1
|
Vaughan OR, Maksym K, Hillman S, Spencer RN, Hristova M, David AL, Lange S. Placental Protein Citrullination Signatures Are Modified in Early- and Late-Onset Fetal Growth Restriction. Int J Mol Sci 2025; 26:4247. [PMID: 40362485 PMCID: PMC12071715 DOI: 10.3390/ijms26094247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Fetal growth restriction (FGR) is an obstetric condition most frequently caused by placental dysfunction. It is a major cause of perinatal morbidity with limited treatment options, so identifying the underpinning mechanisms is important. Peptidylarginine deiminases (PADs) are calcium-activated enzymes that mediate post-translational citrullination (deimination) of proteins, through conversion of arginine to citrulline. Protein citrullination leads to irreversible changes in protein structure and function and is implicated in many pathobiological processes. Whether placental protein citrullination occurs in FGR is poorly understood. We assessed protein citrullination and PAD isozyme abundance (PAD1, 2, 3, 4 and 6) in human placental samples from pregnancies complicated by early- and late-onset FGR, compared to appropriate-for-gestational-age (AGA) controls. Proteomic mass spectrometry demonstrated that the placental citrullinome profile changed in both early- and late-onset FGR, with 112 and 345 uniquely citrullinated proteins identified in early- and late-onset samples, respectively. Forty-four proteins were citrullinated only in control AGA placentas. The proteins that were uniquely citrullinated in FGR placentas were enriched for gene ontology (GO) terms related to neurological, developmental, immune and metabolic pathways. A greater number of GO and human phenotype pathways were functionally enriched for citrullinated proteins in late- compared with early-onset FGR. Correspondingly, late-onset but not early-onset FGR was associated with significantly increased placental abundance of PAD2 and citrullinated histone H3, determined by Western blotting. PAD3 was downregulated in early-onset FGR while abundance of PAD 1, 4 and 6 was less altered in FGR. Our findings show that placental protein citrullination is altered in FGR placentas, potentially contributing to the pathobiology of placental dysfunction.
Collapse
Affiliation(s)
- Owen R. Vaughan
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (O.R.V.); (S.H.); (R.N.S.); (A.L.D.)
| | - Kasia Maksym
- Women’s Health Division, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK;
| | - Sara Hillman
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (O.R.V.); (S.H.); (R.N.S.); (A.L.D.)
| | - Rebecca N. Spencer
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (O.R.V.); (S.H.); (R.N.S.); (A.L.D.)
- Department of Obstetrics and Gynaecology, University of Leeds, Leeds LS2 9JT, UK
| | - Mariya Hristova
- Department of Neonatology, EGA Institute for Women’s Health, University College London, London WC1E 6BT, UK;
| | - Anna L. David
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (O.R.V.); (S.H.); (R.N.S.); (A.L.D.)
| | - Sigrun Lange
- Department of Neonatology, EGA Institute for Women’s Health, University College London, London WC1E 6BT, UK;
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
2
|
Wu W, Zhang B, Zhao J, Hu W, Li Y, Feng Y, Zhang Y, Wang S. Relationship between apoptosis gene DNA methylation and fetal growth and development. Gene 2025; 941:149224. [PMID: 39788353 DOI: 10.1016/j.gene.2025.149224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
OBJECTIVE To investigate the relationship between DNA methylation of cord blood apoptosis genes and low birth weight (LBW). METHODS A case-control study was conducted on 50 pairs of LBW neonates and normal birth weight. Genome-wide methylation assay was performed using Illumina Human Methylation EPIC microarray to analyze the methylation sites of apoptosis-related genes BCL-2, CASP3, and CASP8. The mRNA level of apoptosis gene was verified by RT-qPCR. RESULTS Three CpG sites of BCL-2 and three CpG sites of CASP3 were different between the LBW and NBW groups. Logistic regression showed that higher methylation of BCL-2 CpG sites cg12459502 (OR = 1.208, 95% CI:1.029, 1.418) and cg25059899 (OR = 1.193, 95% CI:1.019, 1.395) increased LBW risk, while cg22152050 was protective (OR = 0.589, 95% CI:0.424, 0.820). Stratified analysis confirmed this. Maternal pre-pregnancy BMI positively correlated with BCL-2 methylation (cg12459502, cg25059899) (b = 0.431, 95% CI: 0.027, 0.835; b = 0.494, 95% CI: 0.141, 0.848), while excessive pregnancy weight gain negatively correlated with cg12459502 methylation (b = -0.269, 95% CI: -0.525, -0.013). The results showed that the mRNA level of BCL-2 in NBW group was significantly higher than that in LBW group (P-value < 0.0001). CONCLUSION The DNA methylation levels of BCL-2 and CASP3 genes are associated with fetal growth and development. Additionally, maternal pre-pregnancy BMI and weight gain during pregnancy were found to correlate with BCL-2 methylation, indicating potential epigenetic mechanisms influencing fetal growth.
Collapse
Affiliation(s)
- Weiwei Wu
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Bole Zhang
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Zhao
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weixuan Hu
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulin Li
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongliang Feng
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Suping Wang
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Innocenti F, Scaramuzzo RT, Lunardi F, Tosto S, Pascarella F, Calvani M, Pini A, Filippi L. Placental and Fetal Metabolic Reprogramming in Pregnancies with Intrauterine Growth Restriction. Reprod Sci 2025; 32:502-513. [PMID: 39695063 DOI: 10.1007/s43032-024-01764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
The high-altitude hypoxia model demonstrates that insufficiently oxygenated placentas activate compensatory mechanisms to ensure fetal survival, hinging on the transcription factor hypoxia-inducible factor-1. The aim of the present study is to investigate whether and when similar mechanisms are also activated during intrauterine growth restriction (IUGR). A retrospective observational study evaluated a series of umbilical cord blood samples, which provide a realistic representation of the fetal intrauterine status, collected from a cohort of preterm and term neonates, both affected and not affected by IUGR. Results demonstrate that preterm IUGR fetuses receive a lower supply of oxygen and glucose from the placenta, along with a greater provision of lactate and carbon dioxide compared to non-IUGR neonates. Simultaneously, preterm IUGR fetuses increase oxygen extraction and reduce lactate production. These differences between IUGR and non-IUGR placentas and fetuses disappear as the term of pregnancy approaches. In conclusion, this study suggests that hypoperfused placentas in preterm pregnancies with IUGR activate a metabolic reprogramming aimed at favoring glycolytic metabolism to ensure fetal oxygenation, even though the availability of glucose for the fetus is reduced. Consequently, preterm IUGR fetuses activate gluconeogenetic metabolic reprogramming, despite it being energetically expensive. These metabolic adaptations disappear in the last weeks of pregnancy, likely due to physiological placental aging that increases the fetoplacental availability of oxygen. Placental oxygenation appears to be the main driver of metabolic reprogramming; however, further studies are necessary to identify the underlying biological mechanisms modulated by oxygen.
Collapse
Affiliation(s)
- Francesca Innocenti
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67 I-56126, Pisa, Italy
| | | | - Federica Lunardi
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Tosto
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67 I-56126, Pisa, Italy
| | - Francesca Pascarella
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67 I-56126, Pisa, Italy
| | - Maura Calvani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luca Filippi
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67 I-56126, Pisa, Italy.
| |
Collapse
|
4
|
Doan TNA, Cowley JM, Phillips AL, Briffa JF, Leemaqz SY, Burton RA, Romano T, Wlodek ME, Bianco-Miotto T. Imprinted gene alterations in the kidneys of growth restricted offspring may be mediated by a long non-coding RNA. Epigenetics 2024; 19:2294516. [PMID: 38126131 PMCID: PMC10761017 DOI: 10.1080/15592294.2023.2294516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Altered epigenetic mechanisms have been previously reported in growth restricted offspring whose mothers experienced environmental insults during pregnancy in both human and rodent studies. We previously reported changes in the expression of the DNA methyltransferase Dnmt3a and the imprinted genes Cdkn1c (Cyclin-dependent kinase inhibitor 1C) and Kcnq1 (Potassium voltage-gated channel subfamily Q member 1) in the kidney tissue of growth restricted rats whose mothers had uteroplacental insufficiency induced on day 18 of gestation, at both embryonic day 20 (E20) and postnatal day 1 (PN1). To determine the mechanisms responsible for changes in the expression of these imprinted genes, we investigated DNA methylation of KvDMR1, an imprinting control region (ICR) that includes the promoter of the antisense long non-coding RNA Kcnq1ot1 (Kcnq1 opposite strand/antisense transcript 1). Kcnq1ot1 expression decreased by 51% in growth restricted offspring compared to sham at PN1. Interestingly, there was a negative correlation between Kcnq1ot1 and Kcnq1 in the E20 growth restricted group (Spearman's ρ = 0.014). No correlation was observed between Kcnq1ot1 and Cdkn1c expression in either group at any time point. Additionally, there was a 11.25% decrease in the methylation level at one CpG site within KvDMR1 ICR. This study, together with others in the literature, supports that long non-coding RNAs may mediate changes seen in tissues of growth restricted offspring.
Collapse
Affiliation(s)
- Thu N. A. Doan
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - James M. Cowley
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Aaron L. Phillips
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Jessica F. Briffa
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shalem Y. Leemaqz
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Mary E. Wlodek
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Haimon MLJ, Estrada-Cortés E, Amaral TF, Martin H, Jeensuk S, Block J, Heredia D, Venturini M, Rojas CS, Gonella-Diaza AM, DiLorenzo N, Scheffler TL, Dufour P, Sirard MA, de Melo GD, Pohler KG, Hansen PJ. Provision of choline chloride to the bovine preimplantation embryo alters postnatal body size and DNA methylation†. Biol Reprod 2024; 111:567-579. [PMID: 38857381 DOI: 10.1093/biolre/ioae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/18/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024] Open
Abstract
Choline is a vital micronutrient. In this study, we aimed to confirm, and expand on previous findings, how choline impacts embryos from the first 7 days of development to affect postnatal phenotype. Bos indicus embryos were cultured in a choline-free medium (termed vehicle) or medium supplemented with 1.8 mM choline. Blastocyst-stage embryos were transferred into crossbred recipients. Once born, calves were evaluated at birth, 94 days, 178 days, and at weaning (average age = 239 days). Following weaning, all calves were enrolled into a feed efficiency trial before being separated by sex, with males being slaughtered at ~580 days of age. Results confirm that exposure of 1.8 mM choline chloride during the first 7 days of development alters postnatal characteristics of the resultant calves. Calves of both sexes from choline-treated embryos were consistently heavier through weaning and males had heavier testes at 3 months of age. There were sex-dependent alterations in DNA methylation in whole blood caused by choline treatment. After weaning, feed efficiency was affected by an interaction with sex, with choline calves being more efficient for females and less efficient for males. Calves from choline-treated embryos were heavier, or tended to be heavier, than calves from vehicle embryos at all observations after weaning. Carcass weight was heavier for choline calves and the cross-sectional area of the longissimus thoracis muscle was increased by choline.
Collapse
Affiliation(s)
| | - Eliab Estrada-Cortés
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, México
| | - Thiago F Amaral
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Hélène Martin
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Pavillon INAF, Université Laval, Québec, QC, Canada
| | - Surawich Jeensuk
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani, Thailand
| | - Jeremy Block
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Daniella Heredia
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| | - M Venturini
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| | - Camila Santos Rojas
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| | - Angela M Gonella-Diaza
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| | - Nicolas DiLorenzo
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Pascal Dufour
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Pavillon INAF, Université Laval, Québec, QC, Canada
| | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Pavillon INAF, Université Laval, Québec, QC, Canada
| | | | - Ky G Pohler
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Guo L, Wu T, Lu S, Wei Y, Cui L. Evaluation of fetal cerebral microvascular status and its relationship with fetal growth and development using microvascular imaging technique. Eur J Obstet Gynecol Reprod Biol 2024; 300:246-252. [PMID: 39043081 DOI: 10.1016/j.ejogrb.2024.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
The study conducted retrospective analysis design, aiming to explore the use of Microvascular Imaging Technique (MVFI) to assess fetal cerebral microcirculation and analyze the relationship between Microvascular Index (MVI) and fetal growth and development. 100 pregnant women who met the criteria for fetal growth restriction (FGR) provided in the Expert Consensus on Fetal Growth Restriction (2019 Edition) and underwent routine prenatal examinations at the Obstetrics and Gynecology Department of Peking University Third Hospital from January 2021 to June 2023 were selected as the study subjects. A normal fetus with a fetal weight less than 10 % can be classified as FGR, Pregnant women with fetal umbilical artery (UA) systolic and diastolic (S/D) values ≥3 were included in the observation group, while 200 pregnant women with normal fetuses were selected as the control group during the same period. The fetuses' change in both groups were measured using color Doppler ultrasound, including bi-parietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL). The cerebral microcirculation of the fetuses in both groups was evaluated using MVFI, and the MVI values were compared. The clinical characteristics of FGR fetuses with umbilical artery S/D ratio ≥ 3 were summarized, and the correlation between fetal cerebral microvascular status and fetal growth and development was analyzed using Pearson correlation analysis. The outcomes told that the BPD, HC, AC, and FL values of the fetuses in the control group were lower the other's value (P < 0.05), and the MVI and peak systolic velocity of the middle cerebral artery (MCA-PSV) values were also lower in the control group (P < 0.05). Pearson correlation analysis revealed a positive correlation between fetal growth and development and MVI and MCA-PSV values in FGR fetuses. In conclusion, MVFI can monitor and quantitatively analyze fetal intracranial microcirculation, visualize slow blood flow in microvascular structures, and this study provides preliminary evidence of the close relationship between fetal cerebral microcirculation and intrauterine growth and development.
Collapse
Affiliation(s)
- Lijuan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Tianchen Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Shan Lu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
7
|
Grismaldo R A, Luévano-Martínez LA, Reyes M, García-Márquez G, García-Rivas G, Sobrevia L. Placental mitochondrial impairment and its association with maternal metabolic dysfunction. J Physiol 2024. [PMID: 39116002 DOI: 10.1113/jp285935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The placenta plays an essential role in pregnancy, leading to proper fetal development and growth. As an organ with multiple physiological functions for both mother and fetus, it is a highly energetic and metabolically demanding tissue. Mitochondrial physiology plays a crucial role in the metabolism of this organ and thus any alteration leading to mitochondrial dysfunction has a severe outcome in the development of the fetus. Pregnancy-related pathological states with a mitochondrial dysfunction outcome include preeclampsia and gestational diabetes mellitus. In this review, we address the role of mitochondrial morphology, metabolism and physiology of the placenta during pregnancy, highlighting the roles of the cytotrophoblast and syncytiotrophoblast. We also describe the relationship between preeclampsia, gestational diabetes, gestational diabesity and pre-pregnancy maternal obesity with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Adriana Grismaldo R
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Luévano-Martínez
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Monserrat Reyes
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Grecia García-Márquez
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Luis Sobrevia
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
8
|
Franco-De León K, Camarena EE, Pereira-Suárez AL, Barrios-Prieto E, Soto-Venegas A, Hernández-Nazara ZH, Luna Rojas YG, Galván-Ramírez MDLL. Interleukins IL33/ST2 and IL1-β in Intrauterine Growth Restriction and Seropositivity of Anti- Toxoplasma gondii Antibodies. Microorganisms 2024; 12:1420. [PMID: 39065188 PMCID: PMC11278629 DOI: 10.3390/microorganisms12071420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is the causal agent of toxoplasmosis. It may produce severe damage in immunocompromised individuals, as well as congenital infection and intrauterine growth restriction (IUGR). Previous reports have associated interleukin IL-33 with miscarriage, fetal damage, and premature delivery due to infections with various microorganisms. However, IL-33 has not been associated with congenital toxoplasmosis. The sST2 receptor has been reported in patients who have had recurrent miscarriages. On the other hand, IL-1β was not found in acute Toxoplasma infection. Our aim was to analyze the associations between the serum levels of IL-33 and IL-1β in IUGR and toxoplasmosis during pregnancy. Eighty-four serum samples from pregnant women who had undergone 26 weeks of gestation were grouped as follows: with anti-Toxoplasma antibodies, without anti-Toxoplasma antibodies, IUGR, and the control group. IgG and IgM anti-T. gondii antibodies, as well as IL-33, ST2, and IL-1β, were determined using an ELISA assay. Statistical analyses were performed using the Pearson and Chi-square correlation coefficients, as well as the risk factors and Odds Ratios (ORs), with a confidence interval of 95% (CI 95). The results showed that 15/84 (17.8%) of cases were positive for IgG anti-Toxoplasma antibodies and 2/84 (2.38%) of cases were positive for IgM. A statistically significant difference was found between IUGR and IL-33 (p < 0.001), as well as between ST2 and IUGR (p < 0.001). In conclusion, IUGR was significantly associated with IL-33 and ST2 positivity based on the overall IUGR grade. No significant association was found between IUGR and the presence of anti-Toxoplasma antibodies. There was no association between IL-1β and IUGR. More research is needed to strengthen the utility of IL-33 and ST2 as biomarkers of IUGR.
Collapse
Affiliation(s)
- Karen Franco-De León
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Eva Elizabeth Camarena
- Departamento de Ginecología y Obstetricia, Hospital Civil Juan I. Menchaca, Guadalajara 44340, Jalisco, Mexico
| | - Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ernesto Barrios-Prieto
- Unidad de Medicina Materno Fetal, Hospital Civil Juan I. Menchaca, Guadalajara 44340, Jalisco, Mexico
| | - Andrea Soto-Venegas
- Unidad de Medicina Materno Fetal, Hospital Civil Juan I. Menchaca, Guadalajara 44340, Jalisco, Mexico
| | - Zamira Helena Hernández-Nazara
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | | | - María de la Luz Galván-Ramírez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
9
|
El-Salahi S, Knowles Bevis R, Hogg L. The relationship between traumatic childbirth and first-time mothers' social identity and wellbeing: a cross-sectional observational study. BMC Pregnancy Childbirth 2024; 24:437. [PMID: 38907211 PMCID: PMC11193172 DOI: 10.1186/s12884-024-06288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/22/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Experiencing childbirth as traumatic is common and can have long-lasting negative consequences for women's mental health. However, fostering a sense of social identity has been shown to protect psychological wellbeing and mental health during life transitions, such as entering parenthood. This study therefore investigated the relationship between traumatic childbirth and first-time mothers' social identity and their psychological wellbeing, and more specifically whether strength of identity as a first-time mother protected psychological wellbeing following traumatic childbirth. METHOD Women over the age of 18 who were living in the UK and had given birth to their first child in the past nine months were recruited to the study from clinical and community settings. They completed digital self-report questionnaires about their birth experience, social identity, mental health, and psychological wellbeing. Women who perceived themselves to have had a traumatic birth (the trauma group; N = 84) were compared to women who did not perceive themselves to have had a traumatic birth (the control group, N = 39). T-tests and chi square tests assessed preliminary group differences before multivariate analyses of covariance controlled for covariates. Post-hoc tests identified the direction of differences. Multiple regression and moderation analyses analysed interaction effects. RESULTS The trauma group had significantly lower psychological wellbeing (mean = 41.5, 95% CI [39.4-43.7], p = .008, partial η2 = 0.059), compared to the control group (mean = 48.4, 95% CI [45.3-51.5]), but the two groups did not differ in the strength of their first-time mother identity, which was high across both groups. Strength of identity did not moderate the relationship between traumatic childbirth and psychological wellbeing. Giving birth by caesarean section independently reduced the strength of the first-time mother identity (p = .017, partial η2 = 0.049). All analyses controlled for emotional and practical support, perceptions of healthcare staff, and mode of birth. CONCLUSIONS Having a traumatic birth was associated with lower psychological wellbeing, and the strength of first-time mother identity does not appear to moderate this relationship. Factors such as mode of birth may be more important. Further research, including longitudinal designs, is needed to understand the relationship between these constructs and identify more effective ways of protecting first-time mothers' mental health.
Collapse
Affiliation(s)
- Shama El-Salahi
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, OX3 7JX, Oxford, UK
| | - Rebecca Knowles Bevis
- Oxford Institute of Clinical Psychology Training and Research, Isis Education Centre, University of Oxford, Warneford Hospital, Warneford Lane, OX3 7JX, Oxford, UK
| | - Lorna Hogg
- Oxford Institute of Clinical Psychology Training and Research, Isis Education Centre, University of Oxford, Warneford Hospital, Warneford Lane, OX3 7JX, Oxford, UK.
| |
Collapse
|
10
|
Uittenbogaard M, Gropman AL, Whitehead MT, Brantner CA, Gropman E, Chiaramello A. Dysfunctional Postnatal Mitochondrial Energy Metabolism in a Patient with Neurodevelopmental Defects Caused by Intrauterine Growth Restriction Due to Idiopathic Placental Insufficiency. Int J Mol Sci 2024; 25:1386. [PMID: 38338665 PMCID: PMC10855472 DOI: 10.3390/ijms25031386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
We report the case of a four-year-old male patient with a complex medical history born prematurely as the result of intrauterine growth restriction due to placental insufficiency. His clinical manifestations included severe neurodevelopmental deficits, global developmental delay, Pierre-Robin sequence, and intractable epilepsy with both generalized and focal features. The proband's low levels of citrulline and lactic acidosis provoked by administration of Depakoke were evocative of a mitochondrial etiology. The proband's genotype-phenotype correlation remained undefined in the absence of nuclear and mitochondrial pathogenic variants detected by deep sequencing of both genomes. However, live-cell mitochondrial metabolic investigations provided evidence of a deficient oxidative-phosphorylation pathway responsible for adenosine triphosphate (ATP) synthesis, leading to chronic energy crisis in the proband. In addition, our metabolic analysis revealed metabolic plasticity in favor of glycolysis for ATP synthesis. Our mitochondrial morphometric analysis by transmission electron microscopy confirmed the suspected mitochondrial etiology, as the proband's mitochondria exhibited an immature morphology with poorly developed and rare cristae. Thus, our results support the concept that suboptimal levels of intrauterine oxygen and nutrients alter fetal mitochondrial metabolic reprogramming toward oxidative phosphorylation (OXPHOS) leading to a deficient postnatal mitochondrial energy metabolism. In conclusion, our collective studies shed light on the long-term postnatal mitochondrial pathophysiology caused by intrauterine growth restriction due to idiopathic placental insufficiency and its negative impact on the energy-demanding development of the fetal and postnatal brain.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W., Washington, DC 20037, USA; (M.U.); (E.G.)
| | - Andrea L. Gropman
- Children’s National Medical Center, Division of Neurogenetics and Neurodevelopmental Pediatrics, Washington, DC 20010, USA;
| | - Matthew T. Whitehead
- Division on Neuroradiology, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Christine A. Brantner
- Electron Microscopy Core Imaging Facility, School of Dentistry and School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA;
| | - Eliana Gropman
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W., Washington, DC 20037, USA; (M.U.); (E.G.)
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W., Washington, DC 20037, USA; (M.U.); (E.G.)
| |
Collapse
|
11
|
Shacfe G, Turko R, Syed HH, Masoud I, Tahmaz Y, Samhan LM, Alkattan K, Shafqat A, Yaqinuddin A. A DNA Methylation Perspective on Infertility. Genes (Basel) 2023; 14:2132. [PMID: 38136954 PMCID: PMC10743303 DOI: 10.3390/genes14122132] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Infertility affects a significant number of couples worldwide and its incidence is increasing. While assisted reproductive technologies (ART) have revolutionized the treatment landscape of infertility, a significant number of couples present with an idiopathic cause for their infertility, hindering effective management. Profiling the genome and transcriptome of infertile men and women has revealed abnormal gene expression. Epigenetic modifications, which comprise dynamic processes that can transduce environmental signals into gene expression changes, may explain these findings. Indeed, aberrant DNA methylation has been widely characterized as a cause of abnormal sperm and oocyte gene expression with potentially deleterious consequences on fertilization and pregnancy outcomes. This review aims to provide a concise overview of male and female infertility through the lens of DNA methylation alterations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (G.S.); (R.T.); (H.H.S.); (I.M.); (Y.T.); (L.M.S.); (K.A.); (A.Y.)
| | | |
Collapse
|
12
|
Alsharairi NA, Li L. Gut Microbiota, Inflammation, and Probiotic Supplementation in Fetal Growth Restriction-A Comprehensive Review of Human and Animal Studies. Life (Basel) 2023; 13:2239. [PMID: 38137841 PMCID: PMC10745050 DOI: 10.3390/life13122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Fetal growth restriction (FGR) is a pathological state that represents a fetus's inability to achieve adequate growth during pregnancy. Several maternal, placental, and fetal factors are likely associated with FGR etiology. FGR is linked to severe fetal and neonatal complications, as well as adverse health consequences in adulthood. Numerous randomized controlled trials (RCTs) have demonstrated improved growth in FGR fetuses with promising treatment strategies such as maternal micronutrient, amino acid, and nitric oxide supplementation. Elevated inflammation in pregnant women diagnosed with FGR has been associated with an imbalance between pro- and anti-inflammatory cytokines. Gut microbiota dysbiosis may result in increased FGR-related inflammation. Probiotic treatment may relieve FGR-induced inflammation and improve fetal growth. The aim of this review is to provide an overview of the gut microbiota and inflammatory profiles associated with FGR and explore the potential of probiotics in treating FGR.
Collapse
Affiliation(s)
- Naser A. Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| | - Li Li
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia;
| |
Collapse
|
13
|
Genowska A, Strukcinskiene B, Bochenko-Łuczyńska J, Motkowski R, Jamiołkowski J, Abramowicz P, Konstantynowicz J. Reference Values for Birth Weight in Relation to Gestational Age in Poland and Comparison with the Global Percentile Standards. J Clin Med 2023; 12:5736. [PMID: 37685803 PMCID: PMC10488537 DOI: 10.3390/jcm12175736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
INTRODUCTION Percentiles of birth weight by gestational age (GA) are an essential tool for clinical assessment and initiating interventions to reduce health risks. Unfortunately, Poland lacks a reference chart for assessing newborn growth based on the national population. This study aimed to establish a national reference range for birth weight percentiles among newborns from singleton deliveries in Poland. Additionally, we sought to compare these percentile charts with the currently used international standards, INTERGROWTH-21 and WHO. MATERIALS AND METHODS All singleton live births (n = 3,745,239) reported in Poland between 2010 and 2019 were analyzed. Using the Lambda Mu Sigma (LMS) method, the Generalized Additive Models for Location Scale, and Shape (GAMLSS) package, smoothed percentile charts (3-97) covering GA from 23 to 42 weeks were constructed. RESULTS The mean birth weight of boys was 3453 ± 540 g, and this was higher compared with that of girls (3317 ± 509 g). At each gestational age, boys exhibited higher birth weights than girls. The weight range between the 10th and 90th percentiles was 1061 g for boys and 1016 g for girls. Notably, the birth weight of Polish newborns was higher compared to previously published international growth standards. CONCLUSION The reference values for birth weight percentiles established in this study for Polish newborns differ from the global standards and are therefore useful for evaluating the growth of newborns within the national population. These findings hold clinical importance in identifying neonates requiring postbirth monitoring.
Collapse
Affiliation(s)
- Agnieszka Genowska
- Department of Public Health, Medical University of Bialystok, 15-295 Bialystok, Poland
| | | | | | - Radosław Motkowski
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, University Children′s Hospital, 15-274 Bialystok, Poland; (R.M.); (P.A.); (J.K.)
| | - Jacek Jamiołkowski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Paweł Abramowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, University Children′s Hospital, 15-274 Bialystok, Poland; (R.M.); (P.A.); (J.K.)
| | - Jerzy Konstantynowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, University Children′s Hospital, 15-274 Bialystok, Poland; (R.M.); (P.A.); (J.K.)
| |
Collapse
|
14
|
Lin M, Chen Y, Xia S, He Z, Yu X, Huang L, Lin S, Liang B, Huang Z, Mei S, Liu D, Zheng L, Luo Y. Integrative profiling of extrachromosomal circular DNA in placenta and maternal plasma provides insights into the biology of fetal growth restriction and reveals potential biomarkers. Front Genet 2023; 14:1128082. [PMID: 37476414 PMCID: PMC10354665 DOI: 10.3389/fgene.2023.1128082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/24/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction: Fetal growth restriction (FGR) is a placenta-mediated pregnancy complication that predisposes fetuses to perinatal complications. Maternal plasma cell-free DNA harbors DNA originating from placental trophoblasts, which is promising for the prenatal diagnosis and prediction of pregnancy complications. Extrachromosomal circular DNA (eccDNA) is emerging as an ideal biomarker and target for several diseases. Methods: We utilized eccDNA sequencing and bioinformatic pipeline to investigate the characteristics and associations of eccDNA in placenta and maternal plasma, the role of placental eccDNA in the pathogenesis of FGR, and potential plasma eccDNA biomarkers of FGR. Results: Using our bioinformatics pipelines, we identified multi-chromosomal-fragment and single-fragment eccDNA in placenta, but almost exclusively single-fragment eccDNA in maternal plasma. Relative to that in plasma, eccDNA in placenta was larger and substantially more abundant in exons, untranslated regions, promoters, repetitive elements [short interspersed nuclear elements (SINEs)/Alu, SINEs/mammalian-wide interspersed repeats, long terminal repeats/endogenous retrovirus-like elements, and single recognition particle RNA], and transcription factor binding motifs. Placental multi-chromosomal-fragment eccDNA was enriched in confident enhancer regions predicted to pertain to genes in apoptosis, energy, cell growth, and autophagy pathways. Placental eccDNA-associated genes whose abundance differed between the FGR and control groups were associated with immunity-related gene ontology (GO) terms. The combined analysis of plasma and placental eccDNA-associated genes in the FGR and control groups led to the identification of potential biomarkers that were assigned to the GO terms of the epigenetic regulation of gene expression and nutrient-related processes, respectively. Conclusion: Together, our results highlight links between placenta functions and multi-chromosomal-fragment and single-fragment eccDNA. The integrative analysis of placental and plasma eccDNA confirmed the potential of these molecules as disease-specific biomarkers of FGR.
Collapse
Affiliation(s)
- Minhuan Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiqing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuting Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiming He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuegao Yu
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linhuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Binrun Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziliang Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Mei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong Liu
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanmin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Vasconcelos S, Caniçais C, Chuva de Sousa Lopes SM, Marques CJ, Dória S. The role of DNA hydroxymethylation and TET enzymes in placental development and pregnancy outcome. Clin Epigenetics 2023; 15:66. [PMID: 37095555 PMCID: PMC10127343 DOI: 10.1186/s13148-023-01483-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
The placenta is a temporary organ that is essential for supporting mammalian embryo and fetal development. Understanding the molecular mechanisms underlying trophoblast differentiation and placental function may contribute to improving the diagnosis and treatment of obstetric complications. Epigenetics plays a significant role in the regulation of gene expression, particularly at imprinted genes, which are fundamental in the control of placental development. The Ten-Eleven-Translocation enzymes are part of the epigenetic machinery, converting 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). DNA hydroxymethylation is thought to act as an intermediate in the DNA demethylation mechanism and potentially be a stable and functionally relevant epigenetic mark on its own. The role of DNA hydroxymethylation during differentiation and development of the placenta is not fully understood but increasing knowledge in this field will help to evaluate its potential role in pregnancy complications. This review focuses on DNA hydroxymethylation and its epigenetic regulators in human and mouse placental development and function. Additionally, we address 5hmC in the context of genomic imprinting mechanism and in pregnancy complications, such as intrauterine growth restriction, preeclampsia and pregnancy loss. The cumulative findings show that DNA hydroxymethylation might be important for the control of gene expression in the placenta and suggest a dynamic role in the differentiation of trophoblast cell types during gestation.
Collapse
Affiliation(s)
- Sara Vasconcelos
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Carla Caniçais
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | | | - C Joana Marques
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| | - Sofia Dória
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| |
Collapse
|
16
|
Mozas-Moreno J, Sánchez-Fernández M, González-Mesa E, Olmedo-Requena R, Amezcua-Prieto C, Jiménez-Moleón JJ. Perinatal and Maternal Outcomes According to the Accurate Term Antepartum Ultrasound Estimation of Extreme Fetal Weights. J Clin Med 2023; 12:jcm12082995. [PMID: 37109331 PMCID: PMC10146552 DOI: 10.3390/jcm12082995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: The accuracy of ultrasound estimation of fetal weight (EFW) at term may be useful in addressing obstetric complications since birth weight (BW) is a parameter that represents an important prognostic factor for perinatal and maternal morbidity. (2) Methods: In a retrospective cohort study of 2156 women with a singleton pregnancy, it is verified whether or not perinatal and maternal morbidity differs between extreme BWs estimated at term by ultrasound within the seven days prior to birth with Accurate EFW (difference < 10% between EFW and BW) and those with Non-Accurate EFW (difference ≥ 10% between EFW and BW). (3) Results: Significantly worse perinatal outcomes (according to different variables such as higher rate of arterial pH at birth < 7.20, higher rate of 1-min Apgar < 7, higher rate of 5-min Apgar < 7, higher grade of neonatal resuscitation and need for admission to the neonatal care unit) were found for extreme BW estimated by antepartum ultrasounds with Non-Accurate EFW compared with those with Accurate EFW. This was the case when extreme BWs were compared according to percentile distribution by sex and gestational age following the national reference growth charts (small for gestational age and large for gestational age), and when they were compared according to weight range (low birth weight and high birth weight). (4) Conclusions: Clinicians should make a greater effort when performing EFW by ultrasound at term in cases of suspected extreme fetal weights, and need to take an increasingly prudent approach to its management.
Collapse
Affiliation(s)
- Juan Mozas-Moreno
- Department of Obstetrics and Gynecology, University of Granada, 18016 Granada, Spain
- Obstetrics and Gynecology Service, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain
- Biohealth Research Institute (Instituto de Investigación Biosanitaria Ibs.GRANADA), 18014 Granada, Spain
| | | | - Ernesto González-Mesa
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), Research Group in Maternal-Fetal Medicine, Epigenetics, Women's Diseases and Reproductive Health, 29071 Málaga, Spain
- Obstetrics and Gynecology Service, Regional University Hospital of Malaga, 29011 Malaga, Spain
- Department of Surgical Specialties, Biochemistry and Immunology, University of Malaga, 29071 Malaga, Spain
| | - Rocío Olmedo-Requena
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain
- Biohealth Research Institute (Instituto de Investigación Biosanitaria Ibs.GRANADA), 18014 Granada, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Carmen Amezcua-Prieto
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain
- Biohealth Research Institute (Instituto de Investigación Biosanitaria Ibs.GRANADA), 18014 Granada, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - José J Jiménez-Moleón
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain
- Biohealth Research Institute (Instituto de Investigación Biosanitaria Ibs.GRANADA), 18014 Granada, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
17
|
Hong DK, Cho HY, Kim JY, Park HJ, Cha DH, Shim SS, Yun BS. Intrapartum Factors Affecting Abnormal Lipid Profiles in Early Postpartum Period. J Pers Med 2023; 13:jpm13030444. [PMID: 36983626 PMCID: PMC10054016 DOI: 10.3390/jpm13030444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The aim of this research is to investigate the risk factors during pregnancy affect abnormal lipid profiles in women with early postpartum period. This was a single-center retrospective study including 869 women who delivered between December 2017 and May 2019. We collected total cholesterol levels, both at 24–28 GWs and 1 month before delivery. Lipid profiles such as total cholesterol, high-density lipoprotein (HDL), triglyceride (TG) and low-density lipoprotein (LDL) at 6 weeks after delivery were retrieved. Subjects were categorized into 3 groups such as normal, borderline and abnormal group according to the lipid profile levels. The risk factors associated with borderline to abnormal HDL level were body mass index (BMI) of pre-pregnancy (OR = 1.182, 95% CI: 1.116–1.252, p < 0.001), weight gain during pregnancy (OR = 1.085, 95% CI: 1.042–1.131, p < 0.001) and hypertension (HTN) (OR = 3.451, 95% CI: 1.224–9.727, p = 0.02). The risk factors associated with borderline or abnormal TG were BMI of pre-pregnancy, weight gain during pregnancy and weight reduction after delivery. HTN was associated with borderline to abnormal TG in postpartum (OR = 2.891, 95% CI: 1.168–7.156, p = 0.02), while GDM correlated purely with abnormal TG in postpartum (OR = 2.453, 95% CI: 1.068–5.630, p = 0.03). Abnormal lipid profiles in postpartum were significantly associated with BMI of pre-pregnancy, weight gain during pregnancy and weight reduction after delivery. In addition, pregnancy-related HTN was highly associated with abnormal HDL level, and GDM was associated with abnormal TG level in the early postpartum period.
Collapse
Affiliation(s)
- Da Kyung Hong
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 06125, Republic of Korea
| | - Hee Young Cho
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 06125, Republic of Korea
- Department of Obstetrics and Gynecology,
Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ji Youn Kim
- Department of Obstetrics and Gynecology, CHA Ilsan Medical Center, CHA University, Goyang-Si 10414, Republic of Korea
| | - Hee Jin Park
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 06125, Republic of Korea
| | - Dong Hyun Cha
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 06125, Republic of Korea
| | - Sung Shin Shim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 06125, Republic of Korea
- Correspondence: (S.S.S.); (B.S.Y.)
| | - Bo Seong Yun
- Department of Obstetrics and Gynecology, CHA Ilsan Medical Center, CHA University, Goyang-Si 10414, Republic of Korea
- Correspondence: (S.S.S.); (B.S.Y.)
| |
Collapse
|