1
|
Gumusoglu SB. The role of the placenta-brain axis in psychoneuroimmune programming. Brain Behav Immun Health 2024; 36:100735. [PMID: 38420039 PMCID: PMC10900837 DOI: 10.1016/j.bbih.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
Gestational exposures have enduring impacts on brain and neuroimmune development and function. Perturbations of pregnancy leading to placental structure/function deficits, cell stress, immune activation, and endocrine changes (metabolic, growth factors, etc.) all increase neuropsychiatric risk in offspring. The existing literature links obstetric diseases with placental involvement to offspring neuroimmune outcomes and neurodevelopmental risk. Psychoneuroimmune outcomes in offspring brain include changes to microglia, cytokine/chemokine production, cell stress, and long-term immunoreactivity. These outcomes are altered by structural, anti-angiogenic/hypoxic, inflammatory, and metabolic diseases of the placenta. This fetal programming occurs via direct placental passage or production of factors which can act directly on fetal brain substrates, or indirectly via action of circulating factors on intermediates in the placenta. Placental neuroendocrine, vascular/angiogenic, immune, and extracellular vesicular mechanisms are detailed. These mechanisms interact within various placental and pregnancy conditions. An increased understanding of the placental origins of psychoneuroimmunology will yield dividends for human health. Identifying maternal and placental biomarkers for fetal neuroimmune health may also revolutionize early diagnosis and precision psychiatry, empowering patients to make the best healthcare decisions for their families. Targeting placental mechanisms may be a valuable approach for the prevention and mitigation of intergenerational, lifelong neuropathology.
Collapse
Affiliation(s)
- Serena B. Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 200 Hawkins Dr. Iowa City, IA, 52327, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Panagiotidou A, Chatzakis C, Ververi A, Eleftheriades M, Sotiriadis A. The Effect of Maternal Diet and Physical Activity on the Epigenome of the Offspring. Genes (Basel) 2024; 15:76. [PMID: 38254965 PMCID: PMC10815371 DOI: 10.3390/genes15010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this review was to examine the current literature regarding the effect of maternal lifestyle interventions (i.e., diet and physical activity) on the epigenome of the offspring. PubMed, Scopus and Cochrane-CENTRAL were screened until 8 July 2023. Only randomized controlled trials (RCTs) where a lifestyle intervention was compared to no intervention (standard care) were included. Outcome variables included DNA methylation, miRNA expression, and histone modifications. A qualitative approach was used for the consideration of the studies' results. Seven studies and 1765 mother-child pairs were assessed. The most common types of intervention were dietary advice, physical activity, and following a specific diet (olive oil). The included studies correlated the lifestyle and physical activity intervention in pregnancy to genome-wide or gene-specific differential methylation and miRNA expression in the cord blood or the placenta. An intervention of diet and physical activity in pregnancy was found to be associated with slight changes in the epigenome (DNA methylation and miRNA expression) in fetal tissues. The regions involved were related to adiposity, metabolic processes, type 2 diabetes, birth weight, or growth. However, not all studies showed significant differences in DNA methylation. Further studies with similar parameters are needed to have robust and comparable results and determine the biological role of such modifications.
Collapse
Affiliation(s)
- Anastasia Panagiotidou
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
| | - Christos Chatzakis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| | - Athina Ververi
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Genetic Unit, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, “Papageorgiou” General Hospital, 564 03 Thessaloniki, Greece
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Alexandros Sotiriadis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| |
Collapse
|
3
|
Hicks SD, Confair A. Infant Saliva Levels of microRNA miR-151a-3p Are Associated with Risk for Neurodevelopmental Delay. Int J Mol Sci 2023; 24:ijms24021476. [PMID: 36674994 PMCID: PMC9867475 DOI: 10.3390/ijms24021476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Prompt recognition of neurodevelopmental delay is critical for optimizing developmental trajectories. Currently, this is achieved with caregiver questionnaires whose sensitivity and specificity can be limited by socioeconomic and cultural factors. This prospective study of 121 term infants tested the hypothesis that microRNA measurement could aid early recognition of infants at risk for neurodevelopmental delay. Levels of four salivary microRNAs implicated in childhood autism (miR-125a-5p, miR-148a-5p, miR-151a-3p, miR-28-3p) were measured at 6 months of age, and compared between infants who displayed risk for neurodevelopmental delay at 18 months (n = 20) and peers with typical development (n = 101), based on clinical evaluation aided by the Survey of Wellbeing in Young Children (SWYC). Accuracy of microRNAs for predicting neurodevelopmental concerns at 18 months was compared to the clinical standard (9-month SWYC). Infants with neurodevelopmental concerns at 18 months displayed higher levels of miR-125a-5p (d = 0.30, p = 0.018, adj p = 0.049), miR-151a-3p (d = 0.30, p = 0.017, adj p = 0.048), and miR-28-3p (d = 0.31, p = 0.014, adj p = 0.048). Levels of miR-151a-3p were associated with an 18-month SWYC score (R = -0.19, p = 0.021) and probability of neurodevelopmental delay at 18 months (OR = 1.91, 95% CI, 1.14-3.19). Salivary levels of miR-151a-3p enhanced predictive accuracy for future neurodevelopmental delay (p = 0.010, X2 = 6.71, AUC = 0.71) compared to the 9-month SWYC score alone (OR = 0.56, 95% CI, 0.20-1.58, AUC = 0.567). This pilot study provides evidence that miR-151a-3p may aid the identification of infants at risk for neurodevelopmental delay. External validation of these findings is necessary.
Collapse
|
4
|
Kong L, Zhang D, Huang S, Lai J, Lu L, Zhang J, Hu S. Extracellular Vesicles in Mental Disorders: A State-of-art Review. Int J Biol Sci 2023; 19:1094-1109. [PMID: 36923936 PMCID: PMC10008693 DOI: 10.7150/ijbs.79666] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/26/2023] [Indexed: 03/13/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale particles with various physiological functions including mediating cellular communication in the central nervous system (CNS), which indicates a linkage between these particles and mental disorders such as schizophrenia, bipolar disorder, major depressive disorder, etc. To date, known characteristics of mental disorders are mainly neuroinflammation and dysfunctions of homeostasis in the CNS, and EVs are proven to be able to regulate these pathological processes. In addition, studies have found that some cargo of EVs, especially miRNAs, were significantly up- or down-regulated in patients with mental disorders. For many years, interest has been generated in exploring new diagnostic and therapeutic methods for mental disorders, but scale assessment and routine drug intervention are still the first-line applications so far. Therefore, underlying the downstream functions of EVs and their cargo may help uncover the pathogenetic mechanisms of mental disorders as well as provide novel biomarkers and therapeutic candidates. This review aims to address the connection between EVs and mental disorders, and discuss the current strategies that focus on EVs-related psychiatric detection and therapy.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shu Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jing Zhang
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
5
|
Epigenetics in fetal alcohol spectrum disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:211-239. [PMID: 37019593 DOI: 10.1016/bs.pmbts.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During pregnancy, alcohol abuse and its detrimental effects on developing offspring are major public health, economic and social challenges. The prominent characteristic attributes of alcohol (ethanol) abuse during pregnancy in humans are neurobehavioral impairments in offspring due to damage to the central nervous system (CNS), causing structural and behavioral impairments that are together named fetal alcohol spectrum disorder (FASD). Development-specific alcohol exposure paradigms were established to recapitulate the human FASD phenotypes and establish the underlying mechanisms. These animal studies have offered some critical molecular and cellular underpinnings likely to account for the neurobehavioral impairments associated with prenatal ethanol exposure. Although the pathogenesis of FASD remains unclear, emerging literature proposes that the various genomic and epigenetic components that cause the imbalance in gene expression can significantly contribute to the development of this disease. These studies acknowledged numerous immediate and enduring epigenetic modifications, such as methylation of DNA, post-translational modifications (PTMs) of histone proteins, and regulatory networks related to RNA, using many molecular approaches. Methylated DNA profiles, PTMs of histone proteins, and RNA-regulated expression of genes are essential for synaptic and cognitive behavior. Thus, offering a solution to many neuronal and behavioral impairments reported in FASD. In the current chapter, we review the recent advances in different epigenetic modifications that cause the pathogenesis of FASD. The information discussed can help better explain the pathogenesis of FASD and thereby might provide a basis for finding novel therapeutic targets and innovative treatment strategies.
Collapse
|
6
|
Shree N, Ding Z, Flaws J, Choudhury M. Role of microRNA in Endocrine Disruptor-Induced Immunomodulation of Metabolic Health. Metabolites 2022; 12:1034. [PMID: 36355117 PMCID: PMC9695656 DOI: 10.3390/metabo12111034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/22/2025] Open
Abstract
The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.
Collapse
Affiliation(s)
- Nitya Shree
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| | - Zehuan Ding
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| | - Jodi Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| |
Collapse
|
7
|
Aimaletdinov AM, Gomzikova MO. Tracking of Extracellular Vesicles' Biodistribution: New Methods and Approaches. Int J Mol Sci 2022; 23:11312. [PMID: 36232613 PMCID: PMC9569979 DOI: 10.3390/ijms231911312] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer vesicles that are released by almost all cell types. They range in diameter from 30 nm to several micrometres and have the ability to carry biologically active molecules such as proteins, lipids, RNA, and DNA. EVs are natural vectors and play an important role in many physiological and pathological processes. The amount and composition of EVs in human biological fluids serve as biomarkers and are used for diagnosing diseases and monitoring the effectiveness of treatment. EVs are promising for use as therapeutic agents and as natural vectors for drug delivery. However, the successful use of EVs in clinical practice requires an understanding of their biodistribution in an organism. Numerous studies conducted so far on the biodistribution of EVs show that, after intravenous administration, EVs are mostly localized in organs rich in blood vessels and organs associated with the reticuloendothelial system, such as the liver, lungs, spleen, and kidneys. In order to improve resolution, new dyes and labels are being developed and detection methods are being optimized. In this work, we review all available modern methods and approaches used to assess the biodistribution of EVs, as well as discuss their advantages and limitations.
Collapse
Affiliation(s)
| | - Marina O. Gomzikova
- Laboratory of Intercellular Communication, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
8
|
Kaur S, Saldana AC, Elkahloun AG, Petersen JD, Arakelyan A, Singh SP, Jenkins LM, Kuo B, Reginauld B, Jordan DG, Tran AD, Wu W, Zimmerberg J, Margolis L, Roberts DD. CD47 interactions with exportin-1 limit the targeting of m 7G-modified RNAs to extracellular vesicles. J Cell Commun Signal 2022; 16:397-419. [PMID: 34841476 PMCID: PMC9411329 DOI: 10.1007/s12079-021-00646-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
CD47 is a marker of self and a signaling receptor for thrombospondin-1 that is also a component of extracellular vesicles (EVs) released by various cell types. Previous studies identified CD47-dependent functional effects of T cell EVs on target cells, mediated by delivery of their RNA contents, and enrichment of specific subsets of coding and noncoding RNAs in CD47+ EVs. Mass spectrometry was employed here to identify potential mechanisms by which CD47 regulates the trafficking of specific RNAs to EVs. Specific interactions of CD47 and its cytoplasmic adapter ubiquilin-1 with components of the exportin-1/Ran nuclear export complex were identified and confirmed by coimmunoprecipitation. Exportin-1 is known to regulate nuclear to cytoplasmic trafficking of 5'-7-methylguanosine (m7G)-modified microRNAs and mRNAs that interact with its cargo protein EIF4E. Interaction with CD47 was inhibited following alkylation of exportin-1 at Cys528 by its covalent inhibitor leptomycin B. Leptomycin B increased levels of m7G-modified RNAs, and their association with exportin-1 in EVs released from wild type but not CD47-deficient cells. In addition to perturbing nuclear to cytoplasmic transport, transcriptomic analyses of EVs released by wild type and CD47-deficient Jurkat T cells revealed a global CD47-dependent enrichment of m7G-modified microRNAs and mRNAs in EVs released by CD47-deficient cells. Correspondingly, decreasing CD47 expression in wild type cells or treatment with thrombospondin-1 enhanced levels of specific m7G-modified RNAs released in EVs, and re-expressing CD47 in CD47-deficient T cells decreased their levels. Therefore, CD47 signaling limits the trafficking of m7G-modified RNAs to EVs through physical interactions with the exportin-1/Ran transport complex.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Alejandra Cavazos Saldana
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Abdel G Elkahloun
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Jennifer D Petersen
- Section On Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Anush Arakelyan
- Section On Intercellular Interactions, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Bethany Kuo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Bianca Reginauld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - David G Jordan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Andy D Tran
- Confocal Microscopy Core Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Weiwei Wu
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Joshua Zimmerberg
- Section On Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Leonid Margolis
- Section On Intercellular Interactions, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA.
| |
Collapse
|
9
|
Benameur T, Panaro MA, Porro C. Exosomes and their Cargo as a New Avenue for Brain and Treatment of CNS-Related Diseases. Open Neurol J 2022. [DOI: 10.2174/1874205x-v16-e2201190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extracellular Vesicles (EVs), which belong to nanoscale vesicles, including microvesicles (MVs) and exosomes, are now considered a new important tool for intercellular neuronal communication in the Central Nervous System (CNS) under physiological and pathological conditions. EVs are shed into blood, peripheral body fluids and cerebrospinal fluid (CSF) by a large variety of cells.
EVs can act locally on neighboring and distant cells. EVs represent the fingerprints of the originating cells and can carry a variety of molecular constituents of their cell of origin, including protein, lipids, DNA and microRNAs (miRNAs).
The most studied EVs are the exosomes because they are ubiquitous and have the capacity to transfer cell-derived components and bioactive molecules to target cells. In this minireview, we focused on cell-cell communication in CNS mediated by exosomes and their important cargo as an innovative way to treat or follow up with CNS diseases.
Collapse
|
10
|
Upadhya R, Shetty AK. Extracellular Vesicles for the Diagnosis and Treatment of Parkinson's Disease. Aging Dis 2021; 12:1438-1450. [PMID: 34527420 PMCID: PMC8407884 DOI: 10.14336/ad.2021.0516] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/16/2021] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles (EVs) shed by neurons and glia in the central nervous system carry a cargo of specific bioactive molecules, facilitating intercellular communication. However, in neurodegenerative disease conditions, EVs carry pathological miRNAs and/or proteins involved in spreading the disease. Such EVs are also found in the cerebrospinal fluid (CSF) or the circulating blood, the characterization of which could identify biomarkers linked to specific neurodegenerative diseases. Moreover, EVs secreted by various stem/progenitor cells carry therapeutic miRNAs and proteins, which have shown promise to alleviate symptoms and slow down the progression of neurodegenerative diseases. The ability of exogenously administered EVs to easily cross the blood-brain barrier with no risk for thrombosis and incorporate into neurons and glia has also opened up the possibility of using nano-sized EVs as carriers of therapeutic drugs or bioactive proteins. This review summarizes the role and function of EVs in alpha-synuclein-mediated neurodegeneration and the spread of alpha-synuclein from neurons to glia, leading to the activation of the inflammatory response in Parkinson’s disease (PD). Moreover, the promise of brain-derived EVs in the CSF and the circulating blood for biomarker discovery and the efficacy of stem/progenitor cell-derived EVs or EVs loaded with bioactive molecules such as dopamine, catalase, curcumin, and siRNAs, in alleviating Parkinsonian symptoms are discussed.
Collapse
Affiliation(s)
- Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| |
Collapse
|
11
|
Alcohol induced impairment/abnormalities in brain: Role of MicroRNAs. Neurotoxicology 2021; 87:11-23. [PMID: 34478768 DOI: 10.1016/j.neuro.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022]
Abstract
Alcohol is a highly toxic substance and has teratogenic properties that can lead to a wide range of developmental disorders. Excessive use of alcohol can change the structural and functional aspects of developed brain and other organs. Which can further lead to significant health, social and economic implications in many countries of the world. Convincing evidence support the involvement of microRNAs (miRNAs) as important post-transcriptional regulators of gene expression in neurodevelopment and maintenance. They also show differential expression following an injury. MiRNAs are the special class of small non coding RNAs that can modify the gene by targeting the mRNA and fine tune the development of cells to organs. Numerous pieces of evidences have shown the relationship between miRNA, alcohol and brain damage. These studies also show how miRNA controls different cellular mechanisms involved in the development of alcohol use disorder. With the increasing number of research studies, the roles of miRNAs following alcohol-induced injury could help researchers to recognize alternative therapeutic methods to treat/cure alcohol-induced brain damage. The present review summarizes the available data and brings together the important miRNAs, that play a crucial role in alcohol-induced brain damage, which will help in better understanding complex mechanisms. Identifying these miRNAs will not only expand the current knowledge but can lead to the identification of better targets for the development of novel therapeutic interventions.
Collapse
|
12
|
Shetty AK, Upadhya R. Extracellular Vesicles in Health and Disease. Aging Dis 2021; 12:1358-1362. [PMID: 34527414 PMCID: PMC8407881 DOI: 10.14336/ad.2021.0827] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022] Open
Abstract
The journal, Aging and Disease, has released a special issue on "Extracellular Vesicles (EVs) in Health and Disease." The special issue comprises review and original research articles discussing the role of EVs in aging and senescence, the utility of evaluating EVs in body fluids for understanding the pathophysiology or progression of various diseases such as Parkinson's Disease, Multiple Sclerosis, Chronic Traumatic Encephalopathy, and Morphine induced amyloidopathy. Also, a series of articles discussed the promise of stem cell-derived EVs for treating Parkinson's Disease, Sjogren's Syndrome, and Inflammatory Bowel Disease, and advancements in loading EVs to deliver nucleic acid therapies. This editorial discusses the highlights from these articles.
Collapse
Affiliation(s)
- Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| |
Collapse
|
13
|
Weghorst F, Mirzakhanyan Y, Samimi K, Dhillon M, Barzik M, Cunningham LL, Gershon PD, Cramer KS. Caspase-3 Cleaves Extracellular Vesicle Proteins During Auditory Brainstem Development. Front Cell Neurosci 2020; 14:573345. [PMID: 33281555 PMCID: PMC7689216 DOI: 10.3389/fncel.2020.573345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
Sound localization requires extremely precise development of auditory brainstem circuits, the molecular mechanisms of which are largely unknown. We previously demonstrated a novel requirement for non-apoptotic activity of the protease caspase-3 in chick auditory brainstem development. Here, we used mass spectrometry to identify proteolytic substrates of caspase-3 during chick auditory brainstem development. These auditory brainstem caspase-3 substrates were enriched for proteins previously shown to be cleaved by caspase-3, especially in non-apoptotic contexts. Functional annotation analysis revealed that our caspase-3 substrates were also enriched for proteins associated with several protein categories, including proteins found in extracellular vesicles (EVs), membrane-bound nanoparticles that function in intercellular communication. The proteome of EVs isolated from the auditory brainstem was highly enriched for our caspase-3 substrates. Additionally, we identified two caspase-3 substrates with known functions in axon guidance, namely Neural Cell Adhesion Molecule (NCAM) and Neuronal-glial Cell Adhesion Molecule (Ng-CAM), that were found in auditory brainstem EVs and expressed in the auditory pathway alongside cleaved caspase-3. Taken together, these data suggest a novel developmental mechanism whereby caspase-3 influences auditory brainstem circuit formation through the proteolytic cleavage of extracellular vesicle (EV) proteins.
Collapse
Affiliation(s)
- Forrest Weghorst
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Kian Samimi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Mehron Dhillon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Melanie Barzik
- Section on Sensory Cell Biology, NIDCD, NIH, Bethesda, MD, United States
| | - Lisa L. Cunningham
- Section on Sensory Cell Biology, NIDCD, NIH, Bethesda, MD, United States
| | - Paul D. Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
14
|
Konečná B, Radošinská J, Keményová P, Repiská G. Detection of disease-associated microRNAs - application for autism spectrum disorders. Rev Neurosci 2020; 31:757-769. [PMID: 32813679 DOI: 10.1515/revneuro-2020-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) diagnostic procedure still lacks a uniform biological marker. This review gathers the information on microRNAs (miRNAs) specifically as a possible source of biomarkers of ASD. Extracellular vesicles, and their subset of exosomes, are believed to be a tool of cell-to-cell communication, and they are increasingly considered to be carriers of such a marker. The interest in studying miRNAs in extracellular vesicles grows in all fields of study and therefore should not be omitted in the field of neurodevelopmental disorders. The summary of miRNAs associated with brain cells and ASD either studied directly in the tissue or biofluids are gathered in this review. The heterogeneity in findings from different studies points out the fact that unified methods should be established, beginning with the determination of the accurate patient and control groups, through to sample collection, processing, and storage conditions. This review, based on the available literature, proposes the standardized approach to obtain the results that would not be affected by technical factors. Nowadays, the method of high-throughput sequencing seems to be the most optimal to analyze miRNAs. This should be followed by the uniformed bioinformatics procedure to avoid misvalidation. At the end, the proper validation of the obtained results is needed. With such an approach as is described in this review, it would be possible to obtain a reliable biomarker that would characterize the presence of ASD.
Collapse
Affiliation(s)
- Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Jana Radošinská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Petra Keményová
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| | - Gabriela Repiská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| |
Collapse
|
15
|
Cheng S, Zhang Z, Hu C, Xing N, Xia Y, Pang B. Pristimerin Suppressed Breast Cancer Progression via miR-542-5p/DUB3 Axis. Onco Targets Ther 2020; 13:6651-6660. [PMID: 32753899 PMCID: PMC7354954 DOI: 10.2147/ott.s257329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is one of the most common and malignant tumors in the world. Nowadays more attention has been garnered in pristimerin anti-cancer effects. Here, we illustrate the function and regulatory mechanism of pristimerin in breast cancer therapy. MATERIALS AND METHODS Breast cancer cell lines MCF-7, MDA-MB-231, and 4T1 were used. Cell Counting Kit-8 (CCK-8) assay was performed to evaluate proliferation viability of breast cancer cells under pristimerin treatment. Wound healing assay was used to examine the migration ability, cell cycle, and cell apoptosis detection were tested by flow cytometry. Bioinformatic analysis was used to find the underlying molecular and gene connected with pristimerin and breast cancer survival. Finally, we used transfection and real-time polymerase chain reaction analysis to confirm the mechanism. RESULTS We observed that pristimerin inhibited breast cancer cell viability, migration, and cell cycle, meanwhile induced cell apoptosis. In addition, under pristimerin treatment, miR-542-5p was up-regulated while DUB3 was down-regulated. Furthermore, bioinformatics analysis showed higher expression of DUB3 in breast cancer compared with normal tissue, also with poor prognosis. Overexpression miR-542-5p in breast cancer cells leads to a decrease in DUB3 level. The effect was obviously post pristimerin treatment and miR-542-5p overexpression. CONCLUSION Pristimerin inhibited breast cancer progression through DUB3 expression via a canonical miRNA-mediated mechanism.
Collapse
Affiliation(s)
- Shihuan Cheng
- Department of Rehabilitation, The First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Zhihong Zhang
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Cong Hu
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Na Xing
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Yan Xia
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Bo Pang
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| |
Collapse
|
16
|
Pristimerin inhibits glioma progression by targeting AGO2 and PTPN1 expression via miR-542-5p. Biosci Rep 2019; 39:BSR20182389. [PMID: 31015365 PMCID: PMC6522714 DOI: 10.1042/bsr20182389] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/28/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiform is the most common and malignant primary tumor of the central nervous system in adults, the high recurrence rate and poor prognosis are critical priorities. Pristimerin is a naturally occurring quinone methide triterpenoid isolated from the Celastraceae and Hippocrateaceae families. Its anticancer effects have garnered considerable attention; nonetheless, the mechanisms of action remain unknown. To predict the hub genes of pristimerin, PharmMapper and the Coremine database were used to identify 13 potential protein targets; protein-protein interaction, for which functional enrichment analyses were performed. Compound-target, target-pathway, and compound-target-pathway networks were constructed using Cytoscape. Biological process analysis first revealed that enrichment of these target genes correlated with negative regulation of symbiont growth in the host, and regulation of chronic inflammatory response to antigenic stimulus. Survival analysis in cBioPortal showed that protein tyrosine phosphatase, non-receptor type 1 (PTPN1) and Argonaute 2 (AGO2) might be involved in the carcinogenesis, invasion, or recurrence of diffuse glioma. In addition, we observed that low-dose pristimerin inhibited the viability of glioma cells, while miR-542-5p in vitro; and reduced PTPN1 expression. Notably, high-dose pristimerin induced apoptosis. Furthermore, miR-542-5p silence with siRNA in glioma cells lead to the elevation in AGO2, and decreased PTPN1 level. The effect was obviously post pristimerin treatment and miR-542-5p suppression. In conclusion, pristimerin inhibited glioma progression through AGO2 and PTPN1 expression via a canonical miRNA-mediated mechanism.
Collapse
|
17
|
Xue Y, Li M, Liu D, Zhu Q, Chen H. Expression of miR-9 in the serum of patients with acute ischemic stroke and its effect on neuronal damage. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5885-5892. [PMID: 31949675 PMCID: PMC6963079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/09/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND This research was aimed to measure the expression of miR-9 in serum of acute ischemic stroke (AIS) patients and explore the role of miR-9 on OGD-induced neuronal damage. METHODS In the present study, we measured the expression of miR-9 in serum of 65 AIS patients by real-time quantitative PCR (RT-qPCR) and the effect of miR-9 on oxygen-glucose deprivation (OGD)-induced neuronal injury was detected by CCK-8 in vitro. Western blot was used to measure the expression of protein. RESULTS We found that the serum level of miR-9 in 65 AIS patients was significantly higher than that in control group (no-AIS), and was positively correlated with NIHSS score (r=0.627, P<0.001), infarct volume ((r=0.576, P<0.001), serum IL-8 (r=0.376, P=0.002), TNF-α (r=0.418, P<0.001), IL-6 (r=0.545, P<0.001), and IL-1β (r=0.592, P<0.001). miR-9 expression levels were upregulated in cultured neurons with OGD treatment. The downregulation of miR-9 significantly alleviated OGD-induced neuronal injury. Dual-luciferase reporter assay demonstrated that SIRT1 was a target gene of miR-9, and miR-9 negatively regulated SIRT 1 expression and positively regulated p65 expression. CONCLUSIONS All in all, our data showed that downregulation of miR-9 protected neurons against OGD/R-induced injury by the SIRT1-mediated NF-kB pathway.
Collapse
Affiliation(s)
- Yufeng Xue
- Department of Neurology, Tai Zhou First People’s HospitalChina
| | - Min Li
- Department of Neurology, Tai Zhou First People’s HospitalChina
| | - Donghong Liu
- Department of Laboratory, Tai Zhou First People’s HospitalChina
| | - Qibing Zhu
- Department of Pharmacy, Tai Zhou First People’s HospitalChina
| | - Huijun Chen
- Department of Pharmacy, Tai Zhou First People’s HospitalChina
| |
Collapse
|
18
|
Li Q, Huang QP, Wang YL, Huang QS. Extracellular vesicle-mediated bone metabolism in the bone microenvironment. J Bone Miner Metab 2018; 36:1-11. [PMID: 28766139 DOI: 10.1007/s00774-017-0860-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/04/2017] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are phospholipid membrane-enclosed entities containing specific proteins, RNA, miRNA, and lncRNA. EVs are released by various cells and play a vital role in cell communication by transferring their contents from the host cells to the recipient cells. The role of EVs has been characterized in a wide range of physiological and pathophysiological processes. In this context, we highlight recent advances in our understanding of the regulatory effects of EVs, with a focus on bone metabolism and the bone microenvironment. The roles of EVs in cell communication among bone-related cells, stem cells, tumor cells, and other cells under physiological or pathological conditions are also discussed. In addition, promising applications for EVs in treating bone-related diseases are proposed.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Qiu-Ping Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Yi-Lin Wang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qing-Sheng Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an, 710072, Shaanxi, People's Republic of China
| |
Collapse
|