1
|
Lee Y, Nguyen TD, Du Y, Coughlin JM, Zein SA, Karakatsanis NA, Nehmeh S, Pomper MG, Gauthier SA, Kang Y. Validating the Utility of Supervised Clustering Algorithm for Precise [ 11C]DPA-713 PET Brain Image Quantification. J Nucl Med 2025; 66:764-770. [PMID: 40180563 PMCID: PMC12051772 DOI: 10.2967/jnumed.124.268519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
The reliance of quantitative PET imaging on the arterial input function makes brain PET challenging to perform in certain populations, limiting the sample size. To address this challenge, a supervised clustering algorithm (SVCA) has been introduced as an alternative. Our objective was to validate SVCA's performance for brain PET with [11C]DPA-713 that targets a putative marker of brain injury and repair. Methods: This study included a composite dataset comprising 12 healthy volunteers (HVs), with 6 participants from Weill Cornell Medicine and 6 participants from Johns Hopkins University School of Medicine. The minimum number of subjects required to define kinetic classes was identified. Next, the distribution volume ratio (DVR) was examined by comparing pseudoreference time-activity curves derived from SVCA (SVCA-DVR) with the conventional arterial input function-based DVR (AIF-DVR). Test-retest analysis was conducted to evaluate repeatability, considering volumes of interest (VOIs) of various sizes. Lastly, the research investigated differences in DVR values between the HVs and patients with multiple sclerosis. Results: The number of subjects necessary for the kinetic classes, which are critical to SVCA, was reduced to 7 from the existing minimum requirement of 10. This allowed for a more substantial independent validation within a defined dataset. Correlative analysis between SVCA-DVR and AIF-DVR demonstrated a strong relationship, with correlation coefficients of 0.86 for white matter and 0.95 for the thalamus. Furthermore, we noted a marked decline in absolute test-retest variability for SVCA-DVR, with reductions from 1.31% to 1.18% in white matter and 3.51% to 2.32% in the thalamus, relative to AIF-DVR. This pattern of reduced variability persisted across VOIs of disparate sizes, with the absolute test-retest variability remaining below 5% for SVCA-DVR, even in small VOIs (both high and low binding at 0.065 cm3). Analysis revealed a pronounced disparity in SVCA-DVR values of the thalamus when comparing HVs and patients with multiple sclerosis. Conclusion: The findings substantiate the pseudoreference time-activity curves derived from SVCA as a dependable and practical substitute for the quantification of [11C]DPA-713 PET scans of the brain.
Collapse
Affiliation(s)
- Youjin Lee
- Department of Mathematics, Pusan National University, Busan, Republic of Korea
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Yong Du
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sara A Zein
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | | | - Sadek Nehmeh
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan A Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, New York
- Department of Neurology, Weill Cornell Medical College, New York, New York; and
| | - Yeona Kang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland;
- Department of Mathematics, Howard University, Washington, DC
| |
Collapse
|
2
|
Alfaifi B, Hinz R, Jackson A, Wadeson A, Pathmanaban ON, Hammerbeck-Ward C, Rutherford SA, King AT, Lewis D, Coope DJ. Evidence for inflammation in normal-appearing brain regions in patients with growing sporadic vestibular schwannoma: A PET study. Neurooncol Adv 2024; 6:vdae094. [PMID: 38962752 PMCID: PMC11221070 DOI: 10.1093/noajnl/vdae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Background Nonauditory symptoms can be a prominent feature in patients with sporadic vestibular schwannoma (VS), but the cause of these symptoms is unknown. Inflammation is hypothesized to play a key role in the growth and symptomatic presentation of sporadic VS, and in this study, we investigated through translocator protein (TSPO) positron emission tomography (PET) whether inflammation occurred within the "normal appearing" brain of such patients and its association with tumor growth. Methods Dynamic PET datasets from 15 patients with sporadic VS (8 static and 7 growing) who had been previously imaged using the TSPO tracer [11C](R)-PK11195 were included. Parametric images of [11C](R)-PK11195 binding potential (BPND) and the distribution volume ratio (DVR) were derived and compared across VS growth groups within both contralateral and ipsilateral gray (GM) and white matter (WM) regions. Voxel-wise cluster analysis was additionally performed to identify anatomical regions of increased [11C](R)-PK11195 binding. Results Compared with static tumors, growing VS demonstrated significantly higher cortical (GM, 1.070 vs. 1.031, P = .03) and whole brain (GM & WM, 1.045 vs. 1.006, P = .03) [11C](R)-PK11195 DVR values. The voxel-wise analysis supported the region-based analysis and revealed clusters of high TSPO binding within the precentral, postcentral, and prefrontal cortex in patients with growing VS. Conclusions We present the first in vivo evidence of increased TSPO expression and inflammation within the brains of patients with growing sporadic VS. These results provide a potential mechanistic insight into the development of nonauditory symptoms in these patients and highlight the need for further studies interrogating the role of neuroinflammation in driving VS symptomatology.
Collapse
Affiliation(s)
- Bandar Alfaifi
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Alan Jackson
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Andrea Wadeson
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Omar N Pathmanaban
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Charlotte Hammerbeck-Ward
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Scott A Rutherford
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Andrew T King
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Daniel Lewis
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - David J Coope
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
KETO[ 18F]FDG -VAP-P1: In vivo studies of a potential PET radiotracer for diagnosis of inflammation. Appl Radiat Isot 2023; 192:110547. [PMID: 36470157 DOI: 10.1016/j.apradiso.2022.110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022]
Abstract
The biodistribution of radiotracer peptide KETO[18F]FDG-VAP-P1 was evaluated by ex vivo radiation count in organs and in vivo PET imaging of healthy mice. The peptide was quickly eliminated by the kidneys. The local inflammation caused by a sterile polyurethane sponge was evaluated by PET images. In addition, dosimetry estimates of KETO[18F]FDG-VAP-P1 tracer are determined for mice using Monte Carlo simulations. Thus, the results of this study indicate that KETO[18F]FDG-VAP-P1 is a potential radiotracer for inflammation imaging.
Collapse
|
4
|
Wimberley C, Lavisse S, Hillmer A, Hinz R, Turkheimer F, Zanotti-Fregonara P. Kinetic modeling and parameter estimation of TSPO PET imaging in the human brain. Eur J Nucl Med Mol Imaging 2021; 49:246-256. [PMID: 33693967 PMCID: PMC8712306 DOI: 10.1007/s00259-021-05248-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET) is widely used in research studies of brain diseases that have a neuro-immune component. Quantification of TSPO PET images, however, is associated with several challenges, such as the lack of a reference region, a genetic polymorphism affecting the affinity of the ligand for TSPO, and a strong TSPO signal in the endothelium of the brain vessels. These challenges have created an ongoing debate in the field about which type of quantification is most useful and whether there is an appropriate simplified model. METHODS This review focuses on the quantification of TSPO radioligands in the human brain. The various methods of quantification are summarized, including the gold standard of compartmental modeling with metabolite-corrected input function as well as various alternative models and non-invasive approaches. Their advantages and drawbacks are critically assessed. RESULTS AND CONCLUSIONS Researchers employing quantification methods for TSPO should understand the advantages and limitations associated with each method. Suggestions are given to help researchers choose between these viable alternative methods.
Collapse
Affiliation(s)
| | - Sonia Lavisse
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, 92265, Fontenay-aux-Roses, France
| | - Ansel Hillmer
- Departments of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Departments of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, M20 3LJ, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, King's College London, De Crespigny Park, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Lee SH, Denora N, Laquintana V, Mangiatordi GF, Lopedota A, Lopalco A, Cutrignelli A, Franco M, Delre P, Song IH, Kim HW, Kim SB, Park HS, Kim K, Lee SY, Youn H, Lee BC, Kim SE. Radiosynthesis and characterization of [ 18F]BS224: a next-generation TSPO PET ligand insensitive to the rs6971 polymorphism. Eur J Nucl Med Mol Imaging 2021; 49:110-124. [PMID: 34783879 PMCID: PMC8712300 DOI: 10.1007/s00259-021-05617-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Translocator protein 18-kDa (TSPO) positron emission tomography (PET) is a valuable tool to detect neuroinflammed areas in a broad spectrum of neurodegenerative diseases. However, the clinical application of second-generation TSPO ligands as biomarkers is limited because of the presence of human rs6971 polymorphism that affects their binding. Here, we describe the ability of a new TSPO ligand, [18F]BS224, to identify abnormal TSPO expression in neuroinflammation independent of the rs6971 polymorphism. METHODS An in vitro competitive inhibition assay of BS224 was conducted with [3H]PK 11195 using membrane proteins isolated from 293FT cells expressing TSPO-wild type (WT) or TSPO-mutant A147T (Mut), corresponding to a high-affinity binder (HAB) and low-affinity binder (LAB), respectively. Molecular docking was performed to investigate the interaction of BS224 with the binding sites of rat TSPO-WT and TSPO-Mut. We synthesized a new 18F-labeled imidazopyridine acetamide ([18F]BS224) using boronic acid pinacol ester 6 or iodotoluene tosylate precursor 7, respectively, via aromatic 18F-fluorination. Dynamic PET scanning was performed up to 90 min after the injection of [18F]BS224 to healthy mice, and PET imaging data were obtained to estimate its absorbed doses in organs. To evaluate in vivo TSPO-specific uptake of [18F]BS224, lipopolysaccharide (LPS)-induced inflammatory and ischemic stroke rat models were used. RESULTS BS224 exhibited a high affinity (Ki = 0.51 nM) and selectivity for TSPO. The ratio of IC50 values of BS224 for LAB to that for HAB indicated that the TSPO binding affinity of BS224 has low binding sensitivity to the rs6971 polymorphism and it was comparable to that of PK 11195, which is not sensitive to the polymorphism. Docking simulations showed that the binding mode of BS224 is not affected by the A147T mutation and consequently supported the observed in vitro selectivity of [18F]BS224 regardless of polymorphisms. With optimal radiochemical yield (39 ± 6.8%, decay-corrected) and purity (> 99%), [18F]BS224 provided a clear visible image of the inflammatory lesion with a high signal-to-background ratio in both animal models (BPND = 1.43 ± 0.17 and 1.57 ± 0.37 in the LPS-induced inflammatory and ischemic stroke rat models, respectively) without skull uptake. CONCLUSION Our results suggest that [18F]BS224 may be a promising TSPO ligand to gauge neuroinflammatory disease-related areas in a broad range of patients irrespective of the common rs6971 polymorphism.
Collapse
Affiliation(s)
- Sang Hee Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Nunzio Denora
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | | | - Angela Lopedota
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Massimo Franco
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Pietro Delre
- Institute of Crystallography, National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy
- Department of Chemistry, University of Bari “A. Moro”, Via E. Orabona, 4, 70125 Bari, Italy
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
| | - Hye Won Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Su Bin Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
| | - Kyungmin Kim
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080 Republic of Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Seok-Yong Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080 Republic of Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, 16229 Republic of Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, 16229 Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
6
|
Schubert J, Tonietto M, Turkheimer F, Zanotti-Fregonara P, Veronese M. Supervised clustering for TSPO PET imaging. Eur J Nucl Med Mol Imaging 2021; 49:257-268. [PMID: 33779770 PMCID: PMC8712290 DOI: 10.1007/s00259-021-05309-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE This technical note seeks to act as a practical guide for implementing a supervised clustering algorithm (SVCA) reference region approach and to explain the main strengths and limitations of the technique in the context of 18-kilodalton translocator protein (TSPO) positron emission tomography (PET) studies in experimental medicine. BACKGROUND TSPO PET is the most widely used imaging technique for studying neuroinflammation in vivo in humans. Quantifying neuroinflammation with PET can be a challenging and invasive procedure, especially in frail patients, because it often requires blood sampling from an arterial catheter. A widely used alternative to arterial sampling is SVCA, which identifies the voxels with minimal specific binding in the PET images, thus extracting a pseudo-reference region for non-invasive quantification. Unlike other reference region approaches, SVCA does not require specification of an anatomical reference region a priori, which alleviates the limitation of TSPO contamination in anatomically-defined reference regions in individuals with underlying inflammatory processes. Furthermore, SVCA can be applied to any TSPO PET tracer across different neurological and neuropsychiatric conditions, providing noninvasivequantification of TSPO expression. METHODS We provide an overview of the development of SVCA as well as step-by-step instructions for implementing SVCA with suggestions for specific settings. We review the literature on SVCAapplications using first- and second- generation TSPO PET tracers and discuss potential clinically relevant limitations and applications. CONCLUSIONS The correct implementation of SVCA can provide robust and reproducible estimates of brain TSPO expression. This review encourages the standardisation of SVCA methodology in TSPO PET analysis, ultimately aiming to improve replicability and comparability across study sites.
Collapse
Affiliation(s)
- Julia Schubert
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Matteo Tonietto
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
7
|
Veronese M, Tuosto M, Marques TR, Howes O, Pascual B, Yu M, Masdeu JC, Turkheimer F, Bertoldo A, Zanotti-Fregonara P. Parametric Mapping for TSPO PET Imaging with Spectral Analysis Impulsive Response Function. Mol Imaging Biol 2021; 23:560-571. [PMID: 33475944 PMCID: PMC8277653 DOI: 10.1007/s11307-020-01575-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to investigate the use of spectral analysis (SA) for voxel-wise analysis of TSPO PET imaging studies. TSPO PET quantification is methodologically complicated by the heterogeneity of TSPO expression and its cell-dependent modulation during neuroinflammatory response. Compartmental models to account for this complexity exist, but they are unreliable at the high noise typical of voxel data. On the contrary, SA is noise-robust for parametric mapping and provides useful information about tracer kinetics with a free compartmental structure. PROCEDURES SA impulse response function (IRF) calculated at 90 min after tracer injection was used as main parameter of interest in 3 independent PET imaging studies to investigate its sensitivity to (1) a TSPO genetic polymorphism (rs6971) known to affect tracer binding in a cross-sectional analysis of healthy controls scanned with [11C]PBR28 PET; (2) TSPO density with [11C]PBR28 in a competitive blocking study with a TSPO blocker, XBD173; and (3) the higher affinity of a second radiotracer for TSPO, by using data from a head-to-head comparison between [11C]PBR28 and [11C]ER176 scans. RESULTS SA-IRF produced parametric maps of visually good quality. These were sensitive to TSPO genotype (mean relative difference between high- and mixed-affinity binders = 25 %) and TSPO availability (mean signal displacement after 90 mg oral administration of XBD173 = 39 %). Regional averages of voxel-wise IRF estimates were strongly associated with regional total distribution volume (VT) estimated with a 2-tissue compartmental model with vascular compartment (Pearson's r = 0.86 ± 0.11) but less strongly with standard 2TCM-VT (Pearson's r = 0.76 ± 0.32). Finally, SA-IRF estimates for [11C]ER176 were significantly higher than [11C]PBR28 ones, consistent with the higher amount of specific binding of the former tracer. CONCLUSIONS SA-IRF can be used for voxel-wise quantification of TSPO PET data because it generates high-quality parametric maps, it is sensitive to TSPO availability and genotype, and it accounts for the complexity of TSPO tracer kinetics with no additional assumptions.
Collapse
Affiliation(s)
- Mattia Veronese
- Department of Neuroimaging, IoPPN, King's College London, London, UK.
| | - Marcello Tuosto
- Department of Information Engineering, Padova University, Padova, Italy
| | - Tiago Reis Marques
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Belen Pascual
- Nantz National Alzheimer Center and Houston Methodist Research Neurological Institute, and Weill Cornell Medicine, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Meixiang Yu
- Nantz National Alzheimer Center and Houston Methodist Research Neurological Institute, and Weill Cornell Medicine, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Joseph C Masdeu
- Nantz National Alzheimer Center and Houston Methodist Research Neurological Institute, and Weill Cornell Medicine, 6670 Bertner Ave, Houston, TX, 77030, USA
| | | | - Alessandra Bertoldo
- Department of Information Engineering, Padova University, Padova, Italy
- Padova Neuroscience Centre, Padova University, Padova, Italy
| | - Paolo Zanotti-Fregonara
- Nantz National Alzheimer Center and Houston Methodist Research Neurological Institute, and Weill Cornell Medicine, 6670 Bertner Ave, Houston, TX, 77030, USA
| |
Collapse
|
8
|
Rizzo G, Veronese M, Tonietto M, Bodini B, Stankoff B, Wimberley C, Lavisse S, Bottlaender M, Bloomfield PS, Howes O, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A. Generalization of endothelial modelling of TSPO PET imaging: Considerations on tracer affinities. J Cereb Blood Flow Metab 2019; 39:874-885. [PMID: 29135382 PMCID: PMC6501510 DOI: 10.1177/0271678x17742004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a marker of microglia activation and the main target of positron emission tomography (PET) ligands for neuroinflammation. Previous works showed that accounting for TSPO endothelial binding improves PET quantification for [11C]PBR28, [18F]DPA714 and [11C]-R-PK11195. It is still unclear, however, whether the vascular signal is tracer-dependent. This work aims to explore the relationship between the TSPO vascular and tissue components for PET tracers with varying affinity, also assessing the impact of affinity towards the differentiability amongst kinetics and the ensuing ligand amenability to cluster analysis for the extraction of a reference region. First, we applied the compartmental model accounting for vascular binding to [11C]-R-PK11195 data from six healthy subjects. Then, we compared the [11C]-R-PK11195 vascular binding estimates with previously published values for [18F]DPA714 and [11C]PBR28. Finally, we determined the suitability for reference region extraction by calculating the angle between grey and white matter kinetics. Our results showed that endothelial binding is common to all TSPO tracers and proportional to their affinity. By consequence, grey and white matter kinetics were most similar for the radioligand with the highest affinity (i.e. [11C]PBR28), hence poorly suited for the extraction of a reference region using supervised clustering.
Collapse
Affiliation(s)
- Gaia Rizzo
- 1 Department of Information Engineering, Padova University, Padova, Italy
| | - Mattia Veronese
- 2 Department of Neuroimaging, King's College London, London, UK
| | - Matteo Tonietto
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France
| | - Benedetta Bodini
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France.,4 Assistance Publique des Hopitaux de Paris, APHP, Hôpital Saint Antoine, Paris, France
| | - Bruno Stankoff
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France.,4 Assistance Publique des Hopitaux de Paris, APHP, Hôpital Saint Antoine, Paris, France.,5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France
| | - Catriona Wimberley
- 5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France
| | - Sonia Lavisse
- 6 Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Fontenay-aux-Roses, France.,7 Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Michel Bottlaender
- 5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France.,8 Neurospin, CEA, Gif-sur-Yvette, France
| | | | - Oliver Howes
- 9 Institute of Clinical Sciences, Imperial College London, London, UK.,10 Department of Psychosis Studies, King's College London, London, UK
| | - Paolo Zanotti-Fregonara
- 11 Houston Methodist Hospital, PET Core Facility, Research Institute, Stanley H. Appel Department of Neurology, Houston, Texas, USA
| | | | - Alessandra Bertoldo
- 1 Department of Information Engineering, Padova University, Padova, Italy.,12 Padua Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Lillethorup TP, Glud AN, Landeck N, Alstrup AKO, Jakobsen S, Vang K, Doudet DJ, Brooks DJ, Kirik D, Hinz R, Sørensen JC, Landau AM. In vivo quantification of glial activation in minipigs overexpressing human α-synuclein. Synapse 2018; 72:e22060. [PMID: 30009467 DOI: 10.1002/syn.22060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022]
Abstract
Parkinson's disease is characterized by a progressive loss of substantia nigra (SN) dopaminergic neurons and the formation of Lewy bodies containing accumulated alpha-synuclein (α-syn). The pathology of Parkinson's disease is associated with neuroinflammatory microglial activation, which may contribute to the ongoing neurodegeneration. This study investigates the in vivo microglial and dopaminergic response to overexpression of α-syn. We used positron emission tomography (PET) and the 18 kDa translocator protein radioligand, [11 C](R)PK11195, to image brain microglial activation and (+)-α-[11 C]dihydrotetrabenazine ([11 C]DTBZ), to measure vesicular monoamine transporter 2 (VMAT2) availability in Göttingen minipigs following injection with recombinant adeno-associated virus (rAAV) vectors expressing either mutant A53T α-syn or green fluorescent protein (GFP) into the SN (4 rAAV-α-syn, 4 rAAV-GFP, 5 non-injected control minipigs). We performed motor symptom assessment and immunohistochemical examination of tyrosine hydroxylase (TH) and transgene expression. Expression of GFP and α-syn was observed at the SN injection site and in the striatum. We observed no motor symptoms or changes in striatal [11 C]DTBZ binding potential in vivo or striatal or SN TH staining in vitro between the groups. The mean [11 C](R)PK11195 total volume of distribution was significantly higher in the basal ganglia and cortical areas of the α-syn group than the control animals. We conclude that mutant α-syn expression in the SN resulted in microglial activation in multiple sub- and cortical regions, while it did not affect TH stains or VMAT2 availability. Our data suggest that microglial activation constitutes an early response to accumulation of α-syn in the absence of dopamine neuron degeneration.
Collapse
Affiliation(s)
- Thea Pinholt Lillethorup
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Andreas Nørgaard Glud
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Natalie Landeck
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Kim Vang
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Doris J Doudet
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark.,Department of Medicine/Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Brooks
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark.,Division of Neuroscience, Department of Medicine, Imperial College London, London, United Kingdom.,Division of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
| | - Jens Christian Sørensen
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Institute of Clinical Medicine, Aarhus University, Risskov, Denmark
| |
Collapse
|
10
|
Veronese M, Reis Marques T, Bloomfield PS, Rizzo G, Singh N, Jones D, Agushi E, Mosses D, Bertoldo A, Howes O, Roncaroli F, Turkheimer FE. Kinetic modelling of [ 11C]PBR28 for 18 kDa translocator protein PET data: A validation study of vascular modelling in the brain using XBD173 and tissue analysis. J Cereb Blood Flow Metab 2018; 38:1227-1242. [PMID: 28580888 PMCID: PMC6434448 DOI: 10.1177/0271678x17712388] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a marker of microglia activation in the central nervous system and represents the main target of radiotracers for the in vivo quantification of neuroinflammation with positron emission tomography (PET). TSPO PET is methodologically challenging given the heterogeneous distribution of TSPO in blood and brain. Our previous studies with the TSPO tracers [11C]PBR28 and [11C]PK11195 demonstrated that a model accounting for TSPO binding to the endothelium improves the quantification of PET data. Here, we performed a validation of the kinetic model with the additional endothelial compartment through a displacement study. Seven subjects with schizophrenia, all high-affinity binders, underwent two [11C]PBR28 PET scans before and after oral administration of 90 mg of the TSPO ligand XBD173. The addition of the endothelial component provided a signal compartmentalization much more consistent with the underlying biology, as only in this model, the blocking study produced the expected reduction in the tracer concentration of the specific tissue compartment, whereas the non-displaceable compartment remained unchanged. In addition, we also studied TSPO expression in vessels using 3D reconstructions of histological data of frontal lobe and cerebellum, demonstrating that TSPO positive vessels account for 30% of the vascular volume in cortical and white matter.
Collapse
Affiliation(s)
- Mattia Veronese
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
| | - Tiago Reis Marques
- Department of Psychosis Studies, IoPPN,
King’s College London, London, UK
- Institute of Clinical Sciences, Imperial
College London, London, UK
| | | | - Gaia Rizzo
- Department of Information Engineering,
Padova University, Padova, Italy
| | - Nisha Singh
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
| | - Deborah Jones
- Department of Cellular Pathology,
Salford Royal Foundation Trust, Salford, UK
| | - Erjon Agushi
- Division of Neuroscience and
Experimental Psychology, University of Manchester, UK
| | - Dominic Mosses
- Division of Neuroscience and
Experimental Psychology, University of Manchester, UK
| | - Alessandra Bertoldo
- Department of Information Engineering,
Padova University, Padova, Italy
- Padua Neuroscience Center, University of
Padova, Padova, Italy
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN,
King’s College London, London, UK
- Institute of Clinical Sciences, Imperial
College London, London, UK
| | - Federico Roncaroli
- Division of Neuroscience and
Experimental Psychology, University of Manchester, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
- Federico E Turkheimer, Centre for
Neuroimaging Sciences, IoPPN, King’s College London, P089, De Crespigny Park,
Denmark Hill, London SE5 8AF, UK.
| |
Collapse
|
11
|
García-Lorenzo D, Lavisse S, Leroy C, Wimberley C, Bodini B, Remy P, Veronese M, Turkheimer F, Stankoff B, Bottlaender M. Validation of an automatic reference region extraction for the quantification of [ 18F]DPA-714 in dynamic brain PET studies. J Cereb Blood Flow Metab 2018; 38:333-346. [PMID: 28178885 PMCID: PMC5951011 DOI: 10.1177/0271678x17692599] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 12/11/2022]
Abstract
There is a great need for a non-invasive methodology enabling the quantification of translocator protein overexpression in PET clinical imaging. [18F]DPA-714 has emerged as a promising translocator protein radiotracer as it is fluorinated, highly specific and returned reliable quantification using arterial input function. Cerebellum gray matter was proposed as reference region for simplified quantification; however, this method cannot be used when inflammation involves cerebellum. Here we adapted and validated a supervised clustering (supervised clustering algorithm (SCA)) for [18F]DPA-714 analysis. Fourteen healthy subjects genotyped for translocator protein underwent an [18F]DPA-714 PET, including 10 with metabolite-corrected arterial input function and three for a test-retest assessment. Two-tissue compartmental modelling provided [Formula: see text] estimates that were compared to either [Formula: see text] or [Formula: see text] generated by Logan analysis (using supervised clustering algorithm extracted reference region or cerebellum gray matter). The supervised clustering algorithm successfully extracted a pseudo-reference region with similar reliability using classes that were defined using either all subjects, or separated into HAB and MAB subjects. [Formula: see text], [Formula: see text] and [Formula: see text] were highly correlated (ICC of 0.91 ± 0.05) but [Formula: see text] were ∼26% higher and less variable than [Formula: see text]. Reproducibility was good with 5% variability in the test-retest study. The clustering technique for [18F]DPA-714 provides a simple, robust and reproducible technique that can be used for all neurological diseases.
Collapse
Affiliation(s)
- Daniel García-Lorenzo
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de la Moelle Epinière, ICM, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Sonia Lavisse
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, Fontenay-aux-Roses, France
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Claire Leroy
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Service Hospitalier Frédéric Joliot, Orsay, France
- Imagerie Moléculaire in Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, Orsay, France
| | - Catriona Wimberley
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Service Hospitalier Frédéric Joliot, Orsay, France
- Imagerie Moléculaire in Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, Orsay, France
| | - Benedetta Bodini
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de la Moelle Epinière, ICM, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Philippe Remy
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, Fontenay-aux-Roses, France
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
- Centre Expert Parkinson, Neurologie, CHU Henri Mondor, Assistance Publique Hôpitaux de Paris and Université Paris-Est, Créteil, France
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Bruno Stankoff
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de la Moelle Epinière, ICM, Hôpital de la Pitié Salpêtrière, Paris, France
- Hôpital Saint Antoine, AP-HP, Paris, France
| | - Michel Bottlaender
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Service Hospitalier Frédéric Joliot, Orsay, France
- Imagerie Moléculaire in Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, Orsay, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM),Neurospin, UNIACT, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Donat CK, Mirzaei N, Tang SP, Edison P, Sastre M. Imaging of Microglial Activation in Alzheimer's Disease by [ 11C]PBR28 PET. Methods Mol Biol 2018; 1750:323-339. [PMID: 29512083 DOI: 10.1007/978-1-4939-7704-8_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Deficits in neuronal function and synaptic plasticity in Alzheimer's disease (AD) are believed to be linked to microglial activation. A hallmark of reactive microglia is the upregulation of mitochondrial translocator protein (TSPO) expression. Positron emission tomography (PET) is a nuclear imaging technique that measures the distribution of trace doses of radiolabeled compounds in the body over time. PET imaging using the 2nd generation TSPO tracer [11C]PBR28 provides an opportunity for accurate visualization and quantification of changes in microglial density in transgenic mouse models of Alzheimer's disease (AD). Here, we describe the methodology for the in vivo use of [11C]PBR28 in AD patients and the 5XFAD transgenic mouse model of AD and compare the results against healthy individuals and wild-type controls. To confirm the results, autoradiography with [3H]PBR28 and immunochemistry was carried out in the same mouse brains. Our data shows that [11C]PBR28 is suitable as a tool for in vivo monitoring of microglial activation and may be useful to assess treatment response in future studies.
Collapse
Affiliation(s)
- Cornelius K Donat
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Nazanin Mirzaei
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | | | - Paul Edison
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Magdalena Sastre
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
13
|
Vomacka L, Albert NL, Lindner S, Unterrainer M, Mahler C, Brendel M, Ermoschkin L, Gosewisch A, Brunegraf A, Buckley C, Kümpfel T, Rupprecht R, Ziegler S, Kerschensteiner M, Bartenstein P, Böning G. TSPO imaging using the novel PET ligand [ 18F]GE-180: quantification approaches in patients with multiple sclerosis. EJNMMI Res 2017; 7:89. [PMID: 29150726 PMCID: PMC5693838 DOI: 10.1186/s13550-017-0340-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023] Open
Abstract
Background PET ligands targeting the translocator protein (TSPO) represent promising tools to visualise neuroinflammation. Here, we analysed parameters obtained in dynamic and static PET images using the novel TSPO ligand [18F]GE-180 in patients with relapsing remitting multiple sclerosis (RRMS) and an approach for semi-quantitative assessment of this disease in clinical routine. Seventeen dynamic [18F]GE-180 PET scans of RRMS patients were evaluated (90 min). A pseudo-reference region (PRR) was defined after identification of the least disease-affected brain area by voxel-based comparison with six healthy controls (HC) and upon exclusion of voxels suspected of being affected in static 60–90 min p.i. images. Standardised uptake value ratios (SUVR) obtained from static images normalised to PRR were correlated to the distribution volume ratios (DVR) derived from dynamic data with Logan reference tissue model. Results Group comparison with HC revealed white matter and thalamus as most affected regions. Fewest differences were found in grey matter, and normalisation to frontal cortex (FC) yielded the greatest reduction in variability of healthy grey and white matter. Hence, FC corrected for affected voxels was chosen as PRR, leading to time-activity curves of FC which were congruent to HC data (SUV60–90 0.37, U test P = 0.42). SUVR showed a very strong correlation with DVR (Pearson ρ > 0.9). Focal MS lesions exhibited a high SUVR (range, 1.3–3.2). Conclusions This comparison with parameters from dynamic data suggests that SUVR normalised to corrected frontal cortex as PRR is suitable for the quantification of [18F]GE-180 uptake in lesions and different brain regions of RRMS patients. This efficient diagnostic protocol based on static [18F]GE-180 PET scans acquired 60–90 min p.i. allows the semi-quantitative assessment of neuroinflammation in RRMS patients in clinical routine.
Collapse
Affiliation(s)
- Lena Vomacka
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Nathalie Lisa Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christoph Mahler
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Larissa Ermoschkin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Astrid Gosewisch
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Anika Brunegraf
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | | | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
14
|
Sridharan S, Lepelletier FX, Trigg W, Banister S, Reekie T, Kassiou M, Gerhard A, Hinz R, Boutin H. Comparative Evaluation of Three TSPO PET Radiotracers in a LPS-Induced Model of Mild Neuroinflammation in Rats. Mol Imaging Biol 2017; 19:77-89. [PMID: 27481358 PMCID: PMC5209405 DOI: 10.1007/s11307-016-0984-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Purpose Over the past 20 years, neuroinflammation (NI) has increasingly been recognised as having an important role in many neurodegenerative diseases, including Alzheimer’s disease. As such, being able to image NI non-invasively in patients is critical to monitor pathological processes and potential therapies targeting neuroinflammation. The translocator protein (TSPO) has proven a reliable NI biomarker for positron emission tomography (PET) imaging. However, if TSPO imaging in acute conditions such as stroke provides strong and reliable signals, TSPO imaging in neurodegenerative diseases has proven more challenging. Here, we report results comparing the recently developed TSPO tracers [18F]GE-180 and [18F]DPA-714 with (R)-[11C]PK11195 in a rodent model of subtle focal inflammation. Procedures Adult male Wistar rats were stereotactically injected with 1 μg lipopolysaccharide in the right striatum. Three days later, animals underwent a 60-min PET scan with (R)-[11C]PK11195 and [18F]GE-180 (n = 6) or [18F]DPA-714 (n = 6). Ten animals were scanned with either [18F]GE-180 (n = 5) or [18F]DPA-714 (n = 5) only. Kinetic analysis of PET data was performed using the simplified reference tissue model (SRTM) with a contralateral reference region or a novel data-driven input to estimate binding potential BPND. Autoradiography and immunohistochemistry were performed to confirm in vivo results. Results At 40–60 min post-injection, [18F]GE-180 dual-scanned animals showed a significantly increased core/contralateral uptake ratio vs. the same animals scanned with (R)-[11C]PK11195 (3.41 ± 1.09 vs. 2.43 ± 0.39, p = 0.03); [18]DPA-714 did not (2.80 ± 0.69 vs. 2.26 ± 0.41). Kinetic modelling with a contralateral reference region identified significantly higher binding potential (BPND) in the core of the LPS injection site with [18F]GE-180 but not with [18F]DPA-714 vs. (R)-[11C]PK11195. A cerebellar reference region and novel data-driven input to the SRTM were unable to distinguish differences in tracer BPND. Conclusions Second-generation TSPO-PET tracers are able to accurately detect mild-level NI. In this model, [18F]GE-180 shows a higher core/contralateral ratio and BPND when compared to (R)-[11C]PK11195, while [18F]DPA-714 did not. Electronic supplementary material The online version of this article (doi:10.1007/s11307-016-0984-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sujata Sridharan
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK
| | | | - William Trigg
- GE Healthcare, The Grove Centre, Amersham, Buckinghamshire, UK
| | - Samuel Banister
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tristan Reekie
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia.,Faculty of Health Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alexander Gerhard
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK
| | - Hervé Boutin
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK.
| |
Collapse
|
15
|
Lagarde J, Sarazin M, Bottlaender M. In vivo PET imaging of neuroinflammation in Alzheimer's disease. J Neural Transm (Vienna) 2017; 125:847-867. [PMID: 28516240 DOI: 10.1007/s00702-017-1731-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that neuroinflammation contributes to the pathophysiology of many neurodegenerative diseases, especially Alzheimer's disease (AD). Molecular imaging by PET may be a useful tool to assess neuroinflammation in vivo, thus helping to decipher the complex role of inflammatory processes in the pathophysiology of neurodegenerative diseases and providing a potential means of monitoring the effect of new therapeutic approaches. For this objective, the main target of PET studies is the 18 kDa translocator protein (TSPO), as it is overexpressed by activated microglia. In the present review, we describe the most widely used PET tracers targeting the TSPO, the methodological issues in tracer quantification and summarize the results obtained by TSPO PET imaging in AD, as well as in neurodegenerative disorders associated with AD, in psychiatric disorders and ageing. We also briefly describe alternative PET targets and imaging modalities to study neuroinflammation. Lastly, we question the meaning of PET imaging data in the context of a highly complex and multifaceted role of neuroinflammation in neurodegenerative diseases. This overview leads to the conclusion that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies.
Collapse
Affiliation(s)
- Julien Lagarde
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Michel Bottlaender
- UNIACT, NeuroSpin, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91191, Gif-sur-Yvette, France. .,Laboratoire Imagerie Moléculaire in Vivo, UMR 1023, Service Hospitalier Frédéric Joliot, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91400, Orsay, France.
| |
Collapse
|
16
|
Scott G, Mahmud M, Owen DR, Johnson MR. Microglial positron emission tomography (PET) imaging in epilepsy: Applications, opportunities and pitfalls. Seizure 2017; 44:42-47. [DOI: 10.1016/j.seizure.2016.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022] Open
|
17
|
|