1
|
Zheng Q, Zhu M, Zeng X, Liu W, Fu F, Li X, Liao G, Lu Y, Chen Y. Comparison of Animal Models for the Study of Nonalcoholic Fatty Liver Disease. J Transl Med 2023; 103:100129. [PMID: 36907553 DOI: 10.1016/j.labinv.2023.100129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases, and there is still no effective treatment for its advanced stage, nonalcoholic steatohepatitis (NASH). An ideal animal model of NAFLD/NASH is urgently needed for preclinical studies. However, the models reported previously are quite heterogeneous due to differences in animal strains, feed formulations, evaluation indicators, etc. Here, we report five NAFLD mouse models we developed in previous studies and comprehensively compared their characteristics. The high-fat diet (HFD) model is time-consuming and is characterized by early insulin resistance and slight liver steatosis at 12 weeks. Still, inflammation and fibrosis are rare, even at 22 weeks. The high fat, high fructose, and high cholesterol diet (FFC) exacerbates glucose and lipid metabolism disorders, showing distinct hypercholesterolemia, steatosis, and mild inflammation at 12 w. An FFC diet combined with streptozotocin (STZ) is a novel model that speeds up the process of lobular inflammation and fibrosis. The STAM model also used a combination of FFC and STZ but employs newborn mice and shows the fastest formation of fibrosis nodules. The HFD model is appropriate for the study of early NAFLD. FFC combined with STZ accelerates the pathological process of NASH and may be the most promising model for NASH research and drug development.
Collapse
Affiliation(s)
- Qing Zheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Min Zhu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Wen Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoyu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guangneng Liao
- Animal experimental center of West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
2
|
Blasques RV, de Oliveira PR, Kalinke C, Brazaca LC, Crapnell RD, Bonacin JA, Banks CE, Janegitz BC. Flexible Label-Free Platinum and Bio-PET-Based Immunosensor for the Detection of SARS-CoV-2. BIOSENSORS 2023; 13:190. [PMID: 36831956 PMCID: PMC9954080 DOI: 10.3390/bios13020190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The demand for new devices that enable the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) at a relatively low cost and that are fast and feasible to be used as point-of-care is required overtime on a large scale. In this sense, the use of sustainable materials, for example, the bio-based poly (ethylene terephthalate) (Bio-PET) can be an alternative to current standard diagnostics. In this work, we present a flexible disposable printed electrode based on a platinum thin film on Bio-PET as a substrate for the development of a sensor and immunosensor for the monitoring of COVID-19 biomarkers, by the detection of L-cysteine and the SARS-CoV-2 spike protein, respectively. The electrode was applied in conjunction with 3D printing technology to generate a portable and easy-to-analyze device with a low sample volume. For the L-cysteine determination, chronoamperometry was used, which achieved two linear dynamic ranges (LDR) of 3.98-39.0 μmol L-1 and 39.0-145 μmol L-1, and a limit of detection (LOD) of 0.70 μmol L-1. The detection of the SARS-CoV-2 spike protein was achieved by both square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) by a label-free immunosensor, using potassium ferro-ferricyanide solution as the electrochemical probe. An LDR of 0.70-7.0 and 1.0-30 pmol L-1, with an LOD of 0.70 and 1.0 pmol L-1 were obtained by SWV and EIS, respectively. As a proof of concept, the immunosensor was successfully applied for the detection of the SARS-CoV-2 spike protein in enriched synthetic saliva samples, which demonstrates the potential of using the proposed sensor as an alternative platform for the diagnosis of COVID-19 in the future.
Collapse
Affiliation(s)
- Rodrigo Vieira Blasques
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, Brazil
- Department of Physics, Chemistry, and Mathematics, Federal University of São Carlos, Sorocaba 18052-780, Brazil
| | - Paulo Roberto de Oliveira
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, Brazil
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Cristiane Kalinke
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Laís Canniatti Brazaca
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robert D. Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Bruno Campos Janegitz
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, Brazil
| |
Collapse
|
3
|
Strober JW, Fernandez S, Ye H, Brady MJ. Differential effects of acute versus chronic dietary fructose consumption on metabolic responses in FVB/N mice. Am J Physiol Regul Integr Comp Physiol 2022; 323:R255-R266. [PMID: 35580305 PMCID: PMC9306790 DOI: 10.1152/ajpregu.00174.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased human consumption of hgh fructose corn syrup has been linked to the marked increase in obesity and metabolic syndrome. Previous studies on the rapid effects of a high fructose diet in mice have largely been confined to the C57Bl6 strains. In the current studied, the FVB/N strain of mice that are resistant to diet induced weight gain were utilized and fed a control or high fructose diet for 48 hours or 12 weeks. Many of the previously reported changes that occurred upon high fructose feeding for 48 hours in C57Bl6 mice were recapitulated in the FVB/N mice. However, the acute increases in fructolytic and lipogenic gene expression were completely lost during the 12 week dietary intervention protocol. Furthermore, there was no significant weight gain in FVB/N mice fed a high fructose diet for 12 weeks, despite an overall increase in caloric consumption and an increase in average epididymal adipocyte cell size. These findings may be in part explained by a commensurate increase in energy expenditure and in carbohydrate utilization in high fructose fed animals. Overall, these findings demonstrate that FVB/N mice are a suitable model for the study of the effects of dietary intervention on metabolic and molecular parameters. Furthermore, the rapid changes in hepatic gene expression that have been widely reported were not sustained over a longer time course. Compensatory changes in energy expenditure and utilization may be in part responsible for the differences obtained between acute and chronic high fructose feeding protocols.
Collapse
Affiliation(s)
- Jordan W Strober
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, United States
| | - Sully Fernandez
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, United States
| | - Honggang Ye
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, United States
| | - Matthew J Brady
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, United States.,Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, United States
| |
Collapse
|
4
|
Coronati M, Baratta F, Pastori D, Ferro D, Angelico F, Del Ben M. Added Fructose in Non-Alcoholic Fatty Liver Disease and in Metabolic Syndrome: A Narrative Review. Nutrients 2022; 14:1127. [PMID: 35334784 PMCID: PMC8950441 DOI: 10.3390/nu14061127] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common chronic liver disease and it is considered the hepatic manifestation of metabolic syndrome (MetS). Diet represents the key element in NAFLD and MetS treatment, but some nutrients could play a role in their pathophysiology. Among these, fructose added to foods via high fructose corn syrup (HFCS) and sucrose might participate in NAFLD and MetS onset and progression. Fructose induces de novo lipogenesis (DNL), endoplasmic reticulum stress and liver inflammation, promoting insulin resistance and dyslipidemia. Fructose also reduces fatty acids oxidation through the overproduction of malonyl CoA, favoring steatosis. Furthermore, recent studies suggest changes in intestinal permeability associated with fructose consumption that contribute to the risk of NAFLD and MetS. Finally, alterations in the hunger-satiety mechanism and in the synthesis of uric acid link the fructose intake to weight gain and hypertension, respectively. However, further studies are needed to better evaluate the causal relationship between fructose and metabolic diseases and to develop new therapeutic and preventive strategies against NAFLD and MetS.
Collapse
Affiliation(s)
- Mattia Coronati
- I Clinica Medica, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.C.); (D.P.); (D.F.); (M.D.B.)
| | - Francesco Baratta
- I Clinica Medica, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.C.); (D.P.); (D.F.); (M.D.B.)
| | - Daniele Pastori
- I Clinica Medica, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.C.); (D.P.); (D.F.); (M.D.B.)
| | - Domenico Ferro
- I Clinica Medica, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.C.); (D.P.); (D.F.); (M.D.B.)
| | - Francesco Angelico
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy;
| | - Maria Del Ben
- I Clinica Medica, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.C.); (D.P.); (D.F.); (M.D.B.)
| |
Collapse
|
5
|
Wei C, Zhao S, Zhang Y, Gu W, Kumar Sarker S, Liu S, Li B, Wang X, Li Y, Wang X. Effect of Multiple-Nutrient Supplement on Muscle Damage, Liver, and Kidney Function After Exercising Under Heat: Based on a Pilot Study and a Randomised Controlled Trial. Front Nutr 2022; 8:740741. [PMID: 35004797 PMCID: PMC8733564 DOI: 10.3389/fnut.2021.740741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
Objective: This study explored the effect of multiple-nutrient supplementation on muscle damage and liver and kidney function after vigorous exercise under heat. Methods: After an initial pilot trial comprising 89 male participants, 85 participants were recruited and assigned into three groups: a multiple-nutrient (M) group, a glucose (G) group, and a water (W) group. Multiple-nutrient supplements contain glucose, fructose, maltose, sodium, potassium, vitamin B1, vitamin B2, vitamin C, vitamin K, and taurine. Participants were organised to take a 3-km running test (wet-bulb globe temperature 32°C) after a short-term (7 days) supplement. Blood samples were obtained to detect biochemical parameters [glucose (GLU), aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), uric acid (UA), creatinine (Cr), creatine kinase (CK), lactate dehydrogenase (LDH), and lactic acid], inflammation factors [interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α)], and oxidative stress biomarkers [superoxide dismutase (SOD) and 8-iso-prostaglandin F (2alpha) (8-iso-PGF2α)]. Results: In the pilot trial, BUN decreased significantly in the M and G groups immediately after the running test. AST, Cr, and UA were significantly reduced 24 h after the running test with single-shot multiple-nutrient supplementation. In the short-term trial, multiple nutrients further prevented the elevation of CK (p = 0.045) and LDH (p = 0.033) levels 24 h after strenuous exercise. Moreover, we found that multiple nutrients significantly reduced IL-6 (p = 0.001) and TNF-α (p = 0.015) elevation immediately after exercise. Simultaneously, SOD elevation was significantly higher in the M group immediately after exercising than in the other two groups (p = 0.033). 8-iso-PGF2α was reduced in the M group 24 h after exercise (p = 0.036). Conclusions: This study found that multiple-nutrient supplementation promoted the recovery of muscle damage and decreased liver and kidney function caused by strenuous exercise in a hot environment, probably through the inhibition of secondary damage induced by increased inflammatory reactions and oxidative stress. In this respect, the current study has important implications for the strategy of nutritional support to accelerate recovery and potentially prevent heat-related illness. This study was prospectively registered on clinicaltrials.gov on June 21, 2019 (ID: ChiCTR1900023988).
Collapse
Affiliation(s)
- Chunbo Wei
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Shengnan Zhao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yuntao Zhang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Wenbo Gu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Shuvan Kumar Sarker
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Shuande Liu
- Department of Neurosurgery, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Benzhang Li
- Department of Neurosurgery, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Xuanyang Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Li
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Xu Wang
- Department of Neurosurgery, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| |
Collapse
|
6
|
Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab 2021; 33:2329-2354. [PMID: 34619074 PMCID: PMC8665132 DOI: 10.1016/j.cmet.2021.09.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Excessive sugar consumption is increasingly considered as a contributor to the emerging epidemics of obesity and the associated cardiometabolic disease. Sugar is added to the diet in the form of sucrose or high-fructose corn syrup, both of which comprise nearly equal amounts of glucose and fructose. The unique aspects of fructose metabolism and properties of fructose-derived metabolites allow for fructose to serve as a physiological signal of normal dietary sugar consumption. However, when fructose is consumed in excess, these unique properties may contribute to the pathogenesis of cardiometabolic disease. Here, we review the biochemistry, genetics, and physiology of fructose metabolism and consider mechanisms by which excessive fructose consumption may contribute to metabolic disease. Lastly, we consider new therapeutic options for the treatment of metabolic disease based upon this knowledge.
Collapse
Affiliation(s)
- Mark A Herman
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | | |
Collapse
|
7
|
Pang S, Song P, Sun X, Qi W, Yang C, Song G, Wang Y, Zhang J. Dietary fructose and risk of metabolic syndrome in Chinese residents aged 45 and above: results from the China National Nutrition and Health Survey. Nutr J 2021; 20:83. [PMID: 34602079 PMCID: PMC8489071 DOI: 10.1186/s12937-021-00739-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND A growing number of researches supported that dietary fructose was associated with most of the key features of metabolic syndrome (MetS). However, there was no related epidemiological studies among Chinese population, despite the sharp increase in MetS cases. This study explores the relationship between dietary fructose and MetS among Chinese residents aged 45 and above. METHODS A total of 25,528 participants (11,574 males and 13,954 females) were included in this nationwide representative cross-sectional study of China National Nutrition and Health Survey. Dietary fructose intake was assessed by 3-day 24-h dietary records. MetS was defined by the International Diabetes Federation and Chinese Diabetes Society criteria. RESULTS The consumption of dietary fructose was 11.6 g/day for urban residents and 7.6 g/day for rural residents. Fruits and vegetables as well as their products were the main sources of fructose intake. There was no association between dietary fructose intake and the odds of having MetS in both urban (P = 0.315) and rural residents (P = 0.230) after adjustment for confounding factors. Moreover, for urban residents participating physical activities, the odds of having MetS in the fourth quartiles (OR: 0.67; 95%CI: 0.52-0.87) was lower than that in the first quartile. In the sensitivity analysis, a significant reduction in the odds of having MetS was also found in the fourth quartiles (OR, 95%CI: 0.68, 0.51-0.90; 0.67, 0.49-0.91; 0.74, 0.56-0.99) compared with the first quartile when excluding smokers, alcohol users, and underweight/obesity, respectively. And there was no association between dietary fructose intake and the odds of having MetS after multivariate adjustment stratified by gender, smoking and alcohol use. CONCLUSIONS Under the current dietary fructose intake status, there was no association between dietary fructose intake and the odds of having MetS among Chinese residents aged 45 and above. Physical activity and relatively low fructose intake may have a beneficial synergistic effect on MetS.
Collapse
Affiliation(s)
- Shaojie Pang
- Institute of Grain Quality and Nutrition Research, Academy of National Food and Strategic Reserves Administration, Beijing, 100037, People's Republic of China
| | - Pengkun Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, People's Republic of China
| | - Xueqian Sun
- Research and Development center of Shandong Xiwang Sugar Co. Ltd, National Corn Deep Processing Industry Technology Innovation Center, Binzhou, People's Republic of China
| | - Wentao Qi
- Institute of Grain Quality and Nutrition Research, Academy of National Food and Strategic Reserves Administration, Beijing, 100037, People's Republic of China.
| | - Chun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Ge Song
- Institute of Grain Quality and Nutrition Research, Academy of National Food and Strategic Reserves Administration, Beijing, 100037, People's Republic of China
| | - Yong Wang
- Institute of Grain Quality and Nutrition Research, Academy of National Food and Strategic Reserves Administration, Beijing, 100037, People's Republic of China
| | - Jian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, People's Republic of China.
| |
Collapse
|
8
|
Meddens SFW, de Vlaming R, Bowers P, Burik CAP, Linnér RK, Lee C, Okbay A, Turley P, Rietveld CA, Fontana MA, Ghanbari M, Imamura F, McMahon G, van der Most PJ, Voortman T, Wade KH, Anderson EL, Braun KVE, Emmett PM, Esko T, Gonzalez JR, Kiefte-de Jong JC, Langenberg C, Luan J, Muka T, Ring S, Rivadeneira F, Snieder H, van Rooij FJA, Wolffenbuttel BHR, 23andMe Research Team, EPIC- InterAct Consortium, Lifelines Cohort Study, Smith GD, Franco OH, Forouhi NG, Ikram MA, Uitterlinden AG, van Vliet-Ostaptchouk JV, Wareham NJ, Cesarini D, Harden KP, Lee JJ, Benjamin DJ, Chow CC, Koellinger PD. Genomic analysis of diet composition finds novel loci and associations with health and lifestyle. Mol Psychiatry 2021; 26:2056-2069. [PMID: 32393786 PMCID: PMC7767645 DOI: 10.1038/s41380-020-0697-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10-8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10-5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1-0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.
Collapse
Affiliation(s)
- S. Fleur W. Meddens
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands ,grid.6906.90000000092621349Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester, Oudlaan 50, 3062 PA Rotterdam, The Netherlands
| | - Ronald de Vlaming
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Peter Bowers
- grid.38142.3c000000041936754XDepartment of Economics, Harvard University, 1805 Cambridge St, Cambridge, MA 02138 USA
| | - Casper A. P. Burik
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Richard Karlsson Linnér
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Chanwook Lee
- grid.38142.3c000000041936754XDepartment of Economics, Harvard University, 1805 Cambridge St, Cambridge, MA 02138 USA
| | - Aysu Okbay
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Patrick Turley
- grid.32224.350000 0004 0386 9924Analytical and Translational Genetics Unit, Massachusetts General Hospital, Richard B. Simches Research building, 185 Cambridge St, CPZN-6818, Boston, MA 02114 USA ,grid.66859.34Stanley Center for Psychiatric Genomics, The Broad Institute at Harvard and MIT, 75 Ames St, Cambridge, MA 02142 USA ,grid.42505.360000 0001 2156 6853Behavioral and Health Genomics Center, Center for Economic and Social Research, University of Southern, California, 635 Downey Way, Los Angeles, CA 90089 USA
| | - Cornelius A. Rietveld
- grid.6906.90000000092621349Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester, Oudlaan 50, 3062 PA Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands ,grid.6906.90000000092621349Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus School of Economics, Erasmus, University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands
| | - Mark Alan Fontana
- grid.239915.50000 0001 2285 8823Center for the Advancement of Value in Musculoskeletal Care, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA ,grid.5386.8000000041936877XDepartment of Healthcare Policy and Research, Weill Cornell Medical College, Cornell University, 402 East 67th Street, New York, NY 10065 USA
| | - Mohsen Ghanbari
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands ,grid.411583.a0000 0001 2198 6209Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, University Campus, 9177948564 Mashhad, Iran
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - George McMahon
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Peter J. van der Most
- grid.4494.d0000 0000 9558 4598Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Trudy Voortman
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Kaitlin H. Wade
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Emma L. Anderson
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Kim V. E. Braun
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Pauline M. Emmett
- grid.5337.20000 0004 1936 7603Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8, 2BN, Bristol, UK
| | - Tonũ Esko
- grid.10939.320000 0001 0943 7661Estonian Genome Center, University of Tartu, Riia 23b, Tartu, 51010 Estonia
| | - Juan R. Gonzalez
- grid.434607.20000 0004 1763 3517Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader, 88, Barcelona, 8003 Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Ramon Trias Fargas 25-27, Barcelona, 8005 Spain ,grid.413448.e0000 0000 9314 1427CIBER Epidemiología y Salud Pública (CIBERESP), Pabellón 11, Calle Monforte de Lemos, 3-5, Madrid, 280229 Spain
| | - Jessica C. Kiefte-de Jong
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands ,grid.5132.50000 0001 2312 1970Leiden University College, Anna van Buerenplein 301, 2595 DG Den Haag, The Netherlands
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - Taulant Muka
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Susan Ring
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Fernando Rivadeneira
- grid.5645.2000000040459992XDepartment of Internal Medicine, Erasmus MC University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Harold Snieder
- grid.4494.d0000 0000 9558 4598Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Frank J. A. van Rooij
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Bruce H. R. Wolffenbuttel
- grid.4494.d0000 0000 9558 4598Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | - George Davey Smith
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Oscar H. Franco
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Nita G. Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - M. Arfan Ikram
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Andre G. Uitterlinden
- grid.5645.2000000040459992XDepartment of Internal Medicine, Erasmus MC University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Jana V. van Vliet-Ostaptchouk
- grid.4494.d0000 0000 9558 4598Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Genomics Coordination Center, Department of Genetics, University of Groningen, University Medical Center, Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nick J. Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - David Cesarini
- grid.137628.90000 0004 1936 8753Department of Economics, New York University, 19 W. 4th Street, New York, NY 10012 USA
| | - K. Paige Harden
- grid.89336.370000 0004 1936 9924Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop #A8000, Austin, TX 78704 USA
| | - James J. Lee
- grid.17635.360000000419368657Department of Psychology, University of Minnesota Twin Cities, 75 East River Parkway, Minneapolis, MN 55455 USA
| | - Daniel J. Benjamin
- grid.42505.360000 0001 2156 6853Behavioral and Health Genomics Center, Center for Economic and Social Research, University of Southern, California, 635 Downey Way, Los Angeles, CA 90089 USA ,grid.250279.b0000 0001 0940 3170National Bureau of Economic Research, 1050 Massachusetts Ave, Cambridge, MA 02138 USA ,grid.42505.360000 0001 2156 6853Department of Economics, University of Southern California, 635 Downey Way, Los Angeles, CA 90089 USA
| | - Carson C. Chow
- grid.94365.3d0000 0001 2297 5165Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National, Institutes of Health, Bethesda, MD 20892 USA
| | - Philipp D. Koellinger
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Takahashi K, Kitaoka Y, Matsunaga Y, Hatta H. Effect of post-exercise lactate administration on glycogen repletion and signaling activation in different types of mouse skeletal muscle. Curr Res Physiol 2020; 3:34-43. [PMID: 34746818 PMCID: PMC8562145 DOI: 10.1016/j.crphys.2020.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/10/2023] Open
Abstract
Lactate is not merely a metabolic intermediate that serves as an oxidizable and glyconeogenic substrate, but it is also a potential signaling molecule. The objectives of this study were to investigate whether lactate administration enhances post-exercise glycogen repletion in association with cellular signaling activation in different types of skeletal muscle. Eight-week-old male ICR mice performed treadmill running (20 m/min for 60 min) following overnight fasting (16 h). Immediately after the exercise, animals received an intraperitoneal injection of phosphate-buffered saline or sodium lactate (equivalent to 1 g/kg body weight), followed by oral ingestion of water or glucose (2 g/kg body weight). At 60 min of recovery, glucose ingestion enhanced glycogen content in the soleus, plantaris, and gastrocnemius muscles. In addition, lactate injection additively increased glycogen content in the plantaris and gastrocnemius muscles, but not in the soleus muscle. Nevertheless, lactate administration did not significantly alter protein levels related to glucose uptake and oxidation in the plantaris muscle, but enhanced phosphorylation of TBC1D1, a distal protein regulating GLUT4 translocation, was observed in the soleus muscle. Muscle FBP2 protein content was significantly higher in the plantaris and gastrocnemius muscles than in the soleus muscle, whereas MCT1 protein content was significantly higher in the soleus muscle than in the plantaris and gastrocnemius muscles. The current findings suggest that an elevated blood lactate concentration and post-exercise glucose ingestion additively enhance glycogen recovery in glycolytic phenotype muscles. This appears to be associated with glyconeogenic protein content, but not with enhanced glucose uptake, attenuated glucose oxidation, or lactate transport protein.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan
| | - Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Corresponding author. Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
10
|
Nakagawa T, Lanaspa MA, Millan IS, Fini M, Rivard CJ, Sanchez-Lozada LG, Andres-Hernando A, Tolan DR, Johnson RJ. Fructose contributes to the Warburg effect for cancer growth. Cancer Metab 2020; 8:16. [PMID: 32670573 PMCID: PMC7350662 DOI: 10.1186/s40170-020-00222-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity and metabolic syndrome are strongly associated with cancer, and these disorders may share a common mechanism. Recently, fructose has emerged as a driving force to develop obesity and metabolic syndrome. Thus, we assume that fructose may be the mechanism to explain why obesity and metabolic syndrome are linked with cancer. Clinical and experimental evidence showed that fructose intake was associated with cancer growth and that fructose transporters are upregulated in various malignant tumors. Interestingly, fructose metabolism can be driven under low oxygen conditions, accelerates glucose utilization, and exhibits distinct effects as compared to glucose, including production of uric acid and lactate as major byproducts. Fructose promotes the Warburg effect to preferentially downregulate mitochondrial respiration and increases aerobic glycolysis that may aid metastases that initially have low oxygen supply. In the process, uric acid may facilitate carcinogenesis by inhibiting the TCA cycle, stimulating cell proliferation by mitochondrial ROS, and blocking fatty acid oxidation. Lactate may also contribute to cancer growth by suppressing fat oxidation and inducing oncogene expression. The ability of fructose metabolism to directly stimulate the glycolytic pathway may have been protective for animals living with limited access to oxygen, but may be deleterious toward stimulating cancer growth and metastasis for humans in modern society. Blocking fructose metabolism may be a novel approach for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Takahiko Nakagawa
- Department of Nephrology, Rakuwakai Otowa Hospital, 2 Otowa-Chinji-cho, Yamashina-ku, Kyoto, Japan
- Department of Stem Cell Biology & Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Miguel A. Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO USA
| | - Inigo San Millan
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, USA
| | - Mehdi Fini
- University of Colorado Cancer Center, Aurora, CO USA
| | | | - Laura G. Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología Ignacio Chavez, 14080 Mexico City, CP Mexico
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO USA
| | - Dean R. Tolan
- Department of Biology, Boston University, Boston, MA USA
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO USA
| |
Collapse
|
11
|
Carbohydrate Intake in the Context of Exercise in People with Type 1 Diabetes. Nutrients 2019; 11:nu11123017. [PMID: 31835538 PMCID: PMC6950062 DOI: 10.3390/nu11123017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Although the benefits of regular exercise on cardiovascular risk factors are well established for people with type 1 diabetes (T1D), glycemic control remains a challenge during exercise. Carbohydrate consumption to fuel the exercise bout and/or for hypoglycemia prevention is an important cornerstone to maintain performance and avoid hypoglycemia. The main strategies pertinent to carbohydrate supplementation in the context of exercise cover three aspects: the amount of carbohydrates ingested (i.e., quantity in relation to demands to fuel exercise and avoid hypoglycemia), the timing of the intake (before, during and after the exercise, as well as circadian factors), and the quality of the carbohydrates (encompassing differing carbohydrate types, as well as the context within a meal and the associated macronutrients). The aim of this review is to comprehensively summarize the literature on carbohydrate intake in the context of exercise in people with T1D.
Collapse
|
12
|
Fuchs CJ, Gonzalez JT, van Loon LJC. Fructose co-ingestion to increase carbohydrate availability in athletes. J Physiol 2019; 597:3549-3560. [PMID: 31166604 PMCID: PMC6852172 DOI: 10.1113/jp277116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
Carbohydrate availability is important to maximize endurance performance during prolonged bouts of moderate- to high-intensity exercise as well as for acute post-exercise recovery. The primary form of carbohydrates that are typically ingested during and after exercise are glucose (polymers). However, intestinal glucose absorption can be limited by the capacity of the intestinal glucose transport system (SGLT1). Intestinal fructose uptake is not regulated by the same transport system, as it largely depends on GLUT5 as opposed to SGLT1 transporters. Combining the intake of glucose plus fructose can further increase total exogenous carbohydrate availability and, as such, allow higher exogenous carbohydrate oxidation rates. Ingesting a mixture of both glucose and fructose can improve endurance exercise performance compared to equivalent amounts of glucose (polymers) only. Fructose co-ingestion can also accelerate post-exercise (liver) glycogen repletion rates, which may be relevant when rapid (<24 h) recovery is required. Furthermore, fructose co-ingestion can lower gastrointestinal distress when relatively large amounts of carbohydrate (>1.2 g/kg/h) are ingested during post-exercise recovery. In conclusion, combined ingestion of fructose with glucose may be preferred over the ingestion of glucose (polymers) only to help trained athletes maximize endurance performance during prolonged moderate- to high-intensity exercise sessions and accelerate post-exercise (liver) glycogen repletion.
Collapse
Affiliation(s)
- Cas J. Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+ (MUMC+)MaastrichtThe Netherlands
| | | | - Luc J. C. van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+ (MUMC+)MaastrichtThe Netherlands
| |
Collapse
|
13
|
Tappy L, Rosset R. Health outcomes of a high fructose intake: the importance of physical activity. J Physiol 2019; 597:3561-3571. [PMID: 31116420 PMCID: PMC6851848 DOI: 10.1113/jp278246] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Fructose metabolism is generally held to occur essentially in cells of the small bowel, the liver, and the kidneys expressing fructolytic enzymes (fructokinase, aldolase B and a triokinase). In these cells, fructose uptake and fructolysis are unregulated processes, resulting in the generation of intracellular triose phosphates proportionate to fructose intake. Triose phosphates are then processed into lactate, glucose and fatty acids to serve as metabolic substrates in other cells of the body. With small oral loads, fructose is mainly metabolized in the small bowel, while with larger loads fructose reaches the portal circulation and is largely extracted by the liver. A small portion, however, escapes liver extraction and is metabolized either in the kidneys or in other tissues through yet unspecified pathways. In sedentary subjects, consumption of a fructose-rich diet for several days stimulates hepatic de novo lipogenesis, increases intrahepatic fat and blood triglyceride concentrations, and impairs insulin effects on hepatic glucose production. All these effects can be prevented when high fructose intake is associated with increased levels of physical activity. There is also evidence that, during exercise, fructose carbons are efficiently transferred to skeletal muscle as glucose and lactate to be used for energy production. Glucose and lactate formed from fructose can also contribute to the re-synthesis of muscle glycogen after exercise. We therefore propose that the deleterious health effects of fructose are tightly related to an imbalance between fructose energy intake on one hand, and whole-body energy output related to a low physical activity on the other hand.
Collapse
Affiliation(s)
- Luc Tappy
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Cardiometabolic Center, Broye Hospital, Estavayer-le-lac, Switzerland
| | - Robin Rosset
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Beydogan AB, Coskun ZM, Bolkent S. The protective effects of Δ 9 -tetrahydrocannabinol against inflammation and oxidative stress in rat liver with fructose-induced hyperinsulinemia. J Pharm Pharmacol 2018; 71:408-416. [PMID: 30427077 DOI: 10.1111/jphp.13042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES A large amount of fructose is metabolized in the liver and causes hepatic functional damage. Δ9 -tetrahydrocannabinol (THC) is known as a therapeutic agent for clinical and experimental applications. The study aims to investigate the effects of THC treatment on inflammation, lipid profiles and oxidative stress in rat liver with hyperinsulinemia. METHODS Sprague-Dawley rats were divided into groups: control, fructose (10% fructose in drinking water for 12 weeks), THC (1.5 mg/kg/day for the last 4 weeks, intraperitoneally) and fructose+THC groups. Biochemical parameters were measured spectrophotometrically. ELISA method was used for insulin measurement. Apoptosis and inflammation markers were detected by the streptavidin-biotin peroxidase method. KEY FINDINGS The consumptions of food and fluid are inversely proportional to fructose and non-fructose groups. Insulin levels were the highest in fructose group. The reduced glutathione-S-transferase level significantly increased in fructose + THC group compared with fructose group. Total cholesterol level in the fructose + THC group was higher than the fructose group. Caspase-3 and NF-κβ immunopositive cell numbers increased in fructose + THC rats compared with fructose group. The number of IL-6 immunopositive cell decreased in fructose + THC group compared with fructose group. CONCLUSIONS According to the result, long-term and low-dose THC administration may reduce hyperinsulinemia and inflammation in rats to some extent.
Collapse
Affiliation(s)
- Alisa Bahar Beydogan
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University, Istanbul, Turkey
| | - Zeynep Mine Coskun
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Bilim University, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
15
|
Tappy L. Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. ACTA ACUST UNITED AC 2018. [PMID: 29514881 DOI: 10.1242/jeb.164202] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Compared with other carbohydrates, fructose-containing caloric sweeteners (sucrose, high-fructose corn syrup, pure fructose and fructose-glucose mixtures) are characterized by: a sweet taste generally associated with a positive hedonic tone; specific intestinal fructose transporters, i.e. GLUT5; a two-step fructose metabolism, consisting of the conversion of fructose carbones into ubiquitous energy substrates in splanchnic organs where fructolytic enzymes are expressed, and secondary delivery of these substrates to extrasplanchnic tissues. Fructose is a dispensable nutrient, yet its energy can be stored very efficiently owing to a rapid induction of intestinal fructose transporters and of splanchnic fructolytic and lipogenic enzymes by dietary fructose-containing caloric sweeteners. In addition, compared with fat or other dietary carbohydrates, fructose may be favored as an energy store because it uses different intestinal absorption mechanisms and different inter-organ trafficking pathways. These specific features make fructose an advantageous energy substrate in wild animals, mainly when consumed before periods of scarcity or high energy turnover such as migrations. These properties of fructose storage are also advantageous to humans who are involved in strenuous sport activities. In subjects with low physical activity, however, these same features of fructose metabolism may have the harmful effect of favoring energy overconsumption. Furthermore, a continuous exposure to high fructose intake associated with a low energy turnover leads to a chronic overproduction of intrahepatic trioses-phosphate production, which is secondarily responsible for the development of hepatic insulin resistance, intrahepatic fat accumulation, and increased blood triglyceride concentrations. In the long term, these effects may contribute to the development of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Luc Tappy
- Physiology Department, University of Lausanne Faculty of Biology and Medicine, CH-1005 Lausanne, Switzerland
| |
Collapse
|
16
|
Endurance Training with or without Glucose-Fructose Ingestion: Effects on Lactate Metabolism Assessed in a Randomized Clinical Trial on Sedentary Men. Nutrients 2017; 9:nu9040411. [PMID: 28425966 PMCID: PMC5409750 DOI: 10.3390/nu9040411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022] Open
Abstract
Glucose-fructose ingestion increases glucose and lactate oxidation during exercise. We hypothesized that training with glucose-fructose would induce key adaptations in lactate metabolism. Two groups of eight sedentary males were endurance-trained for three weeks while ingesting either glucose-fructose (GF) or water (C). Effects of glucose-fructose on lactate appearance, oxidation, and clearance were measured at rest and during exercise, pre-training, and post-training. Pre-training, resting lactate appearance was 3.6 ± 0.5 vs. 3.6 ± 0.4 mg·kg−1·min−1 in GF and C, and was increased to 11.2 ± 1.4 vs. 8.8 ± 0.7 mg·kg−1·min−1 by exercise (Exercise: p < 0.01). Lactate oxidation represented 20.6 ± 1.0% and 17.5 ± 1.7% of lactate appearance at rest, and 86.3 ± 3.8% and 86.8 ± 6.6% during exercise (Exercise: p < 0.01) in GF and C, respectively. Training with GF increased resting lactate appearance and oxidation (Training × Intervention: both p < 0.05), but not during exercise (Training × Intervention: both p > 0.05). Training with GF and C had similar effects to increase lactate clearance during exercise (+15.5 ± 9.2 and +10.1 ± 5.9 mL·kg−1·min−1; Training: p < 0.01; Training × Intervention: p = 0.97). The findings of this study show that in sedentary participants, glucose-fructose ingestion leads to high systemic lactate appearance, most of which is disposed non-oxidatively at rest and is oxidized during exercise. Training with or without glucose-fructose increases lactate clearance, without altering lactate appearance and oxidation during exercise.
Collapse
|