1
|
Briolay T, Fresquet J, Meyer D, Kerfelec B, Chames P, Ishow E, Blanquart C. Specific Targeting of Mesothelin-Expressing Malignant Cells Using Nanobody-Functionalized Magneto-Fluorescent Nanoassemblies. Int J Nanomedicine 2024; 19:633-650. [PMID: 38269255 PMCID: PMC10807453 DOI: 10.2147/ijn.s435787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Most current anti-cancer therapies are associated with major side effects due to a lack of tumor specificity. Appropriate vectorization of drugs using engineered nanovectors is known to increase local concentration of therapeutic molecules in tumors while minimizing their side effects. Mesothelin (MSLN) is a well-known tumor associated antigen overexpressed in many malignancies, in particular in malignant pleural mesothelioma (MPM), and various MSLN-targeting anticancer therapies are currently evaluated in preclinical and clinical assays. In this study, we described, for the first time, the functionalization of fluorescent organic nanoassemblies (NA) with a nanobody (Nb) targeting MSLN for the specific targeting of MSLN expressing MPM cancer cells. Methods Cell lines from different cancer origin expressing or not MSLN were used. An Nb directed against MSLN was coupled to fluorescent NA using click chemistry. A panel of endocytosis inhibitors was used to study targeted NA internalization by cells. Cancer cells were grown in 2D or 3D and under a flow to evaluate the specificity of the targeted NA. Binding and internalization of the targeted NA were studied using flow cytometry, confocal microscopy and transmission electron microscopy. Results We show that the targeted NA specifically bind to MSLN-expressing tumor cells. Moreover, such functionalized NA appear to be internalized more rapidly and in significantly larger proportions compared to naked ones in MSLN+ MPM cells, thereby demonstrating both the functionality and interest of the active targeting strategy. We demonstrated that targeted NA are mainly internalized through a clathrin-independent/dynamin-dependent endocytosis pathway and are directed to lysosomes for degradation. A 3D cell culture model based on MSLN-expressing multicellular tumor spheroids reveals NA penetration in the first superficial layers. Conclusion Altogether, these results open the path to novel anticancer strategies based on MSLN-activated internalization of NA incorporating drugs to promote specific accumulation of active treatments in tumors.
Collapse
Affiliation(s)
- Tina Briolay
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, Nantes, F-44000, France
| | - Judith Fresquet
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, Nantes, F-44000, France
| | - Damien Meyer
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Brigitte Kerfelec
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Patrick Chames
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Eléna Ishow
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes, F-44000, France
| | - Christophe Blanquart
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, Nantes, F-44000, France
| |
Collapse
|
2
|
Conte M, De Feo MS, Frantellizzi V, Tomaciello M, Marampon F, Evangelista L, Filippi L, De Vincentis G. Radio-Guided Lung Surgery: A Feasible Approach for a Cancer Precision Medicine. Diagnostics (Basel) 2023; 13:2628. [PMID: 37627887 PMCID: PMC10453216 DOI: 10.3390/diagnostics13162628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Radio-guided surgery is a reliable approach used for localizing ground-glass opacities, lung nodules, and metastatic lymph nodes. Lung nodules, lymph node metastatic involvement, and ground-glass opacities often represent a challenge for surgical management and clinical work-up. METHODS PubMed research was conducted from January 1997 to June 2023 using the keywords "radioguided surgery and lung cancer". RESULTS Different studies were conducted with different tracers: technetium-99m-albumin macroaggregates, cyanoacrylate combined to technetium-99m-sulfur colloid, indium-111-pentetreotide, and fluorine-18-deoxyglucose. A study proposed naphthalocyanine radio-labeled with copper-64. Radio-guided surgery has been demonstrated to be a reliable approach in localizing a lesion, and has a low radiological burden for personnel exposure and low morbidity. The lack of necessity to conduct radio-guided surgery under fluoroscopy or echography makes this radio-guided surgery an easy way of performing precise surgical procedures. CONCLUSIONS Radio-guided surgery is a feasible approach useful for the intraoperative localization of ground-glass opacities, lung nodules, and metastatic lymph nodes. It is a valid alternative to the existing approaches due to its low cost, associated low morbidity, the possibility to perform the procedure after several hours, the low radiation dose applied, and the small amount of time that is required to perform it.
Collapse
Affiliation(s)
- Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Miriam Tomaciello
- Department of Radiological Sciences, Oncology and Anatomo Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomo Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo Pathology, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
3
|
Benloucif A, Meyer D, Balasse L, Goubard A, Danner L, Bouhlel A, Castellano R, Guillet B, Chames P, Kerfelec B. Rapid nanobody-based imaging of mesothelin expressing malignancies compatible with blocking therapeutic antibodies. Front Immunol 2023; 14:1200652. [PMID: 37388728 PMCID: PMC10303918 DOI: 10.3389/fimmu.2023.1200652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction Mesothelin (MSLN) is overexpressed in a wide variety of cancers with few therapeutic options and has recently emerged as an attractive target for cancer therapy, with a large number of approaches currently under preclinical and clinical investigation. In this respect, developing mesothelin specific tracers as molecular companion tools for predicting patient eligibility, monitoring then response to mesothelin-targeting therapies, and tracking the evolution of the disease or for real-time visualisation of tumours during surgery is of growing importance. Methods We generated by phage display a nanobody (Nb S1) and used enzymatic approaches were used to site-directed conjugate Nb S1 with either ATTO 647N fluorochrome or NODAGA chelator for fluorescence and positron emission tomography imaging (PET) respectively. Results We demonstrated that Nb S1 displays a high apparent affinity and specificity for human mesothelin and demonstrated that the binding, although located in the membrane distal domain of mesothelin, is not impeded by the presence of MUC16, the only known ligand of mesothelin, nor by the therapeutic antibody amatuximab. In vivo experiments showed that both ATTO 647N and [68Ga]Ga-NODAGA-S1 rapidly and specifically accumulated in mesothelin positive tumours compared to mesothelin negative tumours or irrelevant Nb with a high tumour/background ratio. The ex vivo biodistribution profile analysis also confirmed a significantly higher uptake of Nb S1 in MSLN-positive tumours than in MSLNlow tumours. Conclusion We demonstrated for the first time the use of an anti-MSLN nanobody as PET radiotracer for same day imaging of MSLN+ tumours, targeting an epitope compatible with the monitoring of amatuximab-based therapies and current SS1-derived-drug conjugates.
Collapse
Affiliation(s)
- Abdennour Benloucif
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Damien Meyer
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Laure Balasse
- Aix Marseille Univ, CNRS, Centre Européen de Recherche en Imagerie Medicale (CERIMED), Marseille, France
- Aix-marseille University, INSERM, INRAE, Centre de recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Armelle Goubard
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, TrGET Preclinical Platform, Marseille, France
| | - Lucile Danner
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Ahlem Bouhlel
- Aix Marseille Univ, CNRS, Centre Européen de Recherche en Imagerie Medicale (CERIMED), Marseille, France
- Aix-marseille University, INSERM, INRAE, Centre de recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Rémy Castellano
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, TrGET Preclinical Platform, Marseille, France
| | - Benjamin Guillet
- Aix Marseille Univ, CNRS, Centre Européen de Recherche en Imagerie Medicale (CERIMED), Marseille, France
- Aix-marseille University, INSERM, INRAE, Centre de recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Patrick Chames
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Brigitte Kerfelec
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
4
|
Melendez-Alafort L, Ferro-Flores G, De Nardo L, Ocampo-García B, Bolzati C. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Parakh S, Lee ST, Gan HK, Scott AM. Radiolabeled Antibodies for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:1454. [PMID: 35326605 PMCID: PMC8946248 DOI: 10.3390/cancers14061454] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Radioimmunoconjugates consist of a monoclonal antibody (mAb) linked to a radionuclide. Radioimmunoconjugates as theranostics tools have been in development with success, particularly in hematological malignancies, leading to approval by the US Food and Drug Administration (FDA) for the treatment of non-Hodgkin's lymphoma. Radioimmunotherapy (RIT) allows for reduced toxicity compared to conventional radiation therapy and enhances the efficacy of mAbs. In addition, using radiolabeled mAbs with imaging methods provides critical information on the pharmacokinetics and pharmacodynamics of therapeutic agents with direct relevance to the optimization of the dose and dosing schedule, real-time antigen quantitation, antigen heterogeneity, and dynamic antigen changes. All of these parameters are critical in predicting treatment responses and identifying patients who are most likely to benefit from treatment. Historically, RITs have been less effective in solid tumors; however, several strategies are being investigated to improve their therapeutic index, including targeting patients with minimal disease burden; using pre-targeting strategies, newer radionuclides, and improved labeling techniques; and using combined modalities and locoregional application. This review provides an overview of the radiolabeled intact antibodies currently in clinical use and those in development.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, Heidelberg, VIC 3084, Australia; (S.P.); (H.K.G.)
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
| | - Sze Ting Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Hui K. Gan
- Department of Medical Oncology, Heidelberg, VIC 3084, Australia; (S.P.); (H.K.G.)
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3010, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3010, Australia
| |
Collapse
|