1
|
Develin A, Fuglestad B. Inositol Hexaphosphate as an Inhibitor and Potential Regulator of p47 phox Membrane Anchoring. Biochemistry 2024; 63:1097-1106. [PMID: 38669178 PMCID: PMC11080064 DOI: 10.1021/acs.biochem.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
As a key component for NADPH oxidase 2 (NOX2) activation, the peripheral membrane protein p47phox translocates a cytosolic activating complex to the membrane through its PX domain. This study elucidates a potential regulatory mechanism of p47phox recruitment and NOX2 activation by inositol hexaphosphate (IP6). Through NMR, fluorescence polarization, and FRET experimental results, IP6 is shown to be capable of breaking the lipid binding and membrane anchoring events of p47phox-PX with low micromolar potency. Other phosphorylated inositol species such as IP5(1,3,4,5,6), IP4(1,3,4,5), and IP3(1,3,4) show weaker binding and no ability to inhibit lipid interactions in physiological concentration ranges. The low micromolar potency of IP6 inhibition of the p47phox membrane anchoring suggests that physiologically relevant concentrations of IP6 serve as regulators, as seen in other membrane anchoring domains. The PX domain of p47phox is known to be promiscuous to a variety of phosphatidylinositol phosphate (PIP) lipids, and this regulation may help target the domain only to the membranes most highly enriched with the highest affinity PIPs, such as the phagosomal membrane, while preventing aberrant binding to other membranes with high and heterogeneous PIP content, such as the plasma membrane. This study provides insight into a potential novel regulatory mechanism behind NOX2 activation and reveals a role for small-molecule regulation in this important NOX2 activator.
Collapse
Affiliation(s)
- Angela
M. Develin
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
| | - Brian Fuglestad
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
2
|
Pham TD, Verlander JW, Chen C, Pech V, Kim HI, Kim YH, Weiner ID, Milne GL, Zent R, Bock F, Brown D, Eaton A, Wall SM. Angiotensin II acts through Rac1 to upregulate pendrin: role of NADPH oxidase. Am J Physiol Renal Physiol 2024; 326:F202-F218. [PMID: 38059296 PMCID: PMC11198991 DOI: 10.1152/ajprenal.00139.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Angiotensin II increases apical plasma membrane pendrin abundance and function. This study explored the role of the small GTPase Rac1 in the regulation of pendrin by angiotensin II. To do this, we generated intercalated cell (IC) Rac1 knockout mice and observed that IC Rac1 gene ablation reduced the relative abundance of pendrin in the apical region of intercalated cells in angiotensin II-treated mice but not vehicle-treated mice. Similarly, the Rac1 inhibitor EHT 1864 reduced apical pendrin abundance in angiotensin II-treated mice, through a mechanism that does not require aldosterone. This IC angiotensin II-Rac1 signaling cascade modulates pendrin subcellular distribution without significantly changing actin organization. However, NADPH oxidase inhibition with APX 115 reduced apical pendrin abundance in vivo in angiotensin II-treated mice. Moreover, superoxide dismutase mimetics reduced Cl- absorption in angiotensin II-treated cortical collecting ducts perfused in vitro. Since Rac1 is an NADPH subunit, Rac1 may modulate pendrin through NADPH oxidase-mediated reactive oxygen species production. Because pendrin gene ablation blunts the pressor response to angiotensin II, we asked if pendrin blunts the angiotensin II-induced increase in kidney superoxide. Although kidney superoxide was similar in vehicle-treated wild-type and pendrin knockout mice, it was lower in angiotensin II-treated pendrin-null kidneys than in wild-type kidneys. We conclude that angiotensin II acts through Rac1, independently of aldosterone, to increase apical pendrin abundance. Rac1 may stimulate pendrin, at least partly, through NADPH oxidase. This increase in pendrin abundance contributes to the increment in blood pressure and kidney superoxide content seen in angiotensin II-treated mice.NEW & NOTEWORTHY This study defines a new signaling mechanism by which angiotensin II modulates oxidative stress and blood pressure.
Collapse
Affiliation(s)
- Truyen D Pham
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, Florida, United States
| | - Chao Chen
- Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, Florida, United States
| | - Vladimir Pech
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Hailey I Kim
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Young Hee Kim
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, Florida, United States
- Nephrology and Hypertension Section, Gainesville Veterans Affairs Medical Center, Gainesville, Florida, United States
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Hospital, Nashville, Tennessee, United States
| | - Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Hospital, Nashville, Tennessee, United States
| | - Dennis Brown
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Amity Eaton
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Susan M Wall
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Silla A, Fogacci F, Punzo A, Hrelia S, Simoni P, Caliceti C, Cicero AFG. Treatment with PCSK9 Inhibitor Evolocumab Improves Vascular Oxidative Stress and Arterial Stiffness in Hypercholesterolemic Patients with High Cardiovascular Risk. Antioxidants (Basel) 2023; 12:antiox12030578. [PMID: 36978827 PMCID: PMC10045769 DOI: 10.3390/antiox12030578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Atherosclerosis and atherosclerotic-related cardiovascular diseases (ASCVD) are characterized by high serum levels of low-density lipoprotein cholesterol (LDL-C) that can promote the generation of reactive oxygen species (ROS). To answer the need for better LDL-C control in individuals at high and very high risk for CVD, a new injectable innovative family of lipid-lowering (LL) monoclonal antibodies against the protein convertase subtilisin/kexin type 9 (PCSK9) has been approved. However, the effect of these drugs on vascular function, such as ROS generation and arterial stiffness, has not already been extensively described. In this report, we present data from 18 males with high to very high CV risk undergoing LL treatment (LLT) with either statin and ezetimibe or ezetimibe monotherapy, who experienced, after a 2-month treatment with Evolocumab, a significant improvement in blood pressure (BP)-adjusted carotid–femoral pulse wave velocity (cfPWV) (p-value = 0.0005 in the whole cohort, p-value = 0.0046 in the sub-cohort undergoing background LLT with statin and ezetimibe, p-value = 0.015 in the sub-cohort undergoing background LLT with ezetimibe monotherapy), which was significantly associated with a decrease in freshly isolated leukocytes (PBMCS)-derived H2O2 production (p-value = 0.004, p-value = 0.02 and p-value = 0.05, respectively, in the whole cohort, in the statin + ezetimibe sub-cohort, and the ezetimibe sub-cohort). Our observations support the role of systemic oxidative stress in atherosclerosis and give a further rationale for using Evolocumab also for its effect in vascular disorders linked to oxidative processes.
Collapse
Affiliation(s)
- Alessia Silla
- Department for Life Quality Studies, University of Bologna, 40126 Bologna, Italy
| | - Federica Fogacci
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- IRCCS Policlinico S. Orsola-Malpighi di Bologna, 40138 Bologna, Italy
| | - Angela Punzo
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Simoni
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- IRCCS Policlinico S. Orsola-Malpighi di Bologna, 40138 Bologna, Italy
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences—DIBINEM, University of Bologna, 40126 Bologna, Italy
- Istituto Nazionale Biosistemi e Biostrutture (INBB), 00136 Rome, Italy
- Interdepartmental Center of Industrial Research (CIRI)—Energy and Environment, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Arrigo F. G. Cicero
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- IRCCS Policlinico S. Orsola-Malpighi di Bologna, 40138 Bologna, Italy
| |
Collapse
|
4
|
Teuber JP, Essandoh K, Hummel SL, Madamanchi NR, Brody MJ. NADPH Oxidases in Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction. Antioxidants (Basel) 2022; 11:1822. [PMID: 36139898 PMCID: PMC9495396 DOI: 10.3390/antiox11091822] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases regulate production of reactive oxygen species (ROS) that cause oxidative damage to cellular components but also regulate redox signaling in many cell types with essential functions in the cardiovascular system. Research over the past couple of decades has uncovered mechanisms by which NADPH oxidase (NOX) enzymes regulate oxidative stress and compartmentalize intracellular signaling in endothelial cells, smooth muscle cells, macrophages, cardiomyocytes, fibroblasts, and other cell types. NOX2 and NOX4, for example, regulate distinct redox signaling mechanisms in cardiac myocytes pertinent to the onset and progression of cardiac hypertrophy and heart failure. Heart failure with preserved ejection fraction (HFpEF), which accounts for at least half of all heart failure cases and has few effective treatments to date, is classically associated with ventricular diastolic dysfunction, i.e., defects in ventricular relaxation and/or filling. However, HFpEF afflicts multiple organ systems and is associated with systemic pathologies including inflammation, oxidative stress, arterial stiffening, cardiac fibrosis, and renal, adipose tissue, and skeletal muscle dysfunction. Basic science studies and clinical data suggest a role for systemic and myocardial oxidative stress in HFpEF, and evidence from animal models demonstrates the critical functions of NOX enzymes in diastolic function and several HFpEF-associated comorbidities. Here, we discuss the roles of NOX enzymes in cardiovascular cells that are pertinent to the development and progression of diastolic dysfunction and HFpEF and outline potential clinical implications.
Collapse
Affiliation(s)
- James P. Teuber
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott L. Hummel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Affairs Health System, Ann Arbor, MI 48105, USA
| | | | - Matthew J. Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives. Cells 2022; 11:cells11071165. [PMID: 35406729 PMCID: PMC8998015 DOI: 10.3390/cells11071165] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in western countries. Among cardiovascular diseases, myocardial infarction represents a life-threatening condition predisposing to the development of heart failure. In recent decades, much effort has been invested in studying the molecular mechanisms underlying the development and progression of ischemia/reperfusion (I/R) injury and post-ischemic cardiac remodeling. These mechanisms include metabolic alterations, ROS overproduction, inflammation, autophagy deregulation and mitochondrial dysfunction. This review article discusses the most recent evidence regarding the molecular basis of myocardial ischemic injury and the new potential therapeutic interventions for boosting cardioprotection and attenuating cardiac remodeling.
Collapse
|
6
|
Chen L, Wang F, Qu S, He X, Zhu Y, Zhou Y, Yang K, Li YX, Liu M, Peng X, Tian J. Therapeutic Potential of Perillaldehyde in Ameliorating Vulvovaginal Candidiasis by Reducing Vaginal Oxidative Stress and Apoptosis. Antioxidants (Basel) 2022; 11:antiox11020178. [PMID: 35204061 PMCID: PMC8868166 DOI: 10.3390/antiox11020178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is one of the most frequent diseases induced by Candida albicans (C. albicans) during pregnancy, which results in enormous pain to women and their partners in daily life. Perillaldehyde (PAE), a natural monoterpenoid, has significant anti-microbial, anti-inflammatory and anti-oxidation effects. Reactive oxygen species (ROS) are key factors for the host to resist the invasion of fungi. However, excess ROS can cause additional damage independent of the pathogen itself, and the mechanism of ROS in VVC has not been investigated. In this murine study, we revealed that C. albicans infection increased the expression of NADPH oxidase 2 (NOX2) and the content of malonaldehyde (MDA). C. albicans inhibited the activity of antioxidant enzymes in the vagina, including superoxide dismutase (SOD), Catalase (CAT), glutathione peroxidase (GSH-PX) and heme oxygenase (HO-1), which were returned to normal levels after treatment with PAE. Furthermore, PAE inhibited the activities of Keap1 and promoted Nrf2 transfer from cytoplasm to nucleus, which were mediated by excessive accumulation of ROS in the VVC mice. In this study, we also indicated that PAE inhibited the apoptosis of vagina cells via Caspase 9- Caspase 7-PARP pathway and prevented the release of IL-1ꞵ in VVC mice. In summary, this study revealed that the treatment of VVC in mice with PAE might be mediated by inhibition of ROS, and established the therapeutic potential of PAE as an antifungal agent for the treatment of VVC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jun Tian
- Correspondence: ; Tel.: +86-516-83403172; Fax: +86-516-83403173
| |
Collapse
|
7
|
Nox2 Deficiency Reduces Cartilage Damage and Ectopic Bone Formation in an Experimental Model for Osteoarthritis. Antioxidants (Basel) 2021; 10:antiox10111660. [PMID: 34829531 PMCID: PMC8614813 DOI: 10.3390/antiox10111660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a destructive disease of the joint with age and obesity being its most important risk factors. Around 50% of OA patients suffer from inflammation of the synovial joint capsule, which is characterized by increased abundance and activation of synovial macrophages that produce reactive oxygen species (ROS) via NADPH-oxidase 2 (NOX2). Both ROS and high blood levels of low-density lipoprotein (LDL) are implicated in OA pathophysiology, which may interact to form oxidized LDL (oxLDL) and thereby promote disease. Therefore, targeting NOX2 could be a viable treatment strategy for OA. Collagenase-induced OA (CiOA) was used to compare pathology between wild-type (WT) and Nox2 knockout (Nox2−/−) C57Bl/6 mice. Mice were either fed a standard diet or Western diet (WD) to study a possible interaction between NOX2-derived ROS and LDL. Synovial inflammation, cartilage damage and ectopic bone size were assessed on histology. Extracellular ROS production by macrophages was measured in vitro using the Amplex Red assay. Nox2−/− macrophages produced basal levels of ROS but were unable to increase ROS production in response to the alarmin S100A8 or the phorbol ester PMA. Interestingly, Nox2 deficiency reduced cartilage damage, synovial lining thickness and ectopic bone size, whereas these disease parameters were not affected by WD-feeding. These results suggest that NOX2-derived ROS are involved in CiOA development.
Collapse
|
8
|
Brown OI, Bridge KI, Kearney MT. Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Glucose Homeostasis and Diabetes-Related Endothelial Cell Dysfunction. Cells 2021; 10:cells10092315. [PMID: 34571964 PMCID: PMC8469180 DOI: 10.3390/cells10092315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress within the vascular endothelium, due to excess generation of reactive oxygen species (ROS), is thought to be fundamental to the initiation and progression of the cardiovascular complications of type 2 diabetes mellitus. The term ROS encompasses a variety of chemical species including superoxide anion (O2•-), hydroxyl radical (OH-) and hydrogen peroxide (H2O2). While constitutive generation of low concentrations of ROS are indispensable for normal cellular function, excess O2•- can result in irreversible tissue damage. Excess ROS generation is catalysed by xanthine oxidase, uncoupled nitric oxide synthases, the mitochondrial electron transport chain and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Amongst enzymatic sources of O2•- the Nox2 isoform of NADPH oxidase is thought to be critical to the oxidative stress found in type 2 diabetes mellitus. In contrast, the transcriptionally regulated Nox4 isoform, which generates H2O2, may fulfil a protective role and contribute to normal glucose homeostasis. This review describes the key roles of Nox2 and Nox4, as well as Nox1 and Nox5, in glucose homeostasis, endothelial function and oxidative stress, with a key focus on how they are regulated in health, and dysregulated in type 2 diabetes mellitus.
Collapse
|
9
|
Irace FG, Cammisotto V, Valenti V, Forte M, Schirone L, Bartimoccia S, Iaccarino A, Peruzzi M, Schiavon S, Morelli A, Marullo AG, Miraldi F, Nocella C, De Paulis R, Benedetto U, Greco E, Biondi-Zoccai G, Sciarretta S, Carnevale R, Frati G. Role of Oxidative Stress and Autophagy in Thoracic Aortic Aneurysms. JACC Basic Transl Sci 2021; 6:719-730. [PMID: 34754985 PMCID: PMC8559314 DOI: 10.1016/j.jacbts.2021.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023]
Abstract
Thoracic aortic aneurysms (TAA) pathogenesis and progression include many mechanisms. The authors investigated the role of autophagy, oxidative stress, and endothelial dysfunction in 36 TAA patients and 23 control patients. Univariable and multivariable analyses were performed. TAA patients displayed higher oxidative stress and endothelial dysfunction then control patients. Autophagy in the TAA group was reduced. The association of oxidative stress and autophagy with aortic disease supports the role of these processes in TAA. The authors demonstrate a putative role of Nox2 and autophagy dysregulation in human TAA. These findings could pinpoint novel treatment targets to prevent or limit TAA progression.
Collapse
Key Words
- ATG5, autophagy protein 5
- HBA, hydrogen peroxide break-down activity
- HRP, horseradish peroxidase
- NADPH, nicotinamide adenine dinucleotide phosphate
- NO, nitric oxide
- PAGE, polyacrylamide gel electrophoresis
- ROS, reactive oxygen species
- SDS, sodium dodecyl sulfate
- TAA, thoracic aortic aneurysms
- VSMC, vascular smooth muscle cell
- autophagy
- endothelial dysfunction
- oxidative stress
- sNox2-dp, soluble Nox2-derived peptide
- thoracic aortic aneurysm
Collapse
Affiliation(s)
- Francesco G. Irace
- Department of Cardiac Surgery, European Hospital, Rome, Italy
- Department of General and Specialized Surgery “Paride Stefanini,” Sapienza University of Rome, Rome, Italy
| | - Vittoria Cammisotto
- Department of General and Specialized Surgery “Paride Stefanini,” Sapienza University of Rome, Rome, Italy
- Department of Clinical Internal, Anesthesiological, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Valentina Valenti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Leonardo Schirone
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Simona Bartimoccia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Alessandra Iaccarino
- Department of Cardiothoracic Surgery, Humanitas Clinical and Research Centre, IRCCS, Milan, Italy
| | - Mariangela Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Andrea Morelli
- Department of Clinical Internal, Anesthesiological, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonino G.M. Marullo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Fabio Miraldi
- Department of Clinical Internal, Anesthesiological, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Umberto Benedetto
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Ernesto Greco
- Department of Clinical Internal, Anesthesiological, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
10
|
Szilágyi J, Sághy L. Atrial Remodeling in Atrial Fibrillation. Comorbidities and Markers of Disease Progression Predict Catheter Ablation Outcome. Curr Cardiol Rev 2021; 17:217-229. [PMID: 32693769 PMCID: PMC8226201 DOI: 10.2174/1573403x16666200721153620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/19/2023] Open
Abstract
Atrial fibrillation is the most common supraventricular arrhythmia affecting an increasing proportion of the population in which mainstream therapy, i.e. catheter ablation, provides freedom from arrhythmia in only a limited number of patients. Understanding the mechanism is key in order to find more effective therapies and to improve patient selection. In this review, the structural and electrophysiological changes of the atrial musculature that constitute atrial remodeling in atrial fibrillaton and how risk factors and markers of disease progression can predict catheter ablation outcome will be discussed in detail.
Collapse
Affiliation(s)
- Judit Szilágyi
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| | - László Sághy
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Wenxin Granule Ameliorates Hypoxia/Reoxygenation-Induced Oxidative Stress in Mitochondria via the PKC- δ/NOX2/ROS Pathway in H9c2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3245483. [PMID: 32566078 PMCID: PMC7260629 DOI: 10.1155/2020/3245483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Myocardial infarction and following reperfusion therapy-induced myocardial ischemia/reperfusion (I/R) injury have been recognized as an important subject of cardiovascular disease with high mortality. As the antiarrhythmic agent, Wenxin Granule (WXG) is widely used to arrhythmia and heart failure. In our pilot study, we found the antioxidative potential of WXG in the treatment of myocardial I/R. This study is aimed at investigating whether WXG could treat cardiomyocyte hypoxia/reoxygenation (H/R) injury by inhibiting oxidative stress in mitochondria. The H9c2 cardiomyocyte cell line was subject to H/R stimuli to mimic I/R injury in vitro. WXG was added to the culture medium 24 h before H/R exposing as pretreatment. Protein kinase C-δ (PKC-δ) inhibitor rottlerin or PKC-δ lentivirus vectors were conducted on H9c2 cells to downregulate or overexpress PKC-δ protein. Then, the cell viability, oxidative stress levels, intracellular and mitochondrial ROS levels, mitochondrial function, and apoptosis index were analyzed. In addition, PKC-δ protein expression in each group was verified by western blot analysis. Compared with the control group, the PKC-δ protein level was significantly increased in the H/R group, which was remarkably improved by WXG or rottlerin. PKC-δ lentivirus vector-mediated PKC-δ overexpression was not reduced by WXG. WXG significantly improved H/R-induced cell injury, lower levels of SOD and GSH/GSSG ratio, higher levels of MDA, intracellular and mitochondrial ROS content, mitochondrial membrane potential and ATP loss, mitochondrial permeability transition pore opening, NOX2 activation, cytochrome C release, Bax/Bcl-2 ratio and cleaved caspase-3 increasing, and cell apoptosis. Similar findings were obtained from rottlerin treatment. However, the protective effects of WXG were abolished by PKC-δ overexpression, indicating that PKC-δ was a potential target of WXG treatment. Our findings demonstrated a novel mechanism by which WXG attenuated oxidative stress and mitochondrial dysfunction of H9c2 cells induced by H/R stimulation via inhibitory regulation of PKC-δ/NOX2/ROS signaling.
Collapse
|
12
|
Pingitore A, Peruzzi M, Biondi-Zoccai G, Frati G, Cavarretta E. Rejuvenating Pheidippides and the Evergreen Benefits of Endurance Training. J Am Coll Cardiol 2020; 75:2278. [PMID: 32354393 DOI: 10.1016/j.jacc.2020.02.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023]
|
13
|
Peripheral Blood Mononuclear Cells and Platelets Mitochondrial Dysfunction, Oxidative Stress, and Circulating mtDNA in Cardiovascular Diseases. J Clin Med 2020; 9:jcm9020311. [PMID: 31979097 PMCID: PMC7073649 DOI: 10.3390/jcm9020311] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVDs) are devastating disorders and the leading cause of mortality worldwide. The pathophysiology of cardiovascular diseases is complex and multifactorial and, in the past years, mitochondrial dysfunction and excessive production of reactive oxygen species (ROS) have gained growing attention. Indeed, CVDs can be considered as a systemic alteration, and understanding the eventual implication of circulating blood cells peripheral blood mononuclear cells (PBMCs) and or platelets, and particularly their mitochondrial function, ROS production, and mitochondrial DNA (mtDNA) releases in patients with cardiac impairments, appears worthwhile. Interestingly, reports consistently demonstrate a reduced mitochondrial respiratory chain oxidative capacity related to the degree of CVD severity and to an increased ROS production by PBMCs. Further, circulating mtDNA level was generally modified in such patients. These data are critical steps in term of cardiac disease comprehension and further studies are warranted to challenge the possible adjunct of PBMCs’ and platelets’ mitochondrial dysfunction, oxidative stress, and circulating mtDNA as biomarkers of CVD diagnosis and prognosis. This new approach might also allow further interesting therapeutic developments.
Collapse
|
14
|
Caires A, Convento MB, Castino B, Leme AM, Pessoa EDA, Aragão A, Schor N, Borges FT. Antioxidant effect of endothelin-1 receptor antagonist protects the rat kidney against chronic injury induced by hypertension and hyperglycemia. J Bras Nefrol 2019; 41:451-461. [PMID: 31508666 PMCID: PMC6979570 DOI: 10.1590/2175-8239-jbn-2018-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 05/27/2019] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Hypertension and Diabetes mellitus are the two main causes of chronic kidney disease that culminate in the final stage of kidney disease. Since these two risk factors are common and can overlap, new approaches to prevent or treat them are needed. Macitentan (MAC) is a new non-selective antagonist of the endothelin-1 (ET-1) receptor. This study aimed to evaluate the effect of chronic blockade of ET-1 receptor with MAC on the alteration of renal function observed in hypertensive and hyperglycemic animals. Genetically hypertensive rats were divided into control hypertensive (HT-CTL) group, hypertensive and hyperglycemic (HT+DIAB) group, and hypertensive and hyperglycemic group that received 25 mg/kg macitentan (HT-DIAB+MAC25) via gavage for 60 days. Kidney function and parameters associated with oxidative and nitrosative stress were evaluated. Immunohistochemistry for neutrophil gelatinase-associated lipocalin (NGAL), ET-1, and catalase in the renal cortex was performed. The HT+DIAB group showed a decrease in kidney function and an increase in NGAL expression in the renal cortex, as well as an increase in oxidative stress. MAC treatment was associated with attenuated ET-1 and NGAL production and increases in antioxidant defense (catalase expression) and nitric oxide production. In addition, MAC prevented an increase in oxidant injury (as measured by urinary hydroperoxide and lipid peroxidation), thus improving renal function. Our results suggest that the antioxidant effect of the ET-1 receptor antagonist MAC is involved in the improvement of kidney function observed in hypertensive and hyperglycemic rats.
Collapse
|
15
|
Circulating Leukocytes and Oxidative Stress in Cardiovascular Diseases: A State of the Art. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2650429. [PMID: 31737166 PMCID: PMC6815586 DOI: 10.1155/2019/2650429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Increased oxidative stress from both mitochondrial and cytosolic sources contributes to the development and the progression of cardiovascular diseases (CVDs), and it is a target of therapeutic interventions. The numerous efforts made over the last decades in order to develop tools able to monitor the oxidative stress level in patients affected by CVDs rely on the need to gain information on the disease state. However, this goal has not been satisfactorily accomplished until now. Among others, the isolation of circulating leukocytes to measure their oxidant level offers a valid, noninvasive challenge that has been tested in few pathological contexts, including hypertension, atherosclerosis and its clinical manifestations, and heart failure. Since leukocytes circulate in the blood stream, it is expected that they might reflect quite closely both systemic and cardiovascular oxidative stress and provide useful information on the pathological condition. The results of the studies discussed in the present review article are promising. They highlight the importance of measuring oxidative stress level in circulating mononuclear cells in different CVDs with a consistent correlation between degree of oxidative stress and severity of CVD and of its complications. Importantly, they also point to a double role of leukocytes, both as a marker of disease condition and as a direct contributor to disease progression. Finally, they show that the oxidative stress level of leukocytes reflects the impact of therapeutic interventions. It is likely that the isolation of leukocytes and the measurement of oxidative stress, once adequately developed, may represent an eligible tool for both research and clinical purposes to monitor the role of oxidative stress on the promotion and progression of CVDs, as well as the impact of therapies.
Collapse
|
16
|
Shin YK, Han AY, Hsieh YS, Kwon S, Kim J, Lee KW, Seol GH. Lancemaside A from Codonopsis lanceolata prevents hypertension by inhibiting NADPH oxidase 2-mediated MAPK signalling and improving NO bioavailability in rats. ACTA ACUST UNITED AC 2019; 71:1458-1468. [PMID: 31350796 DOI: 10.1111/jphp.13140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/30/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study investigated whether lancemaside A (LMA) can prevent hypertension and assessed the mechanisms of action of LMA in rats. METHODS Hypertension was induced by chronic immobilization stress and nicotine administration. Hypertensive vehicle rats were treated with LMA (1, 20, or 40 mg/kg) or nifedipine (10 mg/kg) as a positive control daily for 3 weeks. KEY FINDINGS In hypertensive vehicle rats, LMA dose-dependently reduced systolic blood pressure. LMA doses of 20 and 40 mg/kg reduced the aortic expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX)2 (both P < 0.01), and 40 mg/kg LMA reduced serum malondialdehyde (P < 0.01). Serum nitrite levels were significantly higher in LMA treated rats than in hypertensive vehicle rats, with LMA doses of 20 and 40 mg/kg reducing the expression of endothelial nitric oxide synthase in rat aortas (P < 0.001 and P < 0.01, respectively). LMA also reduced the aortic levels of nuclear factor kappa B and the activation of the three isoforms of mitogen-activated protein kinase (MAPK). CONCLUSIONS Lancemaside A prevents hypertension in rats by inhibiting the activation of MAPK signalling and the impairment in nitric oxide bioavailability due to NOX2-mediated oxidative stress. Thus, LMA may act as a preventive agent for hypertension.
Collapse
Affiliation(s)
- You Kyoung Shin
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - A Young Han
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Yu Shan Hsieh
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Soonho Kwon
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Jinhye Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Role of oxidative stress in the process of vascular remodeling following coronary revascularization. Int J Cardiol 2018; 268:27-33. [DOI: 10.1016/j.ijcard.2018.05.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
|
18
|
The aging heart. Clin Sci (Lond) 2018; 132:1367-1382. [PMID: 29986877 DOI: 10.1042/cs20171156] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
As the elderly segment of the world population increases, it is critical to understand the changes in cardiac structure and function during the normal aging process. In this review, we outline the key molecular pathways and cellular processes that underlie the phenotypic changes in the heart and vasculature that accompany aging. Reduced autophagy, increased mitochondrial oxidative stress, telomere attrition, altered signaling in insulin-like growth factor, growth differentiation factor 11, and 5'- AMP-activated protein kinase pathways are among the key molecular mechanisms underlying cardiac aging. Aging promotes structural and functional changes in the atria, ventricles, valves, myocardium, pericardium, the cardiac conduction system, and the vasculature. We highlight the factors known to accelerate and attenuate the intrinsic aging of the heart and vessels in addition to potential preventive and therapeutic avenues. A greater understanding of the processes involved in cardiac aging may facilitate our ability to mitigate the escalating burden of CVD in older individuals and promote healthy cardiac aging.
Collapse
|
19
|
Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate. Antioxidants (Basel) 2017; 6:antiox6040090. [PMID: 29135921 PMCID: PMC5745500 DOI: 10.3390/antiox6040090] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/21/2017] [Accepted: 11/07/2017] [Indexed: 01/09/2023] Open
Abstract
The generation of reactive oxygen species (ROS) and an imbalance of antioxidant defence mechanisms can result in oxidative stress. Several pro-atherogenic stimuli that promote intimal-medial thickening (IMT) and early arteriosclerotic disease progression share oxidative stress as a common regulatory pathway dictating vascular cell fate. The major source of ROS generated within the vascular system is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes (Nox), of which seven members have been characterized. The Nox family are critical determinants of the redox state within the vessel wall that dictate, in part the pathophysiology of several vascular phenotypes. This review highlights the putative role of ROS in controlling vascular fate by promoting endothelial dysfunction, altering vascular smooth muscle phenotype and dictating resident vascular stem cell fate, all of which contribute to intimal medial thickening and vascular disease progression.
Collapse
|
20
|
The Impact of Environmental Factors in Influencing Epigenetics Related to Oxidative States in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2712751. [PMID: 28607629 PMCID: PMC5457758 DOI: 10.1155/2017/2712751] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/03/2017] [Accepted: 04/12/2017] [Indexed: 12/14/2022]
Abstract
Oxidative states exert a significant influence on a wide range of biological and molecular processes and functions. When their balance is shifted towards enhanced amounts of free radicals, pathological phenomena can occur, as the generation of reactive oxygen species (ROS) in tissue microenvironment or in the systemic circulation can be detrimental. Epidemic chronic diseases of western societies, such as cardiovascular disease, obesity, and diabetes correlate with the imbalance of redox homeostasis. Current advances in our understanding of epigenetics have revealed a parallel scenario showing the influence of oxidative stress as a major regulator of epigenetic gene regulation via modification of DNA methylation, histones, and microRNAs. This has provided both the biological link and a potential molecular explanation between oxidative stress and cardiovascular/metabolic phenomena. Accordingly, in this review, we will provide current insights on the physiological and pathological impact of changes in oxidative states on cardiovascular disorders, by specifically focusing on the influence of epigenetic regulation. A special emphasis will highlight the effect on epigenetic regulation of human's current life habits, external and environmental factors, including food intake, tobacco, air pollution, and antioxidant-based approaches. Additionally, the strategy to quantify oxidative states in humans in order to determine which biological marker could best match a subject's profile will be discussed.
Collapse
|