1
|
Xie Y, Zong Z, Jiang Q, Ke X, Wu Z. Seeking Solutions for Inclusively Economic, Rapid, and Safe Molecular Detection of Respiratory Infectious Diseases: Comprehensive Review from Polymerase Chain Reaction Techniques to Amplification-Free Biosensing. MICROMACHINES 2025; 16:472. [PMID: 40283347 PMCID: PMC12029528 DOI: 10.3390/mi16040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Frequent outbreaks of respiratory infectious diseases, driven by diverse pathogens, have long posed significant threats to public health, economic productivity, and societal stability. Respiratory infectious diseases are highly contagious, characterized by short incubation periods, diverse symptoms, multiple transmission routes, susceptibility to mutations, and distinct seasonality, contributing to their propensity for outbreaks. The absence of effective antiviral treatments and the heightened vulnerability of individuals with weakened immune systems make them more susceptible to infection, with severe cases potentially leading to complications or death. This situation becomes particularly concerning during peak seasons, such as influenza outbreaks. Therefore, early detection, diagnosis, and treatment are critical, alongside the prevention of cross-infection, ensuring patient safety, and controlling healthcare costs. To address these challenges, this review aims to identify a comprehensive, rapid, safe, and cost-effective diagnostic approach for respiratory infectious diseases. This approach is framed within the existing hierarchical healthcare system, focusing on establishing diagnostic capabilities at hospitals, community, and home levels to effectively tackle the above issues. In addition to PCR and isothermal amplification, the review also explores emerging molecular diagnostic strategies that may better address the evolving needs of respiratory disease diagnostics. A key focus is the transition from amplification technologies to amplification-free biosensing approaches, with particular attention given to their potential for home-based testing. This shift seeks to overcome the limitations of conventional amplification methods, particularly in decentralized and home diagnostics, offering a promising solution to enhance diagnostic speed and safety during outbreaks. In the future, with the integration of AI technologies into molecular amplification technologies, biosensors, and various application levels, the inclusively economic, rapid, and safe respiratory disease diagnosis solutions will be further optimized, and their accessibility will become more widespread.
Collapse
Affiliation(s)
- Yaping Xie
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.X.); (Z.Z.); (Q.J.); (X.K.)
- Sansure Biotech Inc., Changsha 410205, China
| | - Zisheng Zong
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.X.); (Z.Z.); (Q.J.); (X.K.)
| | - Qin Jiang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.X.); (Z.Z.); (Q.J.); (X.K.)
| | - Xingxing Ke
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.X.); (Z.Z.); (Q.J.); (X.K.)
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Zhigang Wu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.X.); (Z.Z.); (Q.J.); (X.K.)
| |
Collapse
|
2
|
Wang Y, Wang C, Zhou Z, Si J, Li S, Zeng Y, Deng Y, Chen Z. Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection. BIOSENSORS 2023; 13:732. [PMID: 37504131 PMCID: PMC10377012 DOI: 10.3390/bios13070732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Pathogenic pathogens invade the human body through various pathways, causing damage to host cells, tissues, and their functions, ultimately leading to the development of diseases and posing a threat to human health. The rapid and accurate detection of pathogenic pathogens in humans is crucial and pressing. Nucleic acid detection offers advantages such as higher sensitivity, accuracy, and specificity compared to antibody and antigen detection methods. However, conventional nucleic acid testing is time-consuming, labor-intensive, and requires sophisticated equipment and specialized medical personnel. Therefore, this review focuses on advanced nucleic acid testing systems that aim to address the issues of testing time, portability, degree of automation, and cross-contamination. These systems include extraction-free rapid nucleic acid testing, fully automated extraction, amplification, and detection, as well as fully enclosed testing and commercial nucleic acid testing equipment. Additionally, the biochemical methods used for extraction, amplification, and detection in nucleic acid testing are briefly described. We hope that this review will inspire further research and the development of more suitable extraction-free reagents and fully automated testing devices for rapid, point-of-care diagnostics.
Collapse
Affiliation(s)
- Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Chengming Wang
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Zepeng Zhou
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jiajia Si
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yezhan Zeng
- School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
3
|
Hsieh K, Melendez JH, Gaydos CA, Wang TH. Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. LAB ON A CHIP 2022; 22:476-511. [PMID: 35048928 PMCID: PMC9035340 DOI: 10.1039/d1lc00665g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The incidence rates of sexually transmitted infections (STIs), including the four major curable STIs - chlamydia, gonorrhea, trichomoniasis and, syphilis - continue to increase globally, causing medical cost burden and morbidity especially in low and middle-income countries (LMIC). There have seen significant advances in diagnostic testing, but commercial antigen-based point-of-care tests (POCTs) are often insufficiently sensitive and specific, while near-point-of-care (POC) instruments that can perform sensitive and specific nucleic acid amplification tests (NAATs) are technically complex and expensive, especially for LMIC. Thus, there remains a critical need for NAAT-based STI POCTs that can improve diagnosis and curb the ongoing epidemic. Unfortunately, the development of such POCTs has been challenging due to the gap between researchers developing new technologies and healthcare providers using these technologies. This review aims to bridge this gap. We first present a short introduction of the four major STIs, followed by a discussion on the current landscape of commercial near-POC instruments for the detection of these STIs. We present relevant research toward addressing the gaps in developing NAAT-based STI POCT technologies and supplement this discussion with technologies for HIV and other infectious diseases, which may be adapted for STIs. Additionally, as case studies, we highlight the developmental trajectory of two different POCT technologies, including one approved by the United States Food and Drug Administration (FDA). Finally, we offer our perspectives on future development of NAAT-based STI POCT technologies.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Johan H Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Zhang Y, Zhang Y, Chen Z, Wang J, Lu X, Si J, Sun Y, Li T, Chen Y, Zhang S, Ge S, Zhang J, Xia N. A novel point-of-care test of respiratory syncytial viral RNA based on cellulose-based purification and convective PCR. Clin Chim Acta 2020; 511:154-159. [PMID: 33058836 DOI: 10.1016/j.cca.2020.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is a global public-health problem. Timely diagnostics are needed for high-risk patients. Several methods have been used for RSV detection but not suitable for on-site detection due to the requirement of specialized laboratories and expensive equipment. METHODS We developed a convenient, rapid and low-cost method of nucleic acids (NA) extraction based on cellulose paper, which could extract NA from nasopharyngeal swabs (NPSs) within 1 min. This extraction method was integrated with fluorescence convection polymerase chain reaction (CPCR), which easily affordable and easy-to-use NA detection of the RSV in 33 min. RESULTS The developed cellulose-based NA purification combine with CPCR (CP-CPCR) reliably detected as little as 0.01 TCID50/mL of RSV cultures. CP-CPCR performance was tested further using NPSs: it showed sensitivity of 100% and a specificity of 100% compared with traditional extraction and amplification methods. CONCLUSIONS Our evaluation confirmed high specificity, sensitivity and efficient of the CP-CPCR, which can be used widely for RSV testing in resource-limited settings.
Collapse
Affiliation(s)
- Ya Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Yinhui Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zhongfu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Jin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Xuedong Lu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junyu Si
- School of Life Sciences, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Yongpeng Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China.
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| |
Collapse
|
5
|
Nelson PP, Rath BA, Fragkou PC, Antalis E, Tsiodras S, Skevaki C. Current and Future Point-of-Care Tests for Emerging and New Respiratory Viruses and Future Perspectives. Front Cell Infect Microbiol 2020; 10:181. [PMID: 32411619 PMCID: PMC7202255 DOI: 10.3389/fcimb.2020.00181] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
The availability of pathogen-specific treatment options for respiratory tract infections (RTIs) increased the need for rapid diagnostic tests. Besides, retrospective studies, improved lab-based detection methods and the intensified search for new viruses since the beginning of the twenty-first century led to the discovery of several novel respiratory viruses. Among them are human bocavirus (HBoV), human coronaviruses (HCoV-HKU1, -NL63), human metapneumovirus (HMPV), rhinovirus type C (RV-C), and human polyomaviruses (KIPyV, WUPyV). Additionally, new viruses like SARS coronavirus (SARS-CoV), MERS coronavirus (MERS-CoV), novel strains of influenza virus A and B, and (most recently) SARS coronavirus 2 (SARS-CoV-2) have emerged. Although clinical presentation may be similar among different viruses, associated symptoms may range from a mild cold to a severe respiratory illness, and thus require a fast and reliable diagnosis. The increasing number of commercially available rapid point-of-care tests (POCTs) for respiratory viruses illustrates both the need for this kind of tests but also the problem, i.e., that the majority of such assays has significant limitations. In this review, we summarize recently published characteristics of POCTs and discuss their implications for the treatment of RTIs. The second key aspect of this work is a description of new and innovative diagnostic techniques, ranging from biosensors to novel portable and current lab-based nucleic acid amplification methods with the potential future use in point-of-care settings. While prototypes for some methods already exist, other ideas are still experimental, but all of them give an outlook of what can be expected as the next generation of POCTs.
Collapse
Affiliation(s)
- Philipp P Nelson
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL) Marburg, Marburg, Germany
| | - Barbara A Rath
- Vienna Vaccine Safety Initiative - Pediatric Infectious Diseases and Vaccines, Berlin, Germany.,UMR Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France.,ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| | - Paraskevi C Fragkou
- ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland.,4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Antalis
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland.,4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL) Marburg, Marburg, Germany.,ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| |
Collapse
|
6
|
Wu H, Qian C, Wang R, Wu C, Wang Z, Wang L, Zhang M, Ye Z, Zhang F, He JS, Wu J. Identification of pork in raw meat or cooked meatballs within 20 min using rapid PCR coupled with visual detection. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Miao G, Zhang L, Zhang J, Ge S, Xia N, Qian S, Yu D, Qiu X. Free convective PCR: From principle study to commercial applications-A critical review. Anal Chim Acta 2020; 1108:177-197. [PMID: 32222239 DOI: 10.1016/j.aca.2020.01.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Polymerase chain reaction (PCR) is an extremely important tool for molecular diagnosis, as it can specifically amplify nucleic acid templates for sensitive detection. As another division of PCR, free convective PCR was invented in 2001, which can be performed in a capillary tube pseudo-isothermally within a significantly short time. Convective PCR thermal cycling is implemented by inducing thermal convection inside the capillary tube, which stratifies the reaction into spatially separate and stable melting, annealing, and extension zones created by the temperature gradient. Convective PCR is a promising tool that can be used for nucleic acid diagnosis as a point-of-care test (POCT) due to the significantly simplified heating strategy, reduced cost, and shortened detection time without sacrificing sensitivity and accuracy. Here, we review the history of free convective PCR from its invention to development and its commercial applications.
Collapse
Affiliation(s)
- Guijun Miao
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Lulu Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jing Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361005, China.
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361005, China.
| | - Shizhi Qian
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA.
| | - Duli Yu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029, China.
| | - Xianbo Qiu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
8
|
Abstract
Convective PCR (CPCR) is an isothermal nucleic acid amplification technology; however, natural convection exhibits a chaotic and multiplex flow state, resulting in low amplification efficiency and specificity. We placed a polycarbonate strip (p-strip) inside reaction tubes to induce circumfluence by blocking the inner ring that originally allowed fluid to flow at suboptimal temperatures. Moreover, we constructed a dual-temperature instrument to provide appropriate denaturing and annealing zones for CPCR. Tubes containing p-strips exhibited significantly improved efficiency, sensitivity and specificity. For real-time detection, the variation coefficients of three replicates having the same concentrations were less than 2% in more than half of the cases, indicating improved CPCR amplification and potential as a commercial on-site nucleic acid diagnosis tool.
Collapse
|