1
|
Powell J, Daly M, O'Connell NH, Dunne CP. Seek and you shall find: Yersinia enterocolitica in Ireland's drinking water. Ir J Med Sci 2024; 193:1885-1890. [PMID: 38381378 PMCID: PMC11294261 DOI: 10.1007/s11845-024-03641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Three Yersinia species were identified from samples of drinking water from diverse geographic regions of Ireland. Conventional commercial biochemical identification systems classified them as Yersinia enterocolitica. Since this organism is the most common cause of bacterial gastroenteritis in some countries, further investigation was warranted. The aim of the study was to provide a microbial characterisation of three Yersinia species, to determine their pathogenicity, and to review the incidence rate of Yersinia enterocolitica detection in our region. METHODS Organism identification was performed using conventional commercial diagnostic systems MALDI-TOF, API 20E, API 50CHE, TREK Sensititre GNID and Vitek 2 GN, and whole genome sequencing (WGS) was performed. Historical data for detections was extracted from the lab system for 2008 to 2023. RESULTS All three isolates gave "good" identifications of Yersinia enterocolitica on conventional systems. Further analysis by WGS matched two of the isolates with recently described Yersinia proxima, and the third was a member of the non-pathogenic Yersinia enterocolitica clade 1Aa. DISCUSSION Our analysis of these three isolates deemed them to be Yersinia species not known currently to be pathogenic, but determining this necessitated the use of next-generation sequencing and advanced bioinformatics. Our work highlights the importance of having this technology available to public laboratories, either locally or in a national reference laboratory. The introduction of molecular technologies for the detection of Yersinia species may increase the rate of detections. Accurate identification of significant pathogens in environmental, public health and clinical microbiology laboratories is critically important for the protection of society.
Collapse
Affiliation(s)
- James Powell
- Department of Microbiology, University Hospital Limerick, Limerick, Ireland
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4I), University of Limerick, Limerick, Ireland
| | - Maureen Daly
- Department of Microbiology, University Hospital Limerick, Limerick, Ireland
| | - Nuala H O'Connell
- Department of Microbiology, University Hospital Limerick, Limerick, Ireland
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4I), University of Limerick, Limerick, Ireland
| | - Colum P Dunne
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4I), University of Limerick, Limerick, Ireland.
- School of Medicine, University of Limerick, Limerick, Ireland.
| |
Collapse
|
2
|
Sannö A, Rosendal T, Aspán A, Backhans A, Jacobson M. Comparison of Multiple-Locus Variable-Number Tandem Repeat Analysis Profiles of Enteropathogenic Yersinia spp. Obtained from Humans, Domestic Pigs, Wild Boars, Rodents, Pork and Dog Food. Animals (Basel) 2023; 13:3055. [PMID: 37835661 PMCID: PMC10571951 DOI: 10.3390/ani13193055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The enteropathogenic Yersinia genus is commonly detected in wildlife including wild boars. Difficulties in its cultivation may hamper subsequent epidemiological studies and outbreak investigations. Multiple-locus variable-number tandem repeat analysis (MLVA) of Yersinia (Y.) enterocolitica and Y. pseudotuberculosis has proven useful in source attribution and epidemiological studies but has hitherto relied on the analysis of isolates. In the present study, MLVA profiles generated from 254 isolates of Y. enterocolitica indicated similarities between human, pig and rodent isolates. Further, MLVA analyses of 13 Y. pseudotuberculosis pure-cultured isolates were compared to MLVA analyses performed directly on the 14 PCR-positive enrichment broths from which the isolates originated, which showed matching MLVA profiles. This indicates that MLVA analysis performed directly on enrichment broths could be a useful method for molecular epidemiological investigations. In addition, 10 out of 32 samples of wild boar minced meat obtained from private hunters and from approved wild-game-handling establishments were PCR-positive for the presence of Y. enterocolitica and may indicate a risk for public health.
Collapse
Affiliation(s)
- Axel Sannö
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden;
| | - Thomas Rosendal
- Department of Disease Control and Epidemiology, National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Anna Aspán
- Department of Animal Health and Antibiotics, National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Annette Backhans
- Department of Animal Health and Antibiotics, National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden;
| |
Collapse
|
3
|
Blomvall L, Kaukonen E, Kurittu P, Heikinheimo A, Fredriksson-Ahomaa M. Food chain information and post-mortem findings in fattening Turkey flocks. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Zdolec N, Kiš M, Jankuloski D, Blagoevska K, Kazazić S, Pavlak M, Blagojević B, Antić D, Fredriksson-Ahomaa M, Pažin V. Prevalence and Persistence of Multidrug-Resistant Yersinia enterocolitica 4/O:3 in Tonsils of Slaughter Pigs from Different Housing Systems in Croatia. Foods 2022; 11:1459. [PMID: 35627029 PMCID: PMC9140555 DOI: 10.3390/foods11101459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
Yersinia enterocolitica is one of the priority biological hazards in pork inspection. Persistence of the pathogen, including strains resistant to antimicrobials, should be evaluated in pigs from different housing systems for risk ranking of farms. In this 2019 study, tonsils were collected from 234 pigs, of which 69 (29.5%) were fattened on 3 big integrated farms, 130 (55.5%) on 10 medium-sized farms, and 35 (15%) on 13 small family farms. In addition, 92 pork cuts and minced meat samples from the same farms were tested for the presence of Y. enterocolitica using the culture method. Phenotypic and genetic characteristics of the isolates were compared with previously collected isolates from 2014. The overall prevalence of Y. enterocolitica in pig tonsils was 43% [95% CI 36.7−49.7]. In pigs from big integrated, medium-sized, and small family farms, the prevalence was 29%, 52%, and 40%, respectively. All retail samples of portioned and minced pork tested negative for pathogenic Y. enterocolitica, likely due to high hygienic standards in slaughterhouses/cutting meat or low sensitivity of culture methods in these matrices. The highest recovery rate of the pathogen from tonsils was found when alkali-treated PSB and CIN agar were combined. The biosecurity category of integrated and medium farms did not affect the differences in prevalence of Y. enterocolitica (p > 0.05), in contrast to family farms. Pathogenic ail-positive Y. enterocolitica biotype 4 serotype O:3 persisted in the tonsils of pigs regardless of the type of farm, slaughterhouse, and year of isolation 2014 and 2019. PFGE typing revealed the high genetic concordance (80.6 to 100%) of all the Y. enterocolitica 4/O:3 isolates. A statistically significant higher prevalence of multidrug-resistant Y. enterocolitica 4/O:3 isolates was detected in the tonsils of pigs from big integrated farms compared to the other farm types (p < 0.05), with predominant and increasing resistance to nalidixic acid, chloramphenicol, and streptomycin. This study demonstrated multidrug resistance of the pathogen in pigs likely due to more antimicrobial pressure on big farms, with intriguing resistance to some clinically relevant antimicrobials used in the treatment of yersiniosis in humans.
Collapse
Affiliation(s)
- Nevijo Zdolec
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (M.P.); (V.P.)
| | - Marta Kiš
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (M.P.); (V.P.)
| | - Dean Jankuloski
- Faculty of Veterinary Medicine, Food Institute, 1000 Skopje, North Macedonia; (D.J.); (K.B.)
| | - Katerina Blagoevska
- Faculty of Veterinary Medicine, Food Institute, 1000 Skopje, North Macedonia; (D.J.); (K.B.)
| | | | - Marina Pavlak
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (M.P.); (V.P.)
| | - Bojan Blagojević
- Faculty of Agriculture, Department of Veterinary Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Dragan Antić
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst, Neston CH64 7TE, UK;
| | | | - Valerij Pažin
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (M.P.); (V.P.)
| |
Collapse
|
5
|
Osteomyelitis in a slaughter turkey flock caused by Yersinia pseudotuberculosis sequence type ST42. Vet Microbiol 2022; 269:109424. [DOI: 10.1016/j.vetmic.2022.109424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
|
6
|
Zeng L, Xu X, Ding H, Song S, Xu L, Xu C, Kuang H. A gold nanoparticle based colorimetric sensor for the rapid detection of Yersinia enterocolitica serotype O:8 in food samples. J Mater Chem B 2022; 10:909-914. [DOI: 10.1039/d1tb01838h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Foodborne diseases from Yersinia enterocolitica serotype O:8 represent global public health problems.
Collapse
Affiliation(s)
- Lu Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hongliu Ding
- Suzhou Product Quality Supervision Inspection, 1368 Wuzhong Avenue, Suzhou, 215104, China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
7
|
Osemwowa E, Omoruyi IM, Kurittu P, Heikinheimo A, Fredriksson-Ahomaa M. Bacterial quality and safety of raw beef: A comparison between Finland and Nigeria. Food Microbiol 2021; 100:103860. [PMID: 34416960 DOI: 10.1016/j.fm.2021.103860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Beef can easily be contaminated with bacteria during the meat production chain. In this work, we studied the contamination levels of mesophilic aerobic bacteria (MAB) and thermotolerant coliform bacteria (TCB) on raw beef surfaces from small shops in Helsinki, Finland and meat markets in Benin City, Nigeria. We also investigated the prevalence of Salmonella, Campylobacter, Yersinia, Shiga toxin-producing Escherichia coli (STEC), Listeria, and cephalosporin-resistant E. coli (CREC). In total, one hundred unpacked raw beef samples from Finland and Nigeria were collected in 2019. The median MAB and TCB counts were significantly (P < 0.001) higher on beef from Nigeria than from Finland. The median MAB and TCB counts in Nigeria were 7.5 and 4.0 log10 cfu/cm2, respectively, and 6.5 and 2.8 log10 cfu/cm2 in Finland, respectively. Most (94%) Nigerian samples were unacceptable according to limits set by the EU. Beef samples from meat markets in Benin City were significantly (P < 0.05) more frequently contaminated with Salmonella, STEC, and CREC than beef samples from small shops in Helsinki. Salmonella, STEC, and CREC were isolated from 30, 36, and 96% of Nigerian samples, respectively, and from <2, 12, and 2% of Finnish samples, respectively. Our study demonstrates a significant difference between the bacterial contaminations of raw beef in Nigeria and Finland, along with a possible misuse of cephalosporins in animal husbandry in Nigeria.
Collapse
Affiliation(s)
- Etinosa Osemwowa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Iyekhoetin Matthew Omoruyi
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, Benson, IDsa University, Benin City, Nigeria
| | - Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| |
Collapse
|
8
|
Nguyen SV, Cunningham SA, Jeraldo P, Tran A, Patel R. Yersinia occitanica is a later heterotypic synonym of Yersinia kristensenii subsp. rochesterensis and elevation of Yersinia kristensenii subsp. rochesterensis to species status. Int J Syst Evol Microbiol 2021; 71. [PMID: 33406034 DOI: 10.1099/ijsem.0.004626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of Yersinia kristensenii subsp. rochesterensis and Yersinia occitanica was re-evaluated by genomic analysis. Average nucleotide identity (ANI), digital DNA-DNA hybridization values, and phylogenetic analyses of the type strains indicate that Y. kristensenii subsp. rochesterensis and Y. occitanica are the same genospecies. Additionally, the overall genomic relatedness index (OGRI) values reveal that Y. kristensenii subsp. rochesterensis should be elevated to species status as Yersinia rochesterensis sp. nov.
Collapse
Affiliation(s)
- Scott Van Nguyen
- District of Columbia Department of Forensic Sciences, Public Health Laboratory Division, Washington, District of Columbia, USA
| | - Scott A Cunningham
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota, USA
| | - Patricio Jeraldo
- Microbiome Program, Center for Individualized Medicine, Rochester, Minnesota, USA.,Department of Surgery, Rochester, Minnesota, USA
| | - Anthony Tran
- District of Columbia Department of Forensic Sciences, Public Health Laboratory Division, Washington, District of Columbia, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota, USA.,Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Nguyen SV, Muthappa DM, Eshwar AK, Buckley JF, Murphy BP, Stephan R, Lehner A, Fanning S. Comparative genomic insights into Yersinia hibernica - a commonly misidentified Yersinia enterocolitica-like organism. Microb Genom 2020; 6:mgen000411. [PMID: 32701425 PMCID: PMC7643974 DOI: 10.1099/mgen.0.000411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/07/2020] [Indexed: 11/18/2022] Open
Abstract
Food-associated outbreaks linked to enteropathogenic Yersinia enterocolitica are of concern to public health. Pigs and their meat are recognized risk factors for transmission of Y. enterocolitica. This study aimed to describe the comparative genomics of Y. enterocolitica along with a number of misclassified Yersinia isolates, now constituting the recently described Yersinia hibernica. The latter was originally cultured from an environmental sample taken at a pig slaughterhouse. Unique features were identified in the genome of Y. hibernica, including a novel integrative conjugative element (ICE), denoted as ICEYh-1 contained within a 255 kbp region of plasticity. In addition, a zebrafish embryo infection model was adapted and applied to assess the virulence potential among Yersinia isolates including Y. hibernica.
Collapse
Affiliation(s)
- Scott Van Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Dechamma Mundanda Muthappa
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Athmanya K. Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - James F. Buckley
- Veterinary Food Safety Laboratory, Cork County Council, Inniscarra, Co. Cork and Department of Microbiology, National University of Ireland, Cork, College Road, Cork, Ireland
| | - Brenda P. Murphy
- Veterinary Food Safety Laboratory, Cork County Council, Inniscarra, Co. Cork and Department of Microbiology, National University of Ireland, Cork, College Road, Cork, Ireland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
- Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5AG, UK
| |
Collapse
|
10
|
Two copies of the ail gene found in Yersinia enterocolitica and Yersinia kristensenii. Vet Microbiol 2020; 247:108798. [PMID: 32768239 DOI: 10.1016/j.vetmic.2020.108798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/20/2022]
Abstract
Yersinia enterocolitica is the most common Yersinia species causing foodborne infections in humans. Pathogenic strains carry the chromosomal ail gene, which is essential for bacterial attachment to and invasion into host cells and for serum resistance. This gene is commonly amplified in several PCR assays detecting pathogenic Y. enterocolitica in food samples and discriminating pathogenic isolates from non-pathogenic ones. We have isolated several non-pathogenic ail-positive Yersinia strains from various sources in Finland. For this study, we selected 16 ail-positive Yersinia strains, which were phenotypically and genotypically characterised. Eleven strains were confirmed to belong to Y. enterocolitica and five strains to Yersinia kristensenii using whole-genome alignment, Parsnp and the SNP phylogenetic tree. All Y. enterocolitica strains belonged to non-pathogenic biotype 1A. We found two copies of the ail gene (ail1 and ail2) in all five Y. kristensenii strains and in one Y. enterocolitica biotype 1A strain. All 16 Yersinia strains carried the ail1 gene consisting of three different sequence patterns (A6-A8), which were highly similar with the ail gene found in high-pathogenic Y. enterocolitica biotype 1B strains (A2). The Ail protein encoded by the ail1 gene was highly conserved compared to the Ail protein encoded by the ail2 gene. Multiple sequence alignment of the ail gene and Ail protein were conducted with MAFF. In total, 10 ail sequence variations have been identified, of which 8 conserved ones belonged to the ail1 gene. According to our results, the detection of ail alone is not sufficient to predict the pathogenicity of Yersinia isolates.
Collapse
|
11
|
Nguyen SV, Greig DR, Hurley D, Donoghue O, Cao Y, McCabe E, Mitchell M, Schaffer K, Jenkins C, Fanning S. Yersinia canariae sp. nov., isolated from a human yersiniosis case. Int J Syst Evol Microbiol 2020; 70:2382-2387. [DOI: 10.1099/ijsem.0.004047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A Gram-negative rod from the
Yersinia
genus was isolated from a clinical case of yersiniosis in the United Kingdom. Long read sequencing data from an Oxford Nanopore Technologies (ONT) MinION in conjunction with Illumina HiSeq reads were used to generate a finished quality genome of this strain. Overall Genome Related Index (OGRI) of the strain was used to determine that it was a novel species within
Yersinia
, despite biochemical similarities to
Yersinia enterocolitica
. The 16S ribosomal RNA gene accessions are MN434982-MN434987 and the accession number for the complete and closed chromosome is CP043727. The type strain is SRR7544370T (=NCTC 14382T/=LMG 31573T).
Collapse
Affiliation(s)
- Scott V. Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - David R. Greig
- National Infection Services, Public Health England, 61 Colindale Avenue, London NW9 5HT, UK
| | - Daniel Hurley
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Orla Donoghue
- Department of Microbiology, St Vincent's University Hospital, 196 Merrion Road, Elm Park, Dublin D04 T6F4, Ireland
| | - Yu Cao
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Molly Mitchell
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Kirsten Schaffer
- Department of Microbiology, St Vincent's University Hospital, 196 Merrion Road, Elm Park, Dublin D04 T6F4, Ireland
| | - Claire Jenkins
- National Infection Services, Public Health England, 61 Colindale Avenue, London NW9 5HT, UK
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
- Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|
12
|
Byvalov AA, Konyshev IV. Yersinia pseudotuberculosis-derived adhesins. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019. [DOI: 10.15789/2220-7619-2019-3-4-437-448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Around fifteen surface components referred to adhesins have been identified in Yersinia pseudotuberculosis combining primarily microbiological, molecular and genetic, as well as immunochemical and biophysical methods. Y. pseudotuberculosis-derived adhesins vary in structure and chemical composition but they are mainly presented by protein molecules. Some of them were shown to participate not only in adhesive but in other pathogen-related physiological functions in the host-parasite interplay. Adhesins can mediate bacterial adhesion to eukaryotic cell either directly or via the extracellular matrix components. These adhesion molecules are encoded by chromosomal DNA excepting YadA protein which gene is located in the calcium-dependence plasmid pYV common for pathogenic yersisniae. An optimum temperature for adhesin biosynthesis is located close to the body temperature of warm-blooded animals; however, at low temperature only invasin InvA, full-length smooth lipopolysaccharide and porin OmpF are produced in Y. pseudotuberculosis. Several adhesins (Psa, InvA) can be expressed at low pH (corresponds to intracellular content), thereby defining pathogenic yersiniae as facultative intracellular parasites. Three human Yersinia genus pathogens differ by ability to produce adhesins. Y. pseudotuberculosis adherence to host cells or extracellular matrix components is determined by a cumulative adhesion-based activity, which expression depends on chemical composition and physicochemical environmental conditions. It’s proposed that at the initial stage of infectious process adherence of Y. pseudotuberculosis to intestinal epithelium is mediated by InvA protein and “smooth” LPS form. These adhesins are produced in bacterial cells at low (lower than 30°С) temperature occurring in environment from which a pathogen invades into the host. At later stages of pathogenesis, after penetrating through intestinal epithelium, bacterial cells produce other adhesins, which promote survival and dissemination primarily into the mesenteric lymph nodes and, possibly, liver and spleen. At later stages of pathogenesis, after penetrating through intestinal epithelium, bacterial cells produce other adhesins, which promote survival and dissemination primarily into the mesenteric lymph nodes and, perhaps, liver and spleen. Qualitative and quantitative spectrum of Y. pseudotuberculosis adhesins is determined by environmental parameters (intercellular space, intracellular content within the diverse eukaryotic cells).
Collapse
|
13
|
Shoaib M, Shehzad A, Raza H, Niazi S, Khan IM, Akhtar W, Safdar W, Wang Z. A comprehensive review on the prevalence, pathogenesis and detection ofYersinia enterocolitica. RSC Adv 2019; 9:41010-41021. [PMID: 35540058 PMCID: PMC9076465 DOI: 10.1039/c9ra06988g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/31/2019] [Indexed: 01/23/2023] Open
Abstract
Food safety is imperative for a healthy life, but pathogens are still posing a significant life threat. “Yersiniosis” is caused by a pathogen named Yersinia enterocolitica and is characterized by diarrheal, ileitis, and mesenteric lymphadenitis types of sicknesses. This neglected pathogen starts its pathogenic activity by colonizing inside the intestinal tract of the host upon the ingestion of contaminated food. Y. enterocolitica remains a challenge for researchers and food handlers due to its growth habits, low concentrations in samples, morphological similarities with other bacteria and lack of rapid, cost-effective, and accurate detection methods. In this review, we presented recent information about its prevalence, biology, pathogenesis, and existing cultural, immunological, and molecular detection approaches. Our ultimate goal is to provide updated knowledge regarding this pathogen for the development of quick, effective, automated, and sensitive detection methods for the systematic detection of Y. enterocolitica. Food safety is imperative for a healthy life, but pathogens are still posing a significant life threat.![]()
Collapse
Affiliation(s)
- Muhammad Shoaib
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Synergetic Innovation Center of Food Safety and Nutrition
| | - Aamir Shehzad
- UniLaSalle
- Transformations & Agroressources Research Unit
- France
- National Institute of Food Science and Technology
- FFNHS
| | - Husnain Raza
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- National Institute of Food Science and Technology
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- National Institute of Food Science and Technology
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Synergetic Innovation Center of Food Safety and Nutrition
| | - Wasim Akhtar
- Synergetic Innovation Center of Food Safety and Nutrition
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Waseem Safdar
- University Institute of Diet and Nutritional Sciences
- The University of Lahore-Islamabad Campus
- Islamabad
- Pakistan
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Synergetic Innovation Center of Food Safety and Nutrition
| |
Collapse
|
14
|
Sannö A, Jacobson M, Sterner S, Thisted-Lambertz S, Aspán A. The development of a screening protocol for Salmonella spp. and enteropathogenic Yersinia spp. in samples from wild boar (Sus scrofa) also generating MLVA-data for Y. enterocolitica and Y. pseudotuberculosis. J Microbiol Methods 2018; 150:32-38. [PMID: 29792943 DOI: 10.1016/j.mimet.2018.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 02/02/2023]
Abstract
Salmonellosis and yersiniosis are notifiable human diseases that are commonly associated with contaminated food. Domestic pigs as well as wild boars and other wild-life have been identified as reservoirs of these bacteria. Methods for cultivation and molecular epidemiological investigations of Salmonella spp. are well established, however, cultivation of enteropathogenic Yersinia spp. is time- consuming and the commonly used method for molecular epidemiological investigations, pulsed-field gel electrophoresis, lack in discriminatory power. The aim of this study was to develop and evaluate a screening protocol well suited for wildlife samples and other highly contaminated samples. The method is based on PCR-screening followed by Multiple Loci Variant number tandem repeat Analysis (MLVA) on enrichment broth to obtain molecular epidemiological data for enteropathogenic Yersinia spp. without the need for pure isolates. The performance of the protocol was evaluated using wild boar samples (n=354) including tonsils, faeces and lymph nodes from 90 Swedish wild boars. The new protocol performed as well as or better than the established ISO-standards for detection and cultivation of Y. enterocolitica and Salmonella spp., however for cultivation of Y. pseudotuberculosis, further development is needed. The selection for motility seems beneficial for the enrichment of Salmonella spp. and Y. enterocolitica. Further, the selective enrichment prior to PCR-analysis eliminates inhibitory factors present in the original sample. In total, ten isolates of Y. enterocolitica of various bio-serotypes were obtained, and the MLVA-profile of these isolates were consistent with the profiles from the corresponding enrichment broth. Further, 22 isolates of Salmonella spp. comprising six different serovars were obtained with S. Fulica, S. Hadar and a monophasic S. Typhimurium being the most common. In conclusion, the presented screening protocol offers a rapid and efficient way to obtain prevalence data from a large sample set as well as MLVA-data within a short time frame. These results can hence improve the knowledge on the epidemiology and distribution of these pathogens and their importance to public health.
Collapse
Affiliation(s)
- Axel Sannö
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Sandra Sterner
- School of Health Sciences, Örebro University, Örebro, Sweden.
| | | | - Anna Aspán
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.
| |
Collapse
|