1
|
Kanaan RA, Oliver G, Dharan A, Sendi S, Maier A, Mohebbi M, Ng C, Back SE, Kalivas P, Berk M. A multi-centre, double-blind, 12-week, randomized, placebo-controlled trial of adjunctive N-Acetylcysteine for treatment-resistant PTSD. Psychiatry Res 2023; 327:115398. [PMID: 37540942 DOI: 10.1016/j.psychres.2023.115398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND PTSD may involve oxidative stress, and N-acetylcysteine (NAC) may reduce the impact of oxidative stress in the brain. This study aims to investigate the efficacy of adjuvant NAC in people with treatment-resistant PTSD. METHODS A multicentre, randomised, double-blind, placebo-controlled trial for adults with PTSD unresponsive to first-line treatment. The intervention was either oral NAC 2.7 g/day or placebo for 12 weeks. The primary outcome was change in Clinician-Administered PTSD Scale for DSM-5 (CAPS-5) at 12 weeks compared with baseline. Secondary outcomes included depression and substance craving. Follow-up measures were obtained at 16 and 64-weeks. RESULTS 133 patients were assessed, with 105 randomised; 81 participants completed the 12-week trial, 79 completed week-16 follow-up, and 21 completed week-64 follow-up. There were no significant differences between those taking NAC and those taking placebo in CAPS-5 scores at week 12, nor in secondary outcomes. Significant between-group differences were observed at week 64 in craving duration (Cohen's d = 1.61) and craving resistance (Cohen's d = 1.03), both in favour of NAC. CONCLUSION This was the first multicentre, double-blind, randomised, placebo-controlled trial of adjunctive NAC for treatment-resistant PTSD. No benefit of NAC was observed in this group beyond that provided by placebo at end of the trial. TRIAL REGISTRATION ACTRN12618001784202, retrospectively registered 31/10/2018, URL: http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=376004.
Collapse
Affiliation(s)
- Richard A Kanaan
- University of Melbourne, Department of Psychiatry, Austin Health, Heidelberg, VIC, Australia.
| | - Gina Oliver
- University of Melbourne, Department of Psychiatry, Austin Health, Heidelberg, VIC, Australia; University of Melbourne, Department of Psychiatry, The Melbourne Clinic, Richmond, VIC, Australia
| | - Anita Dharan
- University of Melbourne, Department of Psychiatry, Austin Health, Heidelberg, VIC, Australia
| | - Shahbaz Sendi
- University of Melbourne, Department of Psychiatry, Austin Health, Heidelberg, VIC, Australia
| | - Alice Maier
- University of Melbourne, Department of Psychiatry, Austin Health, Heidelberg, VIC, Australia
| | - Mohammadreza Mohebbi
- School of Medicine, Barwon Health, Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia; Deakin University, Faculty of Health, Biostatistics Unit, Geelong, Australia
| | - Chee Ng
- University of Melbourne, Department of Psychiatry, The Melbourne Clinic, Richmond, VIC, Australia
| | - Sudie E Back
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Peter Kalivas
- Department of Neuroscience, Medical University of South Carolina, USA; Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Michael Berk
- School of Medicine, Barwon Health, Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Peruzzolo TL, Pinto JV, Roza TH, Shintani AO, Anzolin AP, Gnielka V, Kohmann AM, Marin AS, Lorenzon VR, Brunoni AR, Kapczinski F, Passos IC. Inflammatory and oxidative stress markers in post-traumatic stress disorder: a systematic review and meta-analysis. Mol Psychiatry 2022; 27:3150-3163. [PMID: 35477973 DOI: 10.1038/s41380-022-01564-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Post-traumatic stress disorder (PTSD) has been associated with persistent, low-degree inflammation, which could explain the increased prevalence of autoimmune conditions and accelerated aging among patients. The aim of the present study is to assess which inflammatory and oxidative stress markers are associated with PTSD. We carried out a meta-analytic and meta-regression analysis based on a systematic review of studies comparing inflammatory and oxidative stress markers between patients with PTSD and controls. We undertook meta-analyses whenever values of inflammatory and oxidative stress markers were available in two or more studies. Overall, 28,008 abstracts were identified, and 54 studies were included, with a total of 8394 participants. The Newcastle-Ottawa Quality Assessment Scale was used to evaluate the quality of the studies. Concentrations of C-reactive protein (SMD = 0.64; 95% CI: 0.21 to 1.06; p = 0.0031; k = 12), interleukin 6 (SMD = 0.94; 95% CI: 0.36 to 1.52; p = 0.0014; k = 32), and tumor necrosis factor-α (SMD = 0.89; 95% CI: 0.23 to 1.55; p = 0.0080; k = 24) were significantly increased in patients with PTSD in comparison with healthy controls. Interleukin 1β levels almost reached the threshold for significance (SMD = 1.20; 95% CI: -0.04 to 2.44; p = 0.0569; k = 15). No oxidative stress marker was associated with PTSD. These findings may explain why PTSD is associated with accelerated aging and illnesses in which immune activation has a key role, such as cardiovascular diseases and diabetes. In addition, they pointed to the potential role of inflammatory markers as therapeutic targets.
Collapse
Affiliation(s)
- Tatiana Lauxen Peruzzolo
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jairo Vinícius Pinto
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Thiago Henrique Roza
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Augusto Ossamu Shintani
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Paula Anzolin
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Gnielka
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Moura Kohmann
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Salvador Marin
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vitória Ruschel Lorenzon
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Russowsky Brunoni
- Centro de Pesquisas Clínicas e Epidemiológicas, Hospital Universitário, Universidade de São Paulo, São Paulo, Brasil.,Departamentos de Clínica Médica e Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil.,Instituto Nacional de Biomarcadores em Psiquiatria (IMBION), Laboratory of Neurosciences (LIM-27), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Flávio Kapczinski
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Ives Cavalcante Passos
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil. .,Department of Psychiatry, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Stress resilience-associated behaviors following predator scent stress are accompanied by upregulated nucleus accumbens mGlu5 transcription in female Sprague Dawley rats. Behav Brain Res 2022; 436:114090. [DOI: 10.1016/j.bbr.2022.114090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 12/27/2022]
|
4
|
Maier A, Dharan A, Oliver G, Berk M, Redston S, Back SE, Kalivas P, Ng C, Kanaan RA. A multi-centre, double-blind, 12-week, randomized, placebo-controlled trial to assess the efficacy of adjunctive N-Acetylcysteine for treatment-resistant PTSD: a study protocol. BMC Psychiatry 2020; 20:397. [PMID: 32762663 PMCID: PMC7409699 DOI: 10.1186/s12888-020-02793-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/20/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Most patients with Posttraumatic Stress Disorder (PTSD) suffer residual symptoms following first-line treatment. Oxidative stress has been implicated in the pathophysiology of PTSD. N-acetylcysteine (NAC) is a precursor of the brain's primary antioxidant, glutathione, and may diminish oxidative cellular damage. An 8-week pilot study of NAC in veterans with PTSD found that symptoms were significantly reduced in the NAC group compared to placebo. This study aims to confirm these findings with a larger sample in a double-blind, placebo-controlled trial to further explore the efficacy of NAC as an adjunctive therapy in treatment-resistant PTSD. METHODS A multicentre, randomised, double-blind, placebo-controlled trial for adult patients who still meet criteria for PTSD following first-line treatment. The intervention comprises either NAC as a fixed dose regime of 2.7 g/day (900 mg three times daily) administered orally for 12 weeks, or placebo. Standard care for PTSD will continue in addition, including other pharmacotherapies. Detailed clinical data will be collected at randomisation and weeks 4, 8, 12, 16, and 64 post-randomisation, with self-report measures completed weekly from baseline to 16 weeks and at 64 weeks post-randomisation. Blood-based biomarkers will be collected at baseline and 12 weeks to assess the mechanism of effect. The primary outcome measure will be change in Clinician-Administered PTSD Scale for DSM-5 at 12 weeks compared with baseline. Secondary outcomes will be change in quality of life, depression, anxiety, substance use and craving, and somatic symptoms. With 126 completed participants (63 per arm), the study is powered at 80% to detect a true difference in the primary outcome measure using a two-tailed analysis with alpha = 0.05, beta = 0.2. DISCUSSION This is the first multicentre, double blind, randomised, placebo-controlled trial of adjunctive NAC for treatment-resistant PTSD. NAC has an established safety profile, is readily available and easy to administer, and has a favourable tolerability profile, therefore making it an attractive adjunctive therapy. Inclusion of blood analyses to assess potential target engagement biomarkers of oxidative stress and neuroinflammation may help gauge the biological mechanisms of effect of NAC. TRIAL REGISTRATION ACTRN12618001784202, retrospectively registered 31/10/2018, URL: http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=376004 .
Collapse
Affiliation(s)
- Alice Maier
- grid.1008.90000 0001 2179 088XDepartment of Psychiatry, Austin Health, University of Melbourne, LTB10, 145 Studley Road, Heidelberg, VIC 3084 Australia
| | - Anita Dharan
- grid.1008.90000 0001 2179 088XDepartment of Psychiatry, Austin Health, University of Melbourne, LTB10, 145 Studley Road, Heidelberg, VIC 3084 Australia
| | - Gina Oliver
- grid.1008.90000 0001 2179 088XDepartment of Psychiatry, The Melbourne Clinic, University of Melbourne, Richmond, VIC Australia
| | - Michael Berk
- IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Barwon Health, Geelong, Australia ,grid.1008.90000 0001 2179 088XOrygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Suzy Redston
- grid.410678.cAustin Health, Heidelberg, VIC Australia
| | - Sudie E. Back
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina; Ralph H. Johnson VA Medical Center, Charleston, SC USA
| | - Peter Kalivas
- grid.259828.c0000 0001 2189 3475Department of Neuroscience, Medical University of South Carolina, Charleston, USA ,grid.280644.c0000 0000 8950 3536Ralph H Johnson VA Medical Center, Charleston, SC USA
| | - Chee Ng
- grid.1008.90000 0001 2179 088XDepartment of Psychiatry, The Melbourne Clinic, University of Melbourne, Richmond, VIC Australia
| | - Richard A. Kanaan
- grid.1008.90000 0001 2179 088XDepartment of Psychiatry, Austin Health, University of Melbourne, LTB10, 145 Studley Road, Heidelberg, VIC 3084 Australia ,grid.410678.cAustin Health, Heidelberg, VIC Australia
| |
Collapse
|
5
|
Azevedo H, Ferreira M, Mascarello A, Osten P, Guimarães CRW. Brain-wide mapping of c-fos expression in the single prolonged stress model and the effects of pretreatment with ACH-000029 or prazosin. Neurobiol Stress 2020; 13:100226. [PMID: 32478146 PMCID: PMC7251424 DOI: 10.1016/j.ynstr.2020.100226] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/12/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health condition that is triggered by a stressful event, with symptoms including exaggerated startle response, intrusive traumatic memories and nightmares. The single prolonged stress (SPS) is a multimodal stress protocol that comprises a sequential exposure to physical restraint, forced swimming, predator scent and ether anesthesia. This procedure generates behavioral and neurobiological alterations that resemble clinical findings of PTSD, and thus it is commonly used to model the disease in rodents. Here, we applied c-fos mapping to produce a comprehensive view of stress-activated brain regions in mice exposed to SPS alone or to SPS after oral pretreatment with the serotonin-noradrenaline receptor dual modulator ACH-000029 or the α1-adrenergic blocker prazosin. The SPS protocol evoked c-fos expression in several brain regions that control the stress-anxiety response, including the central and medial amygdala, the bed nucleus of the stria terminalis, the pallidum, the paraventricular hypothalamus, the intermediodorsal, paraventricular and central medial thalamic nuclei, the periaqueductal gray, the lateral habenula and the cuneiform nucleus. These effects were partially blocked by pretreatment with prazosin but completely prevented by ACH-000029. Collectively, these findings contribute to the brain-wide characterization of neural circuits involved in PTSD-related stress responses. Furthermore, the identification of brain areas regulated by ACH-000029 and prazosin revealed regions in which SPS-induced activation may depend on the combined or isolated action of the noradrenergic and serotonergic systems. Finally, the dual regulation of serotonin and α1 receptors by ACH-000029 might represent a potential pharmacotherapy that can be applied in the peri-trauma or early post-trauma period to mitigate the development of symptoms in PTSD patients.
Collapse
Affiliation(s)
- Hatylas Azevedo
- Aché Laboratórios Farmacêuticos, Guarulhos, São Paulo, Brazil
| | - Marcos Ferreira
- Aché Laboratórios Farmacêuticos, Guarulhos, São Paulo, Brazil
| | | | - Pavel Osten
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, USA.,Certerra Inc., Cold Spring Harbor, NY, USA
| | | |
Collapse
|
6
|
Abstract
Understanding the neurobiological basis of post-traumatic stress disorder (PTSD) is fundamental to accurately diagnose this neuropathology and offer appropriate treatment options to patients. The lack of pharmacological effects, too often observed with the most currently used drugs, the selective serotonin reuptake inhibitors (SSRIs), makes even more urgent the discovery of new pharmacological approaches. Reliable animal models of PTSD are difficult to establish because of the present limited understanding of the PTSD heterogeneity and of the influence of various environmental factors that trigger the disorder in humans. We summarize knowledge on the most frequently investigated animal models of PTSD, focusing on both their behavioral and neurobiological features. Most of them can reproduce not only behavioral endophenotypes, including anxiety-like behaviors or fear-related avoidance, but also neurobiological alterations, such as glucocorticoid receptor hypersensitivity or amygdala hyperactivity. Among the various models analyzed, we focus on the social isolation mouse model, which reproduces some deficits observed in humans with PTSD, such as abnormal neurosteroid biosynthesis, changes in GABAA receptor subunit expression and lack of pharmacological response to benzodiazepines. Neurosteroid biosynthesis and its interaction with the endocannabinoid system are altered in PTSD and are promising neuronal targets to discover novel PTSD agents. In this regard, we discuss pharmacological interventions and we highlight exciting new developments in the fields of research for novel reliable PTSD biomarkers that may enable precise diagnosis of the disorder and more successful pharmacological treatments for PTSD patients.
Collapse
|
7
|
Pinna G. Animal Models of PTSD: The Socially Isolated Mouse and the Biomarker Role of Allopregnanolone. Front Behav Neurosci 2019; 13:114. [PMID: 31244621 PMCID: PMC6579844 DOI: 10.3389/fnbeh.2019.00114] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating undertreated condition that affects 8%-13% of the general population and 20%-30% of military personnel. Currently, there are no specific medications that reduce PTSD symptoms or biomarkers that facilitate diagnosis, inform treatment selection or allow monitoring drug efficacy. PTSD animal models rely on stress-induced behavioral deficits that only partially reproduce PTSD neurobiology. PTSD heterogeneity, including comorbidity and symptoms overlap with other mental disorders, makes this attempt even more complicated. Allopregnanolone, a neurosteroid that positively, potently and allosterically modulates GABAA receptors and, by this mechanism, regulates emotional behaviors, is mainly synthesized in brain corticolimbic glutamatergic neurons. In PTSD patients, allopregnanolone down-regulation correlates with increased PTSD re-experiencing and comorbid depressive symptoms, CAPS-IV scores and Simms dysphoria cluster scores. In PTSD rodent models, including the socially isolated mouse, decrease in corticolimbic allopregnanolone biosynthesis is associated with enhanced contextual fear memory and impaired fear extinction. Allopregnanolone, its analogs or agents that stimulate its synthesis offer treatment approaches for facilitating fear extinction and, in general, for neuropsychopathologies characterized by a neurosteroid biosynthesis downregulation. The socially isolated mouse model reproduces several other deficits previously observed in PTSD patients, including altered GABAA receptor subunit subtypes and lack of benzodiazepines pharmacological efficacy. Transdiagnostic behavioral features, including expression of anxiety-like behavior, increased aggression, a behavioral component to reproduce behavioral traits of suicidal behavior in humans, as well as alcohol consumption are heightened in socially isolated rodents. Potentials for assessing novel biomarkers to predict, diagnose, and treat PTSD more efficiently are discussed in view of developing a precision medicine for improved PTSD pharmacological treatments.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Paul MA, Love RJ, Jetly R, Richardson JD, Lanius RA, Miller JC, MacDonald M, Rhind SG. Blunted Nocturnal Salivary Melatonin Secretion Profiles in Military-Related Posttraumatic Stress Disorder. Front Psychiatry 2019; 10:882. [PMID: 31866882 PMCID: PMC6910089 DOI: 10.3389/fpsyt.2019.00882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Sleep disturbances are a hallmark of posttraumatic stress disorder (PTSD), yet few studies have evaluated the role of dysregulated endogenous melatonin secretion in this condition. Methods: This study compared the sleep quality and nocturnal salivary melatonin profiles of Canadian Armed Forces (CAF) personnel diagnosed with PTSD, using the Clinician Administered PTSD Scale (CAPS score ≥50), with two healthy CAF control groups; comprising, a "light control" (LC) group with standardized evening light exposure and "normal control" (NC) group without light restriction. Participants were monitored for 1-week using wrist actigraphy to assess sleep quality, and 24-h salivary melatonin levels were measured (every 2h) by immunoassay on the penultimate day in a dim-light (< 5 lux) laboratory environment. Results: A repeated measures design showed that mean nocturnal melatonin concentrations for LC were higher than both NC (p = .03) and PTSD (p = .003) with no difference between PTSD and NC. Relative to PTSD, NC had significantly higher melatonin levels over a 4-h period (01 to 05 h), whereas the LC group had higher melatonin levels over an 8-h period (23 to 07 h). Actigraphic sleep quality parameters were not different between healthy controls and PTSD patients, likely due to the use of prescription sleep medications in the PTSD group. Conclusions: These results indicate that PTSD is associated with blunted nocturnal melatonin secretion, which is consistent with previous findings showing lower melatonin after exposure to trauma and suggestive of severe chronodisruption. Future studies targeting the melatonergic system for therapeutic intervention may be beneficial for treatment-resistant PTSD.
Collapse
Affiliation(s)
- Michel A Paul
- Defence Research & Development Canada, Toronto Research Centre, Operational Health and Performance Section, Toronto, ON, Canada
| | - Ryan J Love
- Defence Research & Development Canada, Toronto Research Centre, Operational Health and Performance Section, Toronto, ON, Canada
| | - Rakesh Jetly
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa, ON, Canada
| | - J Donald Richardson
- Department of Psychiatry, Western University, London, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Operational Stress Injury Clinic, Parkwood Institute, London, ON, Canada.,MacDonald Franklin Operational Stress Injury Research Centre, Lawson Research Institute, London, ON, Canada
| | - Ruth A Lanius
- Department of Psychiatry, Western University, London, ON, Canada.,Department of Neuroscience, Western University, London, ON, Canada
| | - James C Miller
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| | - Michael MacDonald
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa, ON, Canada
| | - Shawn G Rhind
- Defence Research & Development Canada, Toronto Research Centre, Operational Health and Performance Section, Toronto, ON, Canada
| |
Collapse
|