1
|
Rouskas K, Guela M, Pantoura M, Pagkalos I, Hassapidou M, Lalama E, Pfeiffer AFH, Decorte E, Cornelissen V, Wilson-Barnes S, Hart K, Mantovani E, Dias SB, Hadjileontiadis L, Gymnopoulos LP, Dimitropoulos K, Argiriou A. The Influence of an AI-Driven Personalized Nutrition Program on the Human Gut Microbiome and Its Health Implications. Nutrients 2025; 17:1260. [PMID: 40219016 PMCID: PMC11990151 DOI: 10.3390/nu17071260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Personalized nutrition programs enhanced with artificial intelligence (AI)-based tools hold promising potential for the development of healthy and sustainable diets and for disease prevention. This study aimed to explore the impact of an AI-based personalized nutrition program on the gut microbiome of healthy individuals. Methods: An intervention using an AI-based mobile application for personalized nutrition was applied for six weeks. Fecal and blood samples from 29 healthy participants (females 52%, mean age 35 years) were collected at baseline and at six weeks. Gut microbiome through 16s ribosomal RNA (rRNA) amplicon sequencing, anthropometric and biochemical data were analyzed at both timepoints. Dietary assessment was performed using food frequency questionnaires. Results: A significant increase in richness (Chao1, 220.4 ± 58.5 vs. 241.5 ± 60.2, p = 0.024) and diversity (Faith's phylogenetic diversity, 15.5 ± 3.3 vs. 17.3 ± 2.8, p = 0.0001) was found from pre- to post-intervention. Following the intervention, the relative abundance of genera associated with the reduction in cholesterol and heart disease risk (e.g., Eubacterium coprostanoligenes group and Oscillobacter) was significantly increased, while the abundance of inflammation-associated genera (e.g., Eubacterium ruminantium group and Gastranaerophilales) was decreased. Alterations in the abundance of several butyrate-producing genera were also found (e.g., increase in Faecalibacterium, decrease in Bifidobacterium). Further, a decrease in carbohydrate (272.2 ± 97.7 vs. 222.9 ± 80.5, p = 0.003) and protein (113.6 ± 38.8 vs. 98.6 ± 32.4, p = 0.011) intake, as well as a reduction in waist circumference (78.4 ± 12.1 vs. 77.2 ± 11.2, p = 0.023), was also seen. Changes in the abundance of Oscillospiraceae_UCG_002 and Lachnospiraceae_UCG_004 were positively associated with changes in olive oil intake (Rho = 0.57, p = 0.001) and levels of triglycerides (Rho = 0.56, p = 0.001). Conclusions: This study highlights the potential for an AI-based personalized nutrition program to influence the gut microbiome. More research is now needed to establish the use of gut microbiome-informed strategies for personalized nutrition.
Collapse
Affiliation(s)
- Konstantinos Rouskas
- Institute of Applied Biosciences, Center for Research and Technology Hellas, 57001 Thessaloniki, Greece; (K.R.); (M.G.); (M.P.)
| | - Mary Guela
- Institute of Applied Biosciences, Center for Research and Technology Hellas, 57001 Thessaloniki, Greece; (K.R.); (M.G.); (M.P.)
- Department of Food Science and Nutrition, University of the Aegean, Myrina, 81400 Lemnos, Greece
| | - Marianna Pantoura
- Institute of Applied Biosciences, Center for Research and Technology Hellas, 57001 Thessaloniki, Greece; (K.R.); (M.G.); (M.P.)
| | - Ioannis Pagkalos
- Nutrition Information Systems Laboratory (NISLAB), Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece; (I.P.); (M.H.)
| | - Maria Hassapidou
- Nutrition Information Systems Laboratory (NISLAB), Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece; (I.P.); (M.H.)
| | - Elena Lalama
- Department of Endocrinology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (E.L.); (A.F.H.P.)
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (E.L.); (A.F.H.P.)
| | - Elise Decorte
- Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium; (E.D.); (V.C.)
| | - Veronique Cornelissen
- Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium; (E.D.); (V.C.)
| | - Saskia Wilson-Barnes
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (S.W.-B.); (K.H.)
| | - Kathryn Hart
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (S.W.-B.); (K.H.)
| | - Eugenio Mantovani
- Research Group on Law, Science, Technology and Society, Faculty of Law & Criminology, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Sofia Balula Dias
- Interdisciplinary Centre for the Study of Human Performance (CIPER), Faculdade de Motricidade Humana, Universidade de Lisboa, 1499-002 Lisbon, Portugal;
| | - Leontios Hadjileontiadis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Lazaros P. Gymnopoulos
- The Visual Computing Lab, Information Technologies Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece (K.D.)
| | - Kosmas Dimitropoulos
- The Visual Computing Lab, Information Technologies Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece (K.D.)
| | - Anagnostis Argiriou
- Institute of Applied Biosciences, Center for Research and Technology Hellas, 57001 Thessaloniki, Greece; (K.R.); (M.G.); (M.P.)
- Department of Food Science and Nutrition, University of the Aegean, Myrina, 81400 Lemnos, Greece
| |
Collapse
|
2
|
Elumalai S, Karunakaran U, Moon JS, Won KC. High glucose-induced PRDX3 acetylation contributes to glucotoxicity in pancreatic β-cells: Prevention by Teneligliptin. Free Radic Biol Med 2020; 160:618-629. [PMID: 32763411 DOI: 10.1016/j.freeradbiomed.2020.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
Chronic hyperglycemia has deleterious effects on pancreatic β-cell function and survival in type 2 diabetes (T2D) due to the low expression level of endogenous antioxidants in the β-cells. Peroxiredoxin-3 (PRDX3) is a mitochondria specific H202 scavenger and protects the cell from mitochondrial damage. However, nothing is known about how glucotoxicity influences PRDX3 function in the pancreatic beta cells. Exposure of rat insulinoma INS-1 cells and human beta cells (1.1B4) to high glucose conditions (30mM) stimulated acetylation of PRDX3 which facilitates its hyper-oxidation causing mitochondrial dysfunction by SIRT1 degradation. SIRT1 deficiency induces beta cell apoptosis via NOX-JNK-p66Shc signalosome activation. Herein we investigated the direct effect of Teneligliptin, a newer DPP-4 inhibitor on beta-cell function and survival in response to high glucose conditions. Teneligliptin treatment enhances SIRT1 protein levels and activity by USP22, an ubiquitin specific peptidase. Activated SIRT1 prevents high glucose-induced PRDX3 acetylation by SIRT3 resulted in inhibition of PRDX3 hyper-oxidation thereby strengthening the mitochondrial antioxidant defense. Notably, we identify PRDX3 as a novel SIRT3 target and show their physical interaction. Intriguingly, inhibition of SIRT1 activity by EX-527 or SIRT1 siRNA knockdown exacerbated the SIRT3 mediated PRDX3 deacetylation which leads to peroxiredoxin-3 hyper-oxidation and beta-cell apoptosis by the activation of NOX-JNK-p66Shc signalosome. Collectively, our results unveil a novel and first direct effect of high glucose on PRDX3 acetylation on beta-cell dysfunction by impaired antioxidant defense and SIRT1 mediated SIRT3-PRDX3 activation by Teneligliptin suppresses high glucose-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Suma Elumalai
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Udayakumar Karunakaran
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
3
|
Agarwal P, Jindal C, Sapakal V. Efficacy and Safety of Teneligliptin in Indian Patients with Inadequately Controlled Type 2 Diabetes Mellitus: A Randomized, Double-blind Study. Indian J Endocrinol Metab 2018; 22:41-46. [PMID: 29535935 PMCID: PMC5838908 DOI: 10.4103/ijem.ijem_97_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIMS This study evaluated the efficacy and safety of teneligliptin in patients with inadequately controlled type 2 diabetes mellitus (T2DM). SETTINGS AND DESIGN This was a randomized, doubleblind, placebocontrolled, parallelgroup, multicenter, Phase III study. SUBJECTS AND METHODS Patients with T2DM and inadequate glycemic control (glycosylated hemoglobin [HbA1c]: >7.0-≤8.5%) were enrolled. Patients were randomly assigned (ratio: 2:1) to receive teneligliptin 20 mg (Glenmark) or placebo. The primary efficacy variable was change from baseline in HbA1c at week 16. Additional analyses included the proportion of patients who achieved target of HbA1c ≤7.0%, changes in fasting plasma glucose (FPG), and postprandial glucose (PPG). STATISTICAL ANALYSIS Mean change in HbA1c was analyzed using an analysis of covariance model, least square (LS) means, 95% confidence intervals (CIs), and P values were calculated. RESULTS Overall, 237 patients were included. Patients of the teneligliptin group showed reduced HbA1c levels (LS mean difference = -0.304% for intent-to-treat [ITT]; -0.291% for per-protocol (PP) populations) after 16 weeks of treatment, and a statistically significant difference was observed between the ITT (LS mean difference = 0.555; 95% CI: 0.176-0.934; P = 0.0043) and PP populations (LS mean difference = 0.642; 95% CI: 0.233-1.052; P = 0.0023). Target HbA1c level was achieved by a greater proportion of teneligliptin group patients (ITT, 43.4%; PP, 43.6%) than placebo group patients (ITT, 27.3%; PP, 26.6%). Reduction in FPG levels was observed in ITT (LS mean difference: 8.829; 95% CI: -4.357-22.016; P = 0.1883) and PP populations (LS mean difference: 11.710 mg/dL; 95% CI: -2.893-26.312; P = 0.1154). Reduction in PPG levels was higher in teneligliptin group than placebo group in both ITT (LS mean difference = 25.849 mg/dL; 95% CI: 7.143-44.556; P = 0.0070) and PP populations (LS mean difference = 25.683 mg/dL; 95% CI: 5.830-45.536; P = 0.0115). Overall, 44 patients (18.6%) experienced at least one adverse event. Three or more hypoglycemic events were experienced by 2.5% patients of teneligliptin group and none in placebo group. CONCLUSION Treatment with once-daily teneligliptin led to statistically significant and clinically meaningful reductions in HbA1c and PPG, and was well tolerated in Indian patients with T2DM.
Collapse
Affiliation(s)
- Piyush Agarwal
- Department of Medical Services, Glenmark Pharmaceuticals Limited, Mumbai, Maharashtra, India
| | - Chhavi Jindal
- Department of Medical Services, Glenmark Pharmaceuticals Limited, Mumbai, Maharashtra, India
| | - Vinayak Sapakal
- Department of Medical Services, Glenmark Pharmaceuticals Limited, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol 2017; 16:120. [PMID: 28962617 PMCID: PMC5622555 DOI: 10.1186/s12933-017-0604-9] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans. Several risk factors promote AF, among which diabetes mellitus has emerged as one of the most important. The growing recognition that obesity, diabetes and AF are closely intertwined disorders has spurred major interest in uncovering their mechanistic links. In this article we provide an update on the growing evidence linking oxidative stress and inflammation to adverse atrial structural and electrical remodeling that leads to the onset and maintenance of AF in the diabetic heart. We then discuss several therapeutic strategies to improve atrial excitability by targeting pathways that control oxidative stress and inflammation.
Collapse
Affiliation(s)
- Basil S Karam
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Wonjoon Koh
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph G Akar
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Fadi G Akar
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Kim G, Lee YH, Kang ES, Cha BS, Lee HC, Lee BW. Characteristics Predictive for a Successful Switch from Insulin Analogue Therapy to Oral Hypoglycemic Agents in Patients with Type 2 Diabetes. Yonsei Med J 2016; 57:1395-403. [PMID: 27593867 PMCID: PMC5011271 DOI: 10.3349/ymj.2016.57.6.1395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The objective of this study was to investigate clinical and laboratory parameters that could predict which patients could maintain adequate glycemic control after switching from initial insulin therapy to oral hypoglycemic agents (OHAs) among patients with type 2 diabetes (T2D). MATERIALS AND METHODS We recruited 275 patients with T2D who had been registered in 3 cohorts of initiated insulin therapy and followed up for 33 months. The participants were divided into 2 groups according to whether they switched from insulin to OHAs (Group I) or not (Group II), and Group I was further classified into 2 sub-groups: maintenance on OHAs (Group IA) or resumption of insulin (Group IB). RESULTS Of 275 patients with insulin initiation, 63% switched to OHAs (Group I) and 37% continued insulin (Group II). Of these, 44% were in Group IA and 19% in Group IB. The lowest tertile of baseline postprandial C-peptide-to-glucose ratio (PCGR), higher insulin dose at switching to OHAs, and higher HbA1c level at 6 months after switching to OHAs were all associated with OHA failure (Group IB; p=0.001, 0.046, and 0.014, respectively). The lowest tertile of PCGR was associated with ultimate use of insulin (Group IB and Group II; p=0.029). CONCLUSION Higher baseline level of PCGR and lower HbA1c levels at 6 months after switching to OHAs may be strong predictors for the successful maintenance of OHAs after switching from insulin therapy in Korean patients with T2D.
Collapse
Affiliation(s)
- Gyuri Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Bong Soo Cha
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Chul Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Graduate School, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Abstract
Oral teneligliptin [Teneglucon® (Argentina)], a dipeptidyl peptidase-4 inhibitor, is indicated for the treatment of adults with type 2 diabetes (T2DM). This article reviews the pharmacology, therapeutic efficacy and tolerability of teneligliptin in the treatment of adults with T2DM. In 12- or 16-week, placebo-controlled phase 2 and 3 trials, oral teneligliptin 20 or 40 mg once daily, as monotherapy or in combination with metformin, glimepiride or pioglitazone improved glycaemic control, including in patients with end-stage renal disease, and was generally well tolerated. Most treatment-emergent adverse events were of mild intensity and relatively few patients discontinued treatment because of these events. Improvements in glycaemic control observed in short-term trials were maintained at 52 weeks in extension phases of these trials and in 52-week interventional studies, with no new safety concerns identified during this period. In the absence of direct head-to-head clinical trials, the position of teneligliptin relative to other antidiabetic agents in the management of T2DM remains to be determined. In the meantime, teneligliptin is a useful treatment option for adults with T2DM who have not responded adequately to diet and exercise regimens, or the addition of antidiabetic drugs.
Collapse
Affiliation(s)
- Lesley J Scott
- Springer, Private Bag 65901, Mairangi Bay, Auckland 0754, New Zealand.
| |
Collapse
|
7
|
Okuda Y, Omoto S, Taniura T, Shouzu A, Nomura S. Effects of teneligliptin on PDMPs and PAI-1 in patients with diabetes on hemodialysis. Int J Gen Med 2016; 9:65-71. [PMID: 27110135 PMCID: PMC4835142 DOI: 10.2147/ijgm.s102070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Cardiovascular disease (CVD) is the main cause of death among hemodialysis (HD) patients. The effects of the dipeptidyl peptidase-4 inhibitor teneligliptin on CVD-related biomarkers in patients with type 2 diabetes mellitus (T2DM) receiving HD treatment are poorly understood. To determine whether teneligliptin has anti-CVD properties, we assessed its effects on soluble P-selectin (sP-selectin), platelet-derived microparticles (PDMPs), plasminogen activator inhibitor 1 (PAI-1), soluble E-selectin (sE-selectin), soluble vascular adhesion molecule 1 (sVCAM-1), and adiponectin plasma levels in HD and non-HD patients with T2DM. Methods Patients with T2DM eligible for teneligliptin monotherapy or combination therapy (eg, teneligliptin plus a sulfonylurea) were administered teneligliptin (20 mg/d) once daily for 6 months. Plasma levels of sP-selectin, PDMPs, PAI-1, sE-selectin, sVCAM-1, and adiponectin were measured by enzyme-linked immunosorbent assay at baseline and after 3 months and 6 months of treatment. Results Teneligliptin therapy significantly reduced plasma levels of sP-selectin, PDMPs, and PAI-1 compared with baseline levels, while significantly increasing adiponectin levels. sE-selectin and sVCAM-1 levels were significantly decreased only at 6 months. The reduction in sP-selectin, PDMPs, and PAI-1 was more significant in HD patients than in non-HD patients. However, the improvement in adiponectin levels was unchanged with HD treatment. Conclusion By modulating PDMPs or PAI-1, teneligliptin shows an antiatherothrombotic effect that may be beneficial in the primary prevention of CVD in patients with T2DM on HD.
Collapse
Affiliation(s)
- Yoshinori Okuda
- Division of Internal Medicine, Meisei Memorial Hospital, Osaka, Japan
| | - Seitaro Omoto
- Division of Internal Medicine, Kohrigaoka Yukeikai Hospital, Osaka, Japan
| | | | - Akira Shouzu
- Division of Internal Medicine, Saiseikai Izuo Hospital, Osaka, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| |
Collapse
|
8
|
Zhang X, Zhang Z, Li M, Li G, Liu T. Potential role of dipeptidyl peptidase-4 inhibitors in atrial fibrillation. Int J Cardiol 2016; 207:46-47. [PMID: 26788822 DOI: 10.1016/j.ijcard.2016.01.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaowei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | - Mingzhen Li
- Key Laboratory of Hormones and Development (Ministry of Health), Department of Diabetes and Gout, Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China.
| |
Collapse
|
9
|
Teneligliptin in type 2 diabetes: a guide to its use in Argentina. DRUGS & THERAPY PERSPECTIVES 2016. [DOI: 10.1007/s40267-016-0277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|