorin (LV) resulted in survival benefits in patients with advanced pancreatic adenocarcinoma (APAC) after progression on gemcitabine-based treatment. However, the survival benefits of nal-IRI in the third and later lines, in which limited options are available, have yet to be extensively studied. Also, some studies have shown conflicting results regarding the impact of prior treatment with conventional IRI on patient outcomes following treatment with nal-IRI. Therefore, this real-world study aimed to evaluate the efficacy and safety of nal-IRI plus 5FU-LV in advanced PAC patients who progressed on conventional IRI-containing regimens. Methods A retrospective chart review was conducted between November 2016 to December 2022 on 30 patients diagnosed with advanced PAC who completed at least one cycle of nal-IRI plus 5-FU- LV and were previously treated with conventional IRI. Data regarding survival outcomes were retrieved. Results Thirty patients met the inclusion criteria. Overall, 76.7% of the patients received at least two lines of therapy prior to nal-IRI. The median overall duration of nal-IRI treatment was 2.0 months (IQR: 1.3 - 3.9 months). One patient (3.3%) had a partial response, and seven patients (23.3%) had stable disease as their best response. The median progression-free survival (PFS) was 1.9 months (95% CI 1.6 - 2.0) and the 6-month PFS rate was 20.0%. The median overall survival (OS) was 5.0 months (95% CI 3.4 - 7.0), and the 6-month OS rate was 36.7%. An interval between conventional IRI and nal-IRI ≥5.5 months was significantly associated with prolonged OS of 10.2 months (95% CI 3.3 - 12.1) versus 4.3 months (95% CI 2.1 - 5.9; p =0.003). Ten patients (33.3%) experienced grade 3 adverse events, most commonly nausea, fatigue, diarrhea, and non-neutropenic fever. Conclusion Nal-IRI plus 5FU/LV had modest survival benefits and an acceptable safety profile in patients with prior conventional IRI. A longer interval between conventional IRI and nal-IRI was associated with increased survival outcomes.
Collapse
Affiliation(s)
- Amol Gupta
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, United States
| | | | | | | | | | | | | | - Daniel Laheru
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
14
|
Song S, Sun D, Wang H, Wang J, Yan H, Zhao X, Fawcett JP, Xu X, Cai D, Gu J. Full-profile pharmacokinetics, anticancer activity and toxicity of an extended release trivalent PEGylated irinotecan prodrug. Acta Pharm Sin B 2023; 13:3444-3453. [PMID: 37655324 PMCID: PMC10466002 DOI: 10.1016/j.apsb.2023.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023] Open
Abstract
Irinotecan is an anticancer topoisomerase I inhibitor that acts as a prodrug of the active metabolite, SN-38. Unfortunately, the limited utility of irinotecan is attributed to its pH-dependent stability, short half-life and dose-limiting toxicity. To address this problem, a novel trivalent PEGylated prodrug (PEG-[Irinotecan]3) has been synthesized and its full-profile pharmacokinetics, antitumor activity and toxicity compared with those of irinotecan. The results show that after intravenous administration to rats, PEG-[Irinotecan]3 undergoes stepwise loss of irinotecan to form PEG-[Irinotecan]3‒x (x = 1,2) and PEG-[linker] during which time the released irinotecan undergoes conversion to SN-38. As compared with conventional irinotecan, PEG-[Irinotecan]3 displays extended release of irinotecan and efficient formation of SN-38 with significantly improved AUC and half-life. In a colorectal cancer-bearing model in nude mice, the tumor concentrations of irinotecan and SN-38 produced by PEG-[Irinotecan]3 were respectively 86.2 and 2293 times higher at 48 h than produced by irinotecan. In summary, PEG-[Irinotecan]3 displays superior pharmacokinetic characteristics and antitumor activity with lower toxicity than irinotecan. This supports the view that PEG-[Irinotecan]3 is a superior anticancer drug to irinotecan and it has entered the phase II trial stage.
Collapse
Affiliation(s)
- Shiwen Song
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Dong Sun
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hong Wang
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
- Center for Food and Drug Inspection of NMPA, Changchun 130012, China
| | | | - Huijing Yan
- JenKem Technology Co., Ltd., Tianjin 300450, China
| | - Xuan Zhao
- JenKem Technology Co., Ltd., Tianjin 300450, China
| | - John Paul Fawcett
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Xu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Deqi Cai
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Beijing Institute of Drug Metabolism, Beijing 102209, China
| |
Collapse
|
15
|
Wang Y, Tang Q, Wu R, Sun S, Zhang J, Chen J, Gong M, Chen C, Liang X. Ultrasound-Triggered Piezocatalysis for Selectively Controlled NO Gas and Chemodrug Release to Enhance Drug Penetration in Pancreatic Cancer. ACS NANO 2023; 17:3557-3573. [PMID: 36775922 DOI: 10.1021/acsnano.2c09948] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nitric oxide (NO) is drawing widespread attention in treating pancreatic ductal adenocarcinoma (PDAC) as a safe and therapeutically efficient technique through modulating the dense fibrotic stroma in the tumor microenvironment to enhance drug penetration. Considerable NO nanogenerators and NO releasing molecules have been developed to shield the systemic toxicity caused by free diffusion of NO gas. However, on-demand controlled release of NO and chemotherapy drugs at tumor sites remains a problem limited by the complex and dynamic tumor microenvironment. Herein, we present an ultrasound-responsive nanoprodrug of CPT-t-R-PEG2000@BaTiO3 (CRB) which encapsulates piezoelectric nanomaterials barium titanate nanoparticle (BaTiO3) with amphiphilic prodrug molecules that consisted of thioketal bond (t) linked chemotherapy drug camptothecin (CPT) and NO-donor l-arginine (R). Based on ultrasound-triggered piezocatalysis, BaTiO3 can continuously generate ROS in the hypoxic tumor environment, which induces a cascade of reaction processes to break the thioketal bond to release CPT and oxidize R to release NO, simultaneously delivering CPT and NO to the tumor site. It is revealed that CRB shows a uniform size distribution, prolonged blood circulation time, and excellent tumor targeting ability. Moreover, controlled release of CPT and NO were observed both in vitro and in vivo under the stimulation of ultrasound, which is beneficial to the depletion of dense stroma and subsequently enhanced delivery and efficacy of CPT. Taken together, CRB significantly increased the antitumor efficacy against highly malignant Panc02 tumors in mice through inhibiting chemoresistance, representing a feasible approach for targeted therapies against Panc02 and other PDAC.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Ruiqi Wu
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Jing Chen
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Ming Gong
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Chaoyi Chen
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
16
|
O'Brien Laramy MN, Luthra S, Brown MF, Bartlett DW. Delivering on the promise of protein degraders. Nat Rev Drug Discov 2023; 22:410-427. [PMID: 36810917 DOI: 10.1038/s41573-023-00652-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/23/2023]
Abstract
Over the past 3 years, the first bivalent protein degraders intentionally designed for targeted protein degradation (TPD) have advanced to clinical trials, with an initial focus on established targets. Most of these clinical candidates are designed for oral administration, and many discovery efforts appear to be similarly focused. As we look towards the future, we propose that an oral-centric discovery paradigm will overly constrain the chemical designs that are considered and limit the potential to drug novel targets. In this Perspective, we summarize the current state of the bivalent degrader modality and propose three categories of degrader designs, based on their likely route of administration and requirement for drug delivery technologies. We then describe a vision for how parenteral drug delivery, implemented early in research and supported by pharmacokinetic-pharmacodynamic modelling, can enable exploration of a broader drug design space, expand the scope of accessible targets and deliver on the promise of protein degraders as a therapeutic modality.
Collapse
Affiliation(s)
| | - Suman Luthra
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, MA, USA
| | - Matthew F Brown
- Discovery Sciences, Worldwide Research, Development, and Medical, Pfizer Inc., Groton, CT, USA
| | - Derek W Bartlett
- Pharmacokinetics, Dynamics, & Metabolism, Worldwide Research, Development, and Medical, Pfizer Inc., San Diego, CA, USA
| |
Collapse
|
17
|
Keyvani V, Mahmoudian RA, Mollazadeh S, Kheradmand N, Ghorbani E, Khazaei M, Saeed Al-Hayawi I, Hassanian SM, Ferns GA, Avan A, Anvari K. Insight into RNA-based Therapies for Ovarian Cancer. Curr Pharm Des 2023; 29:2692-2701. [PMID: 37916491 DOI: 10.2174/0113816128270476231023052228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
Ovarian cancer (OC) is one of the most common malignancies in women and is associated with poor outcomes. The treatment for OC is often associated with resistance to therapies and hence this has stimulated the search for alternative therapeutic approaches, including RNA-based therapeutics. However, this approach has some challenges that include RNA degradation. To solve this critical issue, some novel delivery systems have been proposed. In current years, there has been growing interest in the improvement of RNAbased therapeutics as a promising approach to target ovarian cancer and improve patient outcomes. This paper provides a practical insight into the use of RNA-based therapeutics in ovarian cancers, highlighting their potential benefits, challenges, and current research progress. RNA-based therapeutics offer a novel and targeted approach to treat ovarian cancer by exploiting the unique characteristics of RNA molecules. By targeting key oncogenes or genes responsible for drug resistance, siRNAs can effectively inhibit tumor growth and sensitize cancer cells to conventional therapies. Furthermore, messenger RNA (mRNA) vaccines have emerged as a revolutionary tool in cancer immunotherapy. MRNA vaccines can be designed to encode tumor-specific antigens, stimulating the immune system to distinguish and eliminate ovarian cancer cells. A nano-based delivery platform improves the release of loaded RNAs to the target location and reduces the off-target effects. Additionally, off-target effects and immune responses triggered by RNA molecules necessitate careful design and optimization of these therapeutics. Several preclinical and clinical researches have shown promising results in the field of RNA-based therapeutics for ovarian cancer. In a preclinical study, siRNA-mediated silencing of the poly (ADP-ribose) polymerase 1 (PARP1) gene, involved in DNA repair, sensitized ovarian cancer cells to PARP inhibitors, leading to enhanced therapeutic efficacy. In clinical trials, mRNA-based vaccines targeting tumor-associated antigens have demonstrated safety and efficacy in stimulating immune responses in ovarian cancer patients. In aggregate, RNA-based therapeutics represent a promising avenue for the therapy of ovarian cancers. The ability to specifically target oncogenes or stimulate immune responses against tumor cells holds great potential for improving patient outcomes. However, further research is needed to address challenges related to delivery, permanence, and off-target effects. Clinical trials assessing the care and effectiveness of RNAbased therapeutics in larger patient cohorts are warranted. With continued advancements in the field, RNAbased therapeutics have the potential to develop the management of ovarian cancer and provide new hope for patients.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Yang J, Wang X, Wang B, Park K, Wooley K, Zhang S. Challenging the fundamental conjectures in nanoparticle drug delivery for chemotherapy treatment of solid cancers. Adv Drug Deliv Rev 2022; 190:114525. [PMID: 36100142 DOI: 10.1016/j.addr.2022.114525] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines for cancer treatment have been studied extensively over the last few decades. Yet, only five anticancer nanomedicines have received approvals from the United States Food and Drug Administration (FDA) for treating solid tumors. This drastic mismatch between effort and return calls into question the basic understanding of this field. Various viewpoints on nanomedicines have been presented regarding their potentials and inefficiencies. However, the underlying logics of nanomedicine research and its inadequate translation to the successful use in the clinic have not been thoroughly examined. Tumor-targeted drug delivery was used to understand the shortfalls of the nanomedicine field in general. The concept of tumor-targeted drug delivery by nanomedicine has been based on two conjectures: (i) increased drug delivery to tumors provides better efficacy, and (ii) decreased drug delivery to healthy organs results in fewer side effects. The clinical evidence gathered from the literature indicates that nanomedicines bearing classic chemotherapeutic drugs, such as Dox, cis-Pt, CPT and PTX, have already reached the maximum drug delivery limit to solid tumors in humans. Still, the anticancer efficacy and safety remain unchanged despite the increased tumor accumulation. Thus, it is understandable to see few nanomedicine-based formulations approved by the FDA. The examination of FDA-approved nanomedicine formulations indicates that their approvals were not based on the improved delivery to tumors but mostly on changes in dose-limiting toxicity unique to each drug. This comprehensive analysis of the fundamentals of anticancer nanomedicines is designed to provide an accurate picture of the field's underlying false conjectures, hopefully, thereby accelerating the future clinical translations of many formulations under research.
Collapse
Affiliation(s)
- Juanjuan Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiaojin Wang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, PR China
| | - Bingshun Wang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, PR China
| | - Kinam Park
- Weldon School of Biomedical Engineering, and Department of Pharmaceutics, Purdue University, West Lafayette, IN 47907, USA
| | - Karen Wooley
- Departments of Chemistry, Materials Science & Engineering and Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
19
|
Dual-Functionalized Nanoliposomes Achieve a Synergistic Chemo-Phototherapeutic Effect. Int J Mol Sci 2022; 23:ijms232112817. [PMID: 36361615 PMCID: PMC9653560 DOI: 10.3390/ijms232112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The enhancement of photodynamic therapy (PDT) effectiveness by combining it with other treatment modalities and improved drug delivery has become an interesting field in cancer research. We have prepared and characterized nanoliposomes containing the chemotherapeutic drug irinotecan (CPT11lip), the photodynamic agent protoporphyrin IX (PpIXlip), or their combination (CPT11-PpIXlip). The effects of individual and bimodal (chemo-phototherapeutic) treatments on HeLa cells have been studied by a combination of biological and photophysical studies. Bimodal treatments show synergistic cytotoxic effects on HeLa cells at relatively low doses of PpIX/PDT and CPT11. Mechanistic cell inactivation studies revealed mitotic catastrophe, apoptosis, and senescence contributions. The enhanced anticancer activity is due to a sustained generation of reactive oxygen species, which increases the number of double-strand DNA breaks. Bimodal chemo-phototherapeutic liposomes may have a very promising future in oncological therapy, potentially allowing a reduction in the CPT11 concentration required to achieve a therapeutic effect and overcoming resistance to individual cancer treatments.
Collapse
|
20
|
Cancer nanomedicine: A step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Zhao YQ, Li LJ, Zhou EF, Wang JY, Wang Y, Guo LM, Zhang XX. Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1751036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Lipid-based nanocarriers have been extensively investigated for drug delivery due to their advantages including biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity. However, the shortcomings of traditional lipid-based nanocarriers such as insufficient targeting, capture by the reticuloendothelial system, and fast elimination limit the efficiency of drug delivery and therapeutic efficacy. Therefore, a series of multifunctional lipid-based nanocarriers have been developed to enhance the accumulation of drugs in the lesion site, aiming for improved diagnosis and treatment of various diseases. In this review, we summarized the advances and applications of lipid-based nanocarriers from traditional to novel functional lipid preparations, including liposomes, stimuli-responsive lipid-based nanocarriers, ionizable lipid nanoparticles, lipid hybrid nanocarriers, as well as biomembrane-camouflaged nanoparticles, and further discussed the challenges and prospects of this system. This exploration may give a complete idea viewing the lipid-based nanocarriers as a promising choice for drug delivery system, and fuel the advancement of pharmaceutical products by materials innovation and nanotechnology.
Collapse
Affiliation(s)
- Yan-Qi Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Li-Jun Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Er-Fen Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jiang-Yue Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lin-Miao Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin-Xin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
22
|
Nanoliposomes in Cancer Therapy: Marketed Products and Current Clinical Trials. Int J Mol Sci 2022; 23:ijms23084249. [PMID: 35457065 PMCID: PMC9030431 DOI: 10.3390/ijms23084249] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
The drugs used for cancer treatment have many drawbacks, as they damage both tumor and healthy cells and, in addition, they tend to be poorly soluble drugs. Their transport in nanoparticles can solve these problems as these can release the drug into tumor tissues, as well as improve their solubility, bioavailability, and efficacy, reducing their adverse effects. This article focuses on the advantages that nanotechnology can bring to medicine, with special emphasis on nanoliposomes. For this, a review has been made of the nanoliposomal systems marketed for the treatment of cancer, as well as those that are in the research phase, highlighting the clinical trials being carried out. All marketed liposomes studied are intravenously administered, showing a reduced intensity of side-effects compared with the nonliposomal form. Doxorubicin is the active ingredient most frequently employed. Ongoing clinical trials expand the availability of liposomal medicines with new clinical indications. In conclusion, the introduction of drugs in nanoliposomes means an improvement in their efficacy and the quality of life of patients. The future focus of research could be directed to develop multifunctional targeted nanoliposomes using new anticancer drugs, different types of existing drugs, or new standardized methodologies easily translated into industrial scale.
Collapse
|
23
|
Topoisomerase I inhibitors: Challenges, progress and the road ahead. Eur J Med Chem 2022; 236:114304. [DOI: 10.1016/j.ejmech.2022.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
|
24
|
Semaphorin 6C Suppresses Proliferation of Pancreatic Cancer Cells via Inhibition of the AKT/GSK3/β-Catenin/Cyclin D1 Pathway. Int J Mol Sci 2022; 23:ijms23052608. [PMID: 35269749 PMCID: PMC8910270 DOI: 10.3390/ijms23052608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Semaphorins (SEMAs) are axon guidance factors that participate in axonal connections and nerve system development. However, the functional roles of SEMAs in tumorigenesis are still largely uncovered. By using in silico data analysis, we found that SEMA6C was downregulated in pancreatic cancer, and its reduction was correlated with worse survival rates. RNA sequencing revealed that cell cycle-related genes, especially cyclin D1, were significantly altered after blockage of SEMA6C by neutralizing antibodies or ectopic expressions of SEMA6C. Mechanistic investigation demonstrated that SEMA6C acts as a tumor suppressor in pancreatic cancer by inhibiting the AKT/GSK3 signaling axis, resulting in a decrease in cyclin D1 expression and cellular proliferation. The enhancement of cyclin D1 expression and cyclin-dependent kinase activation in SEMA6C-low cancer created a druggable target of CDK4/6 inhibitors. We also elucidated the mechanism underlying SEMA6C downregulation in pancreatic cancer and demonstrated a novel regulatory role of miR-124-3p in suppressing SEMA6C. This study provides new insights of SEMA6C-mediated anti-cancer action and suggests the treatment of SEMA6C-downregulated cancer by CDK4/6 inhibitors.
Collapse
|
25
|
Zhang Z, Guo H, Zhang H. Upregulated Expression of Actin-Like 6A is a Risk Factor Affecting the Prognosis of Pancreatic Cancer. Cancer Manag Res 2022; 13:9467-9475. [PMID: 35002324 PMCID: PMC8722579 DOI: 10.2147/cmar.s342745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Actin-like 6A (ACTL6A), a regulatory subunit of the ATP-dependent chromatin-remodeling complex SWI/SNF, acts as an oncogenic factor. This study is aimed at evaluating the correlation between ACTL6A expression and clinicopathological parameters in pancreatic cancer (PC) patients. Methods The differences of Actl6a mRNA expression between PC tissues and normal pancreatic tissues were analyzed in public databases, and ACTL6A expression was then determined and confirmed in 60 paired tissue specimens using immunohistochemistry staining. The association analysis between ACTL6A expression and the clinicopathological characteristics was analyzed, as well as Kaplan–Meier survival analysis. Univariate and multivariate Cox analyses were performed to identify the prognostic factors in the overall survival (OS) of patients with PC. Results The mRNA expression of Actl6a showed significantly higher in PC compared to normal controls (p < 0.05) from public databases. The score of immunohistochemistry staining further confirmed that ACTL6A expression was significantly upregulated in PC tissues (p < 0.001) through immunohistochemistry staining. High ACTL6A expression was associated with lymphovascular space invasion of PC. Kaplan–Meier analysis revealed that the high expression of ACTL6A was markedly associated with poor OS. Moreover, univariate and multivariate analysis demonstrated that ACTL6A acted as an independent risk factor for PC prognosis. Conclusion ACTL6A is upregulated in PC and acts as a risk factor for poor prognosis in patients with PC, and therefore clinicians could around it design preventive measures and individualized treatment to improve mortality in patients with PC.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Haochun Guo
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
26
|
Peng T, Xu W, Li Q, Ding Y, Huang Y. Pharmaceutical liposomal delivery—specific considerations of innovation and challenges. Biomater Sci 2022; 11:62-75. [DOI: 10.1039/d2bm01252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liposomal technology can enhance drug solubility and stability, achieving codelivery for combination therapy, and modulate the in vivo fate (e.g., site-specific distribution and controlled release), thereby improving treatment outcomes.
Collapse
Affiliation(s)
- Taoxing Peng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Weihua Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Qianqian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai 201203, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528437, China
| |
Collapse
|
27
|
Zhou TS, He LL, He J, Yang ZK, Zhou ZY, Du AQ, Yu JB, Li YS, Wang SJ, Wei B, Cui ZN, Wang H. Discovery of a series of 5-phenyl-2-furan derivatives containing 1,3-thiazole moiety as potent Escherichia coli β-glucuronidase inhibitors. Bioorg Chem 2021; 116:105306. [PMID: 34521047 DOI: 10.1016/j.bioorg.2021.105306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
Gut microbial β-glucuronidases have drawn much attention due to their role as a potential therapeutic target to alleviate some drugs or their metabolites-induced gastrointestinal toxicity. In this study, fifteen 5-phenyl-2-furan derivatives containing 1,3-thiazole moiety (1-15) were synthesized and evaluated for their inhibitory effects against Escherichia coli β-glucuronidase (EcGUS). Twelve of them showed satisfactory inhibition against EcGUS with IC50 values ranging from 0.25 μM to 2.13 μM with compound 12 exhibited the best inhibition. Inhibition kinetics studies indicated that compound 12 (Ki = 0.14 ± 0.01 μM) was an uncompetitive inhibitor for EcGUS and molecular docking simulation further predicted the binding model and capability of compound 12 with EcGUS. A preliminary structure-inhibitory activity relationship study revealed that the heterocyclic backbone and bromine substitution of benzene may be essential for inhibition against EcGUS. The compounds have the potential to be applied in drug-induced gastrointestinal toxicity and the findings would help researchers to design and develop more effective 5-phenyl-2-furan type EcGUS inhibitors.
Collapse
Affiliation(s)
- Tao-Shun Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lu-Lu He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Jing He
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Kun Yang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhen-Yi Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ao-Qi Du
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jin-Biao Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Sheng Li
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Si-Jia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA 90024, USA
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China.
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China.
| |
Collapse
|
28
|
Irinotecan and its metabolite SN38 inhibits procollagen I production of dermal fibroblasts from Systemic Sclerosis patients. Sci Rep 2021; 11:18011. [PMID: 34504265 PMCID: PMC8429710 DOI: 10.1038/s41598-021-97538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease characterized by a microangiopathy and fibrosis of the skin and internal organs. No treatment has been proved to be efficient in case of early or advanced SSc to prevent or reduce fibrosis. There are strong arguments for a key role of topo-I in the pathogenesis of diffuse SSc. Irinotecan, a semisynthetic derivative of Camptothecin, specifically target topo-I. This study was undertaken to evaluate the effects of noncytotoxic doses of irinotecan or its active metabolite SN38 on collagen production in SSc fibroblasts. Dermal fibroblasts from 4 patients with SSc and 2 healthy donors were cultured in the presence or absence of irinotecan or SN38. Procollagen I release was determined by ELISA and expression of a panel of genes involved in fibrosis was evaluated by qRT-PCR. Subcytotoxic doses of irinotecan and SN38 caused a significant and dose-dependent decrease of the procollagen I production in dermal fibroblasts from SSc patients, respectively − 48 ± 3%, p < 0.0001 and − 37 ± 6.2%, p = 0.0097. Both irinotecan and SN38 led to a global downregulation of genes involved in fibrosis such as COL1A1, COL1A2, MMP1 and ACTA2 in dermal fibroblasts from SSc patients (respectively − 27; − 20.5; − 30.2 and − 30% for irinotecan and − 61; − 55; − 50 and − 54% for SN38). SN38 increased significantly CCL2 mRNA level (+ 163%). The inhibitory effect of irinotecan and its active metabolite SN38 on collagen production by SSc fibroblasts, which occurs through regulating the levels of expression of genes mRNA, suggests that topoisomerase I inhibitors may be effective in limiting fibrosis in such patients.
Collapse
|
29
|
Allahou LW, Madani SY, Seifalian A. Investigating the Application of Liposomes as Drug Delivery Systems for the Diagnosis and Treatment of Cancer. Int J Biomater 2021; 2021:3041969. [PMID: 34512761 PMCID: PMC8426107 DOI: 10.1155/2021/3041969] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is the routine treatment for cancer despite the poor efficacy and associated off-target toxicity. Furthermore, therapeutic doses of chemotherapeutic agents are limited due to their lack of tissue specificity. Various developments in nanotechnology have been applied to medicine with the aim of enhancing the drug delivery of chemotherapeutic agents. One of the successful developments includes nanoparticles which are particles that range between 1 and 100 nm that may be utilized as drug delivery systems for the treatment and diagnosis of cancer as they overcome the issues associated with chemotherapy; they are highly efficacious and cause fewer side effects on healthy tissues. Other nanotechnological developments include organic nanocarriers such as liposomes which are a type of nanoparticle, although they can deviate from the standard size range of nanoparticles as they may be several hundred nanometres in size. Liposomes are small artificial spherical vesicles ranging between 30 nm and several micrometres and contain one or more concentric lipid bilayers encapsulating an aqueous core that can entrap both hydrophilic and hydrophobic drugs. Liposomes are biocompatible and low in toxicity and can be utilized to encapsulate and facilitate the intracellular delivery of chemotherapeutic agents as they are biodegradable and have reduced systemic toxicity compared with free drugs. Liposomes may be modified with PEG chains to prolong blood circulation and enable passive targeting. Grafting of targeting ligands on liposomes enables active targeting of anticancer drugs to tumour sites. In this review, we shall explore the properties of liposomes as drug delivery systems for the treatment and diagnosis of cancer. Moreover, we shall discuss the various synthesis and functionalization techniques associated with liposomes including their drug delivery, current clinical applications, and toxicology.
Collapse
Affiliation(s)
- Latifa W. Allahou
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Seyed Yazdan Madani
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.) London BioScience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| |
Collapse
|
30
|
Ghanbari-Movahed M, Kaceli T, Mondal A, Farzaei MH, Bishayee A. Recent Advances in Improved Anticancer Efficacies of Camptothecin Nano-Formulations: A Systematic Review. Biomedicines 2021; 9:480. [PMID: 33925750 PMCID: PMC8146681 DOI: 10.3390/biomedicines9050480] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Camptothecin (CPT), a natural plant alkaloid, has indicated potent antitumor activities via targeting intracellular topoisomerase I. The promise that CPT holds in therapies is restricted through factors that include lactone ring instability and water insolubility, which limits the drug oral solubility and bioavailability in blood plasma. Novel strategies involving CPT pharmacological and low doses combined with nanoparticles have indicated potent anticancer activity in vitro and in vivo. This systematic review aims to provide a comprehensive and critical evaluation of the anticancer ability of nano-CPT in various cancers as a novel and more efficient natural compound for drug development. Studies were identified through systematic searches of PubMed, Scopus, and ScienceDirect. Eligibility checks were performed based on predefined selection criteria. Eighty-two papers were included in this systematic review. There was strong evidence for the association between antitumor activity and CPT treatment. Furthermore, studies indicated that CPT nano-formulations have higher antitumor activity in comparison to free CPT, which results in enhanced efficacy for cancer treatment. The results of our study indicate that CPT nano-formulations are a potent candidate for cancer treatment and may provide further support for the clinical application of natural antitumor agents with passive targeting of tumors in the future.
Collapse
Affiliation(s)
- Maryam Ghanbari-Movahed
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
- Department of Biology, Faculty of Science, University of Guilan, Rasht 4193833697, Iran
| | - Tea Kaceli
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731123, India;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| |
Collapse
|
31
|
Zhang Z, Song J, Xie C, Pan J, Lu W, Liu M. Pancreatic Cancer: Recent Progress of Drugs in Clinical Trials. AAPS JOURNAL 2021; 23:29. [PMID: 33580411 DOI: 10.1208/s12248-021-00556-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer is a highly malignant tumor and one of the primary causes of cancer-related death. Because pancreatic cancer is difficult to diagnose in the early course of the disease, most patients present with advanced lesions at the time of diagnosis, and only 20% of patients are eligible for surgery. Consequently, drug treatment has become extremely important. At present, the main treatment regimens for pancreatic cancer are gemcitabine and the FORFIRINOX and MPACT regimens. However, none of these regimens substantially improves the prognosis of patients with pancreatic cancer. Extensive efforts have been dedicated to the study of pancreatic cancer in recent years. With the development and clinical application of biological targeted drugs, the biological targeted treatment of tumors has been widely accepted. Therefore, this article used relevant clinical trial data to summarize the research progress of traditional chemotherapy drugs and biological targeted drugs for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jie Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jun Pan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Min Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
32
|
Abstract
Liposomal irinotecan (nal-IRI; Onivyde®; also known as pegylated liposomal irinotecan) has been developed with the aim of maximising anti-tumour efficacy while minimising drug-related toxicities compared with the conventional (non-liposomal) formulation of this topoisomerase 1 inhibitor. In combination with 5-fluorouracil and leucovorin (5-FU/LV), nal-IRI is the first agent to be specifically approved for use in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) who have progressed following gemcitabine-based therapy. In the pivotal, phase III NAPOLI-1 trial, intravenous administration of nal-IRI + 5-FU/LV to gemcitabine-pretreated patients with mPDAC (as a second-line treatment in approximately two-thirds of cases) was associated with a significant ≈ 2-month median overall survival advantage compared with 5-FU/LV alone. Moreover, adding nal-IRI to 5-FU/LV extended survival with a manageable safety profile and without adversely affecting health-related quality of life, thereby producing significant and clinically meaningful gains in quality-adjusted survival relative to 5-FU/LV alone. Complementing the observed efficacy and safety of nal-IRI in NAPOLI-1 are an increasing number of real-world studies, which provide evidence of the effectiveness of this combination therapy in the treatment of mPDAC that has progressed following gemcitabine-based therapy in contemporary clinical practice in Europe, the USA and East Asia. Thus, nal-IRI, in combination with 5-FU/LV, is the first regimen specifically approved for use as a second- or subsequent-line therapy in gemcitabine-pretreated patients with mPDAC and, as such, represents a valuable treatment option in this setting.
Collapse
Affiliation(s)
- James E Frampton
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
33
|
Giram PS, Wang JTW, Walters AA, Rade PP, Akhtar M, Han S, Faruqu FN, Abdel-Bar HM, Garnaik B, Al-Jamal KT. Green synthesis of methoxy-poly(ethylene glycol)-block-poly(l-lactide-co-glycolide) copolymer using zinc proline as a biocompatible initiator for irinotecan delivery to colon cancer in vivo. Biomater Sci 2021; 9:795-806. [PMID: 33206082 DOI: 10.1039/d0bm01421d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is the most commonly described biocompatible copolymer used in biomedical applications. In this work, a green synthetic approach based on the biocompatible zinc proline complex, as an initiator for PLGA synthesis, is reported for the first time for the synthesis of methoxy-poly(ethylene glycol)-block-poly(l-lactic-co-glycolic acid) (mPEG-PLGA). mPEG-PLGA with controlled molecular weight and narrow polydispersity was synthesised. Its potential for delivery of irinotecan (Ir), a poorly water-soluble chemotherapeutic drug used for the treatment of colon and pancreatic cancer, was studied. Nanoparticles of controlled size (140-160 nm), surface charge (∼-10 mV), release properties and cytotoxicity against CT-26 (colon) and BxPC-3 (pancreatic) cancer cells, were prepared. Tumor accumulation was confirmed by optical imaging of fluorescently labelled nanoparticles. Unlike Tween® 80 coated NP-Ir, the Pluronic® F-127 coated NP-Ir exhibits significant tumor growth delay compared to untreated and blank formulation treated groups in the CT-26 subcutaneous tumor model, after 4 treatments of 30 mg irinotecan per kg dose. Overall, this proof-of-concept study demonstrates that the newly synthesized copolymer, via a green route, is proven to be nontoxic, requires fewer purification steps and has potential applications in drug delivery.
Collapse
Affiliation(s)
- Prabhanjan S Giram
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune-411008, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schilling W, Das S. Transition Metal-Free Synthesis of Carbamates Using CO 2 as the Carbon Source. CHEMSUSCHEM 2020; 13:6246-6258. [PMID: 33107690 DOI: 10.1002/cssc.202002073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Utilization of carbon dioxide as a C1 synthon is highly attractive for the synthesis of valuable chemicals. However, activation of CO2 is highly challenging, owing to its thermodynamic stability and kinetic inertness. With this in mind, several strategies have been developed for the generation of carbon-heteroatom bonds. Among these, formation of C-N bonds is highly attractive, especially, when carbamates can be synthesized directly from CO2 . This Minireview focuses on transition metal-free approaches for the fixation of CO2 to generate carbamates for the production of fine chemicals and pharmaceuticals. Within the past decade, transition metal-free approaches have gained increasing attention, but traditional reviews have rarely focused on these approaches. Direct comparisons between such methods have been even more scarce. This Minireview seeks to address this discrepancy.
Collapse
Affiliation(s)
- Waldemar Schilling
- Institute for Biomolecular and Organic Chemistry, Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Shoubhik Das
- ORSY division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
35
|
Amin M, Huang W, Seynhaeve ALB, ten Hagen TLM. Hyperthermia and Temperature-Sensitive Nanomaterials for Spatiotemporal Drug Delivery to Solid Tumors. Pharmaceutics 2020; 12:E1007. [PMID: 33105816 PMCID: PMC7690578 DOI: 10.3390/pharmaceutics12111007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology has great capability in formulation, reduction of side effects, and enhancing pharmacokinetics of chemotherapeutics by designing stable or long circulating nano-carriers. However, effective drug delivery at the cellular level by means of such carriers is still unsatisfactory. One promising approach is using spatiotemporal drug release by means of nanoparticles with the capacity for content release triggered by internal or external stimuli. Among different stimuli, interests for application of external heat, hyperthermia, is growing. Advanced technology, ease of application and most importantly high level of control over applied heat, and as a result triggered release, and the adjuvant effect of hyperthermia in enhancing therapeutic response of chemotherapeutics, i.e., thermochemotherapy, make hyperthermia a great stimulus for triggered drug release. Therefore, a variety of temperature sensitive nano-carriers, lipid or/and polymeric based, have been fabricated and studied. Importantly, in order to achieve an efficient therapeutic outcome, and taking the advantages of thermochemotherapy into consideration, release characteristics from nano-carriers should fit with applicable clinical thermal setting. Here we introduce and discuss the application of the three most studied temperature sensitive nanoparticles with emphasis on release behavior and its importance regarding applicability and therapeutic potentials.
Collapse
Affiliation(s)
- Mohamadreza Amin
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Wenqiu Huang
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
| | - Ann L. B. Seynhaeve
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| |
Collapse
|
36
|
Ickenstein LM, Garidel P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin Drug Deliv 2020; 16:1205-1226. [PMID: 31530041 DOI: 10.1080/17425247.2019.1669558] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Liposomes and lipid-based nanoparticles (LNPs) effectively deliver cargo molecules to specific tissues, cells, and cellular compartments. Patients benefit from these nanoparticle formulations by altered pharmacokinetic properties, higher efficacy, or reduced side effects. While liposomes are an established delivery option for small molecules, Onpattro® (Sanofi Genzyme, Cambridge, MA) is the first commercially available LNP formulation of a small interfering ribonucleic acid (siRNA). Areas covered: This review article summarizes key features of liposomal formulations for small molecule drugs and LNP formulations for RNA therapeutics. We describe liposomal formulations that are commercially available or in late-stage clinical development and the most promising LNP formulations for ASOs, siRNAs, saRNA, and mRNA therapeutics. Expert opinion: Similar to liposomes, LNPs for RNA therapeutics have matured but still possess a niche application status. RNA therapeutics, however, bear an immense hope for difficult to treat diseases and fuel the imagination for further applications of RNA drugs. LNPs face similar challenges as liposomes including limitations in biodistribution, the risk to provoke immune responses, and other toxicities. However, since properties of RNA molecules within the same group are very similar, the entire class of therapeutic molecules would benefit from improvements in a few key parameters of the delivery technology.
Collapse
Affiliation(s)
- Ludger M Ickenstein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals , Biberach an der Riss , Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals , Biberach an der Riss , Germany
| |
Collapse
|
37
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
38
|
Seynhaeve A, Amin M, Haemmerich D, van Rhoon G, ten Hagen T. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020; 163-164:125-144. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Chemotherapy is a cornerstone of cancer therapy. Irrespective of the administered drug, it is crucial that adequate drug amounts reach all cancer cells. To achieve this, drugs first need to be absorbed, then enter the blood circulation, diffuse into the tumor interstitial space and finally reach the tumor cells. Next to chemoresistance, one of the most important factors for effective chemotherapy is adequate tumor drug uptake and penetration. Unfortunately, most chemotherapeutic agents do not have favorable properties. These compounds are cleared rapidly, distribute throughout all tissues in the body, with only low tumor drug uptake that is heterogeneously distributed within the tumor. Moreover, the typical microenvironment of solid cancers provides additional hurdles for drug delivery, such as heterogeneous vascular density and perfusion, high interstitial fluid pressure, and abundant stroma. The hope was that nanotechnology will solve most, if not all, of these drug delivery barriers. However, in spite of advances and decades of nanoparticle development, results are unsatisfactory. One promising recent development are nanoparticles which can be steered, and release content triggered by internal or external signals. Here we discuss these so-called smart drug delivery systems in cancer therapy with emphasis on mild hyperthermia as a trigger signal for drug delivery.
Collapse
|
39
|
Márquez MG, Dotson R, Pias S, Frolova LV, Tartis MS. Phospholipid prodrug conjugates of insoluble chemotherapeutic agents for ultrasound targeted drug delivery. Nanotheranostics 2020; 4:40-56. [PMID: 31911893 PMCID: PMC6940203 DOI: 10.7150/ntno.37738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/01/2019] [Indexed: 12/19/2022] Open
Abstract
The hydrophobicity and high potency of many therapeutic agents makes them difficult to use effectively in clinical practice. This work focuses on conjugating phospholipid tails (2T) onto podophyllotoxin (P) and its analogue (N) using a linker and characterizing the effects of their incorporation into lipid-based drug delivery vehicles for triggered ultrasound delivery. Differential Scanning Calorimetry results show that successfully synthesized lipophilic prodrugs, 2T-P (~28 % yield) and 2T-N(~26 % yield), incorporate within the lipid membranes of liposomes. As a result of this, increased stability and incorporation are observed in 2T-P and 2T-N in comparison to the parent compounds P and N. Molecular dynamic simulation results support that prodrugs remain within the lipid membrane over a relevant range of concentrations. 2T-N's (IC50: 20 nM) biological activity was retained in HeLa cells (cervical cancer), whereas 2T-P's (IC50: ~4 µM) suffered, presumably due to steric hindrance. Proof-of-concept studies using ultrasound in vitro microbubble and nanodroplet delivery vehicles establish that these prodrugs are capable of localized drug delivery. This study provides useful information about the synthesis of double tail analogues of insoluble chemotherapeutic agents to facilitate incorporation into drug delivery vehicles. The phospholipid attachment strategy presented here could be applied to other well suited drugs such as gemcitabine, commonly known for its treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Mendi G Márquez
- Materials Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA.,Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Rachel Dotson
- Departments of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Sally Pias
- Departments of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Liliya V Frolova
- Departments of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Michaelann S Tartis
- Materials Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA.,Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| |
Collapse
|
40
|
de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet 2019. [PMID: 29520731 PMCID: PMC6132501 DOI: 10.1007/s40262-018-0644-7] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its clinical introduction in 1998, the topoisomerase I inhibitor irinotecan has been widely used in the treatment of solid tumors, including colorectal, pancreatic, and lung cancer. Irinotecan therapy is characterized by several dose-limiting toxicities and large interindividual pharmacokinetic variability. Irinotecan has a highly complex metabolism, including hydrolyzation by carboxylesterases to its active metabolite SN-38, which is 100- to 1000-fold more active compared with irinotecan itself. Several phase I and II enzymes, including cytochrome P450 (CYP) 3A4 and uridine diphosphate glucuronosyltransferase (UGT) 1A, are involved in the formation of inactive metabolites, making its metabolism prone to environmental and genetic influences. Genetic variants in the DNA of these enzymes and transporters could predict a part of the drug-related toxicity and efficacy of treatment, which has been shown in retrospective and prospective trials and meta-analyses. Patient characteristics, lifestyle and comedication also influence irinotecan pharmacokinetics. Other factors, including dietary restriction, are currently being studied. Meanwhile, a more tailored approach to prevent excessive toxicity and optimize efficacy is warranted. This review provides an updated overview on today’s literature on irinotecan pharmacokinetics, pharmacodynamics, and pharmacogenetics.
Collapse
Affiliation(s)
- Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Andrew K L Goey
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands.
| |
Collapse
|
41
|
Klochkov SG, Neganova ME, Nikolenko VN, Chen K, Somasundaram SG, Kirkland CE, Aliev G. Implications of nanotechnology for the treatment of cancer: Recent advances. Semin Cancer Biol 2019; 69:190-199. [PMID: 31446004 DOI: 10.1016/j.semcancer.2019.08.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022]
Abstract
The use of nanoparticles dramatically increases the safety and efficacy of the most common anticancer drugs. The main advantages of nano-drugs and delivery systems based on nano-technology are effective targeting, delayed release, increased half-life, and less systemic toxicity. The use of nano-carriers has led to significant improvements in drug delivery to targets compared with traditional administration of these drugs. In this review, the main tendencies in nano-drug formulations as well as factors limiting their use in clinical settings are discussed. Additionally, the current status of approved nano-drugs for cancer treatment is reviewed.
Collapse
Affiliation(s)
- Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Vladimir N Nikolenko
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow, 119991, Russia
| | - Kuo Chen
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow, 119991, Russia
| | | | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, USA
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow, 119991, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
42
|
Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics 2019; 13:33-51. [PMID: 31118560 PMCID: PMC6503308 DOI: 10.2147/btt.s166310] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAbs) have become a cornerstone in the therapeutic guidelines of a wide range of solid tumors. The targeted nature of these biotherapeutics has improved treatment outcomes by offering enhanced specificity to reduce severe side effects experienced with conventional chemotherapy. Notwithstanding, poor tumor tissue penetration and the heterogeneous distribution achieved therein are prominent drawbacks that hamper the clinical efficacy of therapeutic antibodies. Failure to deliver efficacious doses throughout the tumor can lead to treatment failure and the development of acquired resistance mechanisms. Comprehending the morphological and physiological characteristics of solid tumors and their microenvironment that affect tumor penetration and distribution is a key requirement to improve clinical outcomes and realize the full potential of monoclonal antibodies in oncology. This review summarizes the essential architectural characteristics of solid tumors that obstruct macromolecule penetration into the targeted tissue following systemic delivery. It further describes mechanisms of resistance elucidated for blockbuster antibodies for which extensive clinical data exists, as a way to illustrate various modes in which cancer cells can overcome the anticancer activity of therapeutic antibodies. Thereafter, it describes novel strategies designed to improve clinical outcomes of mAbs by increasing potency and/or improving tumor delivery; focusing on the recent clinical success and growing clinical pipeline of antibody-drug conjugates, immune checkpoint inhibitors and nanoparticle-based delivery systems.
Collapse
Affiliation(s)
- Esteban Cruz
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Veysel Kayser
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
43
|
Abstract
Nanotechnology offers new solutions for the development of cancer therapeutics that display improved efficacy and safety. Although several nanotherapeutics have received clinical approval, the most promising nanotechnology applications for patients still lie ahead. Nanoparticles display unique transport, biological, optical, magnetic, electronic, and thermal properties that are not apparent on the molecular or macroscale, and can be utilized for therapeutic purposes. These characteristics arise because nanoparticles are in the same size range as the wavelength of light and display large surface area to volume ratios. The large size of nanoparticles compared to conventional chemotherapeutic agents or biological macromolecule drugs also enables incorporation of several supportive components in addition to active pharmaceutical ingredients. These components can facilitate solubilization, protection from degradation, sustained release, immunoevasion, tissue penetration, imaging, targeting, and triggered activation. Nanoparticles are also processed differently in the body compared to conventional drugs. Specifically, nanoparticles display unique hemodynamic properties and biodistribution profiles. Notably, the interactions that occur at the bio-nano interface can be exploited for improved drug delivery. This review discusses successful clinically approved cancer nanodrugs as well as promising candidates in the pipeline. These nanotherapeutics are categorized according to whether they predominantly exploit multifunctionality, unique electromagnetic properties, or distinct transport characteristics in the body. Moreover, future directions in nanomedicine such as companion diagnostics, strategies for modifying the microenvironment, spatiotemporal nanoparticle transitions, and the use of extracellular vesicles for drug delivery are also explored.
Collapse
Affiliation(s)
- Joy Wolfram
- Department of Transplantation/Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, Florida 32224, USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Department of Medicine, Weill Cornell Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
44
|
Cinelli MA. Topoisomerase 1B poisons: Over a half-century of drug leads, clinical candidates, and serendipitous discoveries. Med Res Rev 2018; 39:1294-1337. [PMID: 30456874 DOI: 10.1002/med.21546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Topoisomerases are DNA processing enzymes that relieve supercoiling (torsional strain) in DNA, are necessary for normal cellular division, and act by nicking (and then religating) DNA strands. Type 1B topoisomerase (Top1) is overexpressed in certain tumors, and the enzyme has been extensively investigated as a target for cancer chemotherapy. Various chemical agents can act as "poisons" of the enzyme's religation step, leading to Top1-DNA lesions, DNA breakage, and eventual cellular death. In this review, agents that poison Top1 (and have thus been investigated for their anticancer properties) are surveyed, including natural products (such as camptothecins and indolocarbazoles), semisynthetic camptothecin and luotonin derivatives, and synthetic compounds (such as benzonaphthyridines, aromathecins, and indenoisoquinolines), as well as targeted therapies and conjugates. Top1 has also been investigated as a therapeutic target in certain viral and parasitic infections, as well as autoimmune, inflammatory, and neurological disorders, and a summary of literature describing alternative indications is also provided. This review should provide both a reference for the medicinal chemist and potentially offer clues to aid in the development of new Top1 poisons.
Collapse
Affiliation(s)
- Maris A Cinelli
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
45
|
Chevalier MT, Garona J, Sobol NT, Farina HG, Alonso DF, Álvarez VA. In vitro and in vivo evaluation of desmopressin-loaded poly(D,L-lactic-co-glycolic acid) nanoparticles for its potential use in cancer treatment. Nanomedicine (Lond) 2018; 13:2835-2849. [PMID: 30430901 DOI: 10.2217/nnm-2018-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop and characterize the antitumor activity of poly(D,L-lactic-co-glycolic acid) nanoparticles loaded with hemostatic and anticancer drug desmopressin (dDAVP). MATERIALS & METHODS After full physicochemical characterization, anticancer activity of dDAVP-loaded poly(D,L-lactic-co-glycolic acid) nanoparticles (NPdDAVP) was evaluated in vitro and in vivo on a highly aggressive breast cancer model. RESULTS After efficiently loading desmopressin in poly(D,L-lactic-co-glycolic acid) matrix, NPdDAVP exhibited suitable physicochemical characteristics for biomedical applications. NPdDAVP displayed a potent cytostatic effect in vitro, inhibiting tumor cell proliferation and colony forming ability. Moreover, intravenous treatment using nanoparticulated-dDAVP inhibited tumor progression and prolonged survival in animals bearing rapidly-growing mammary tumors. CONCLUSION Within the framework of promising dDAVP repurposing studies, these findings support further preclinical development of the NPdDAVP for the management of highly aggressive cancer.
Collapse
Affiliation(s)
- Merari T Chevalier
- Grupo de Materiales Compuestos Termoplásticos, Instituto de Investigaciones de Ciencia y Tecnología de Materiales (INTEMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Colón 10890 (7600), Mar del Plata, Argentina
| | - Juan Garona
- Laboratorio de Oncología Molecular (LOM), Departamento de Ciencia y Tecnología (DCyT), Universidad Nacional de Quilmes (UNQ), Roque Saenz Peña 352 (B1876BXD), Buenos Aires, Argentina
| | - Natasha T Sobol
- Laboratorio de Oncología Molecular (LOM), Departamento de Ciencia y Tecnología (DCyT), Universidad Nacional de Quilmes (UNQ), Roque Saenz Peña 352 (B1876BXD), Buenos Aires, Argentina
| | - Hernan G Farina
- Laboratorio de Oncología Molecular (LOM), Departamento de Ciencia y Tecnología (DCyT), Universidad Nacional de Quilmes (UNQ), Roque Saenz Peña 352 (B1876BXD), Buenos Aires, Argentina
| | - Daniel F Alonso
- Laboratorio de Oncología Molecular (LOM), Departamento de Ciencia y Tecnología (DCyT), Universidad Nacional de Quilmes (UNQ), Roque Saenz Peña 352 (B1876BXD), Buenos Aires, Argentina
| | - Vera A Álvarez
- Grupo de Materiales Compuestos Termoplásticos, Instituto de Investigaciones de Ciencia y Tecnología de Materiales (INTEMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Colón 10890 (7600), Mar del Plata, Argentina
| |
Collapse
|
46
|
Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in "smart" delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 2018; 13:4727-4745. [PMID: 30154657 PMCID: PMC6108334 DOI: 10.2147/ijn.s168053] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in nanomedicine have become indispensable for targeted drug delivery, early detection, and increasingly personalized approaches to cancer treatment. Nanoparticle-based drug-delivery systems have overcome some of the limitations associated with traditional cancer-therapy administration, such as reduced drug solubility, chemoresistance, systemic toxicity, narrow therapeutic indices, and poor oral bioavailability. Advances in the field of nanomedicine include “smart” drug delivery, or multiple levels of targeting, and extended-release drug-delivery systems that provide additional methods of overcoming these limitations. More recently, the idea of combining smart drug delivery with extended-release has emerged in hopes of developing highly efficient nanoparticles with improved delivery, bioavailability, and safety profiles. Although functionalized and extended-release drug-delivery systems have been studied extensively, there remain gaps in the literature concerning their application in cancer treatment. We aim to provide an overview of smart and extended-release drug-delivery systems for the delivery of cancer therapies, as well as to introduce innovative advancements in nanoparticle design incorporating these principles. With the growing need for increasingly personalized medicine in cancer treatment, smart extended-release nanoparticles have the potential to enhance chemotherapy delivery, patient adherence, and treatment outcomes in cancer patients.
Collapse
Affiliation(s)
| | - Komal Bajwa
- Postgraduate Medical Education, Graduate Diploma and Professional Master in Medical Sciences, School of Medicine, Queen's University
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University,
| | | | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University,
| |
Collapse
|
47
|
Perreault M, Maltais R, Roy J, Picard S, Popa I, Bertrand N, Poirier D. Induction of endoplasmic reticulum stress by aminosteroid derivative RM-581 leads to tumor regression in PANC-1 xenograft model. Invest New Drugs 2018; 37:431-440. [PMID: 30062573 DOI: 10.1007/s10637-018-0643-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
The high fatality and morbidity of pancreatic cancer have remained almost unchanged over the last decades and new clinical therapeutic tools are urgently needed. We determined the cytotoxic activity of aminosteroid derivatives RM-133 (androstane) and RM-581 (estrane) in three human pancreatic cancer cell lines (BxPC3, Hs766T and PANC-1). In PANC-1, a similar level of antiproliferative activity was observed for RM-581 and RM-133 (IC50 = 3.9 and 4.3 μM, respectively), but RM-581 provided a higher selectivity index (SI = 12.8) for cancer cells over normal pancreatic cells than RM-133 (SI = 2.8). We also confirmed that RM-581 induces the same ER stress-apoptosis markers (BIP, CHOP and HERP) than RM-133 in PANC-1 cells, pointing out to a similar mechanism of action. Finally, these relevant in vitro results have been successfully translated in vivo by testing RM-581 using different doses (10-60 mg/kg/day) and modes of administration in PANC-1 xenograft models, which have led to tumor regression without any sign of toxicity in mice (animal weight, behavior and histology). Interestingly, RM-581 fully reduced the pancreatic tumor growth when administered orally in mice.
Collapse
Affiliation(s)
- Martin Perreault
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4-42), 2705 Laurier Boulevard, Québec, QC, GIV 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4-42), 2705 Laurier Boulevard, Québec, QC, GIV 4G2, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4-42), 2705 Laurier Boulevard, Québec, QC, GIV 4G2, Canada
| | - Sylvain Picard
- Department of Anatomo-Pathology, CHU de Québec - Université Laval, Québec, QC, GIV 4G2, Canada
| | - Ion Popa
- Department of Anatomo-Pathology, CHU de Québec - Université Laval, Québec, QC, GIV 4G2, Canada
| | - Nicolas Bertrand
- Faculty of Pharmacy, Université Laval, Québec, QC, GIV OA6, Canada.,Endocrinology and Nephrology Unit, CHU de Québec-Research Center (CHUL, T4-13), Québec, QC, GIV 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4-42), 2705 Laurier Boulevard, Québec, QC, GIV 4G2, Canada. .,Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, GIV OA6, Canada.
| |
Collapse
|
48
|
Affiliation(s)
- Sulagna Banerjee
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Ashok K Saluja
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
49
|
Kinsley K, Pritchett W. Liposomal Irinotecan: Nursing Considerations in an Outpatient Cancer Center. Clin J Oncol Nurs 2018; 22:221-224. [PMID: 29547602 DOI: 10.1188/18.cjon.221-224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent approaches in treating pancreatic adenocarcinoma, an aggressive disease with limited survival, include the use of liposomal irinotecan as an option when first-line therapy has failed. Liposomal irinotecan has been approved in combination with 5-fluorouracil and leucovorin for patients with metastatic pancreatic cancer. Liposomal irinotecan is a newer therapy requiring oncology nurses to obtain knowledge and skills for proper administrating, monitoring of hypersensitivity reactions during infusion, managing side effects, and providing patient education. Nursing considerations when administering this drug include infusion time, premedication, risk for hypersensitivity reactions and adverse events, and side effects.
Collapse
|
50
|
Casadó A, Mora M, Sagristá ML, Rello-Varona S, Acedo P, Stockert JC, Cañete M, Villanueva A. Improved selectivity and cytotoxic effects of irinotecan via liposomal delivery: A comparative study on Hs68 and HeLa cells. Eur J Pharm Sci 2017; 109:65-77. [DOI: 10.1016/j.ejps.2017.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
|