1
|
Gomes KB, Pereira RG, Braga AA, Guimarães HC, Resende EDPF, Teixeira AL, Barbosa MT, Junior WM, Carvalho MDG, Caramelli P. Machine Learning-Based Routine Laboratory Tests Predict One-Year Cognitive and Functional Decline in a Population Aged 75+ Years. Brain Sci 2023; 13:brainsci13040690. [PMID: 37190655 DOI: 10.3390/brainsci13040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Cognitive and functional decline are common problems in older adults, especially in those 75+ years old. Currently, there is no specific plasma biomarker able to predict this decline in healthy old-age people. Machine learning (ML) is a subarea of artificial intelligence (AI), which can be used to predict outcomes Aim: This study aimed to evaluate routine laboratory variables able to predict cognitive and functional impairment, using ML algorithms, in a cohort aged 75+ years, in a one-year follow-up study. METHOD One hundred and thirty-two older adults aged 75+ years were selected through a community-health public program or from long-term-care institutions. Their functional and cognitive performances were evaluated at baseline and one year later using a functional activities questionnaire, Mini-Mental State Examination, and the Brief Cognitive Screening Battery. Routine laboratory tests were performed at baseline. ML algorithms-random forest, support vector machine (SVM), and XGBoost-were applied in order to describe the best model able to predict cognitive and functional decline using routine tests as features. RESULTS The random forest model showed better accuracy than other algorithms and included triglycerides, glucose, hematocrit, red cell distribution width (RDW), albumin, hemoglobin, globulin, high-density lipoprotein cholesterol (HDL-c), thyroid-stimulating hormone (TSH), creatinine, lymphocyte, erythrocyte, platelet/leucocyte (PLR), and neutrophil/leucocyte (NLR) ratios, and alanine transaminase (ALT), leukocyte, low-density lipoprotein cholesterol (LDL-c), cortisol, gamma-glutamyl transferase (GGT), and eosinophil as features to predict cognitive decline (accuracy = 0.79). For functional decline, the most important features were platelet, PLR and NLR, hemoglobin, globulin, cortisol, RDW, glucose, basophil, B12 vitamin, creatinine, GGT, ALT, aspartate transferase (AST), eosinophil, hematocrit, erythrocyte, triglycerides, HDL-c, and monocyte (accuracy = 0.92). CONCLUSIONS Routine laboratory variables could be applied to predict cognitive and functional decline in oldest-old populations using ML algorithms.
Collapse
Affiliation(s)
- Karina Braga Gomes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ramon Gonçalves Pereira
- Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Alexandre Alberto Braga
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | | | | | - Maira Tonidandel Barbosa
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Wagner Meira Junior
- Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Paulo Caramelli
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
2
|
Linder T, Eppel D, Kotzaeridi G, Rosicky I, Yerlikaya-Schatten G, Kiss H, Weißhaupt K, Henrich W, Bozkurt L, Tura A, Roden M, Göbl CS. Fatty liver indices and their association with glucose metabolism in pregnancy - An observational cohort study. Diabetes Res Clin Pract 2022; 189:109942. [PMID: 35691476 DOI: 10.1016/j.diabres.2022.109942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/15/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022]
Abstract
AIMS Non-invasive hepatic steatosis indices can be used to assess the risk for metabolic (dysfunction) associated fatty liver disease (MAFLD). This may be helpful to detect metabolic disorders in pregnancy, specifically gestational diabetes (GDM). We aimto examine the association of these indices with parameters of glucose metabolism. METHODS 109 women underwent a metabolic characterization at 16 weeks of gestation andwere classified according to the fatty-liver index (FLI) andhepatic-steatosis index (HSI) into low (G1), intermediate (G2) and high risk (G3). At 26 weeks, participants received an oral glucose tolerance test (OGTT) to assess insulin action, β-cell function and GDM status. RESULTS Both MAFLD indices wereassociated with impaired insulin sensitivityand compensatory increase of insulin release. G3 groups showedimpaired insulin action. The higher circulating insulin concentrations were not able to compensate for insulin resistance in women with higher MAFLD scores, resulting in an increased risk of GDM(OR: 1.05, 95% CI 1.03 to 1.08, p < 0.001 for FLI). MAFLD scores were associated with fetal overgrowth. CONCLUSIONS Maternal MAFLD represents a high-risk obstetric condition. Hepatic steatosis indices are associated with impaired glucose regulation and may provide a useful tool for early risk assessment for impaired glucose metabolism.
Collapse
Affiliation(s)
- Tina Linder
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Daniel Eppel
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Grammata Kotzaeridi
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Ingo Rosicky
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | | | - Herbert Kiss
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Karen Weißhaupt
- Clinic of Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Wolfgang Henrich
- Clinic of Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Latife Bozkurt
- Department of Metabolic Disorders and Nephrology, Hietzing Hospital, Vienna, Austria
| | - Andrea Tura
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Christian S Göbl
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria; Clinic of Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
3
|
HAN S. Aging and gender-related effects of tauroursodeoxycholic acid treatment on liver functions, plasma lipid profile, and oxidative stress. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1023909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
4
|
Sinton MC, Hay DC, Drake AJ. Metabolic control of gene transcription in non-alcoholic fatty liver disease: the role of the epigenome. Clin Epigenetics 2019; 11:104. [PMID: 31319896 PMCID: PMC6637519 DOI: 10.1186/s13148-019-0702-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/09/2019] [Indexed: 01/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is estimated to affect 24% of the global adult population. NAFLD is a major risk factor for the development of cirrhosis and hepatocellular carcinoma, as well as being strongly associated with type 2 diabetes and cardiovascular disease. It has been proposed that up to 88% of obese adults have NAFLD, and with global obesity rates increasing, this disease is set to become even more prevalent. Despite intense research in this field, the molecular processes underlying the pathology of NAFLD remain poorly understood. Hepatic intracellular lipid accumulation may lead to dysregulated tricarboxylic acid (TCA) cycle activity and associated alterations in metabolite levels. The TCA cycle metabolites alpha-ketoglutarate, succinate and fumarate are allosteric regulators of the alpha-ketoglutarate-dependent dioxygenase family of enzymes. The enzymes within this family have multiple targets, including DNA and chromatin, and thus may be capable of modulating gene transcription in response to intracellular lipid accumulation through alteration of the epigenome. In this review, we discuss what is currently understood in the field and suggest areas for future research which may lead to the development of novel preventative or therapeutic interventions for NAFLD.
Collapse
Affiliation(s)
- Matthew C Sinton
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
5
|
Nho K, Kueider-Paisley A, Ahmad S, MahmoudianDehkordi S, Arnold M, Risacher SL, Louie G, Blach C, Baillie R, Han X, Kastenmüller G, Trojanowski JQ, Shaw LM, Weiner MW, Doraiswamy PM, van Duijn C, Saykin AJ, Kaddurah-Daouk R. Association of Altered Liver Enzymes With Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebrospinal Fluid Biomarkers. JAMA Netw Open 2019; 2:e197978. [PMID: 31365104 PMCID: PMC6669786 DOI: 10.1001/jamanetworkopen.2019.7978] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPORTANCE Increasing evidence suggests an important role of liver function in the pathophysiology of Alzheimer disease (AD). The liver is a major metabolic hub; therefore, investigating the association of liver function with AD, cognition, neuroimaging, and CSF biomarkers would improve the understanding of the role of metabolic dysfunction in AD. OBJECTIVE To examine whether liver function markers are associated with cognitive dysfunction and the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD. DESIGN, SETTING, AND PARTICIPANTS In this cohort study, serum-based liver function markers were measured from September 1, 2005, to August 31, 2013, in 1581 AD Neuroimaging Initiative participants along with cognitive measures, cerebrospinal fluid (CSF) biomarkers, brain atrophy, brain glucose metabolism, and amyloid-β accumulation. Associations of liver function markers with AD-associated clinical and A/T/N biomarkers were assessed using generalized linear models adjusted for confounding variables and multiple comparisons. Statistical analysis was performed from November 1, 2017, to February 28, 2019. EXPOSURES Five serum-based liver function markers (total bilirubin, albumin, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase) from AD Neuroimaging Initiative participants were used as exposure variables. MAIN OUTCOMES AND MEASURES Primary outcomes included diagnosis of AD, composite scores for executive functioning and memory, CSF biomarkers, atrophy measured by magnetic resonance imaging, brain glucose metabolism measured by fludeoxyglucose F 18 (18F) positron emission tomography, and amyloid-β accumulation measured by [18F]florbetapir positron emission tomography. RESULTS Participants in the AD Neuroimaging Initiative (n = 1581; 697 women and 884 men; mean [SD] age, 73.4 [7.2] years) included 407 cognitively normal older adults, 20 with significant memory concern, 298 with early mild cognitive impairment, 544 with late mild cognitive impairment, and 312 with AD. An elevated aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio and lower levels of ALT were associated with AD diagnosis (AST to ALT ratio: odds ratio, 7.932 [95% CI, 1.673-37.617]; P = .03; ALT: odds ratio, 0.133 [95% CI, 0.042-0.422]; P = .004) and poor cognitive performance (AST to ALT ratio: β [SE], -0.465 [0.180]; P = .02 for memory composite score; β [SE], -0.679 [0.215]; P = .006 for executive function composite score; ALT: β [SE], 0.397 [0.128]; P = .006 for memory composite score; β [SE], 0.637 [0.152]; P < .001 for executive function composite score). Increased AST to ALT ratio values were associated with lower CSF amyloid-β 1-42 levels (β [SE], -0.170 [0.061]; P = .04) and increased amyloid-β deposition (amyloid biomarkers), higher CSF phosphorylated tau181 (β [SE], 0.175 [0.055]; P = .02) (tau biomarkers) and higher CSF total tau levels (β [SE], 0.160 [0.049]; P = .02) and reduced brain glucose metabolism (β [SE], -0.123 [0.042]; P = .03) (neurodegeneration biomarkers). Lower levels of ALT were associated with increased amyloid-β deposition (amyloid biomarkers), and reduced brain glucose metabolism (β [SE], 0.096 [0.030]; P = .02) and greater atrophy (neurodegeneration biomarkers). CONCLUSIONS AND RELEVANCE Consistent associations of serum-based liver function markers with cognitive performance and A/T/N biomarkers for AD highlight the involvement of metabolic disturbances in the pathophysiology of AD. Further studies are needed to determine if these associations represent a causative or secondary role. Liver enzyme involvement in AD opens avenues for novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Kwangsik Nho
- Center for Computational Biology and Bioinformatics, Indiana Alzheimer Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis
| | | | - Shahzad Ahmad
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | | | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Shannon L. Risacher
- Center for Computational Biology and Bioinformatics, Indiana Alzheimer Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis
| | - Gregory Louie
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | | | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Michael W. Weiner
- Center for Imaging of Neurodegenerative Diseases, Department of Radiology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco
| | - P. Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Duke Institute of Brain Sciences, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, United Kingdom
| | - Andrew J. Saykin
- Center for Computational Biology and Bioinformatics, Indiana Alzheimer Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Duke Institute of Brain Sciences, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
6
|
D'Adamo E, Castorani V, Nobili V. The Liver in Children With Metabolic Syndrome. Front Endocrinol (Lausanne) 2019; 10:514. [PMID: 31428049 PMCID: PMC6687849 DOI: 10.3389/fendo.2019.00514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is recognized as an emerging health risk in obese children and adolescents. NAFLD represents a wide spectrum of liver conditions, ranging from asymptomatic steatosis to steatohepatitis. The growing prevalence of fatty liver disease in children is associated with an increased risk of metabolic and cardiovascular complications. NAFLD is considered the hepatic manifestation of Metabolic Syndrome (MetS) and several lines of evidence have reported that children with NAFLD present one or more features of MetS. The pathogenetic mechanisms explaining the interrelationships between fatty liver disease and MetS are not clearly understood. Altough central obesity and insulin resistance seem to represent the core of the pathophysiology in both diseases, genetic susceptibility and enviromental triggers are emerging as crucial components promoting the development of NAFLD and MetS in children. In the present review we have identified and summarizied studies discussing current pathogenetic data of the association between NAFLD and MetS in children.
Collapse
Affiliation(s)
- Ebe D'Adamo
- Department of Neonatology, University of Chieti, Chieti, Italy
- *Correspondence: Ebe D'Adamo
| | | | - Valerio Nobili
- Department of Pediatrics, University “La Sapienza”, Rome, Italy
- Hepatology, Gastroenterology and Nutrition Unit, IRCCS “Bambino Gesù” Children's Hospital, Rome, Italy
| |
Collapse
|
7
|
VanWagner LB, Ning H, Allen NB, Siddique J, Carson AP, Bancks MP, Lewis CE, Carr JJ, Speliotes E, Terrault NA, Rinella ME, Vos MB, Lloyd-Jones DM. Twenty-five-year trajectories of insulin resistance and pancreatic β-cell response and diabetes risk in nonalcoholic fatty liver disease. Liver Int 2018; 38:2069-2081. [PMID: 29608255 PMCID: PMC6557126 DOI: 10.1111/liv.13747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/23/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Insulin resistance is a risk marker for non-alcoholic fatty liver disease, and a risk factor for liver disease progression. We assessed temporal trajectories of insulin resistance and β-cell response to serum glucose concentration throughout adulthood and their association with diabetes risk in non-alcoholic fatty liver disease. METHODS Three thousand and sixty participants from Coronary Artery Risk Development in Young Adults, a prospective bi-racial cohort of adults age 18-30 years at baseline (1985-1986; Y0) who completed up to 5 exams over 25 years and had fasting insulin and glucose measurement were included. At Y25 (2010-2011), non-alcoholic fatty liver disease was assessed by noncontrast computed tomography after exclusion of other liver fat causes. Latent mixture modelling identified 25-year trajectories in homeostatic model assessment insulin resistance and β-cell response homeostatic model assessment-β. RESULTS Three distinct trajectories were identified, separately, for homeostatic model assessment insulin resistance (low-stable [47%]; moderate-increasing [42%]; and high-increasing [12%]) and homeostatic model assessment-β (low-decreasing [16%]; moderate-decreasing [63%]; and high-decreasing [21%]). Y25 non-alcoholic fatty liver disease prevalence was 24.5%. Among non-alcoholic fatty liver disease, high-increasing homeostatic model assessment insulin resistance (referent: low-stable) was associated with greater prevalent (OR 95% CI = 8.0, 2.0-31.9) and incident (OR = 10.5, 2.6-32.8) diabetes after multivariable adjustment including Y0 or Y25 homeostatic model assessment insulin resistance. In contrast, non-alcoholic fatty liver disease participants with low-decreasing homeostatic model assessment-β (referent: high-decreasing) had the highest odds of prevalent (OR = 14.1, 3.9-50.9) and incident (OR = 10.3, 2.7-39.3) diabetes. CONCLUSION Trajectories of insulin resistance and β-cell response during young and middle adulthood are robustly associated with diabetes risk in non-alcoholic fatty liver disease. Thus, how persons with non-alcoholic fatty liver disease develop resistance to insulin provides important information about risk of diabetes in midlife above and beyond degree of insulin resistance at the time of non-alcoholic fatty liver disease assessment.
Collapse
Affiliation(s)
- Lisa B VanWagner
- Division of Gastroenterology & Hepatology, Northwestern University, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Hongyan Ning
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Norrina B Allen
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Juned Siddique
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - April P Carson
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael P Bancks
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Cora E Lewis
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Norah A Terrault
- Division of Gastroenterology, University of California at San Francisco, San Francisco, CA, USA
| | - Mary E Rinella
- Division of Gastroenterology & Hepatology, Northwestern University, Chicago, IL, USA
| | - Miriam B Vos
- Division of Gastroenterology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
- Division of Cardiology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Radaelli MG, Martucci F, Perra S, Accornero S, Castoldi G, Lattuada G, Manzoni G, Perseghin G. NAFLD/NASH in patients with type 2 diabetes and related treatment options. J Endocrinol Invest 2018; 41:509-521. [PMID: 29189999 DOI: 10.1007/s40618-017-0799-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes may reduce life expectancy and patients' quality of life due to its micro- and macro-vascular complications and to the higher risk of several types of cancer. An emerging important factor is represented by the hepatic involvement; it is recognized that excessive hepatic fat accumulation represents a typical feature of diabetic patients and that it also plays an important pathogenic role. It is now evident that non-alcoholic fatty liver disease (NAFLD), generally perceived as a benign condition, may have on the contrary an important deleterious impact for diabetic patients increasing the risk to develop cardiovascular complications but also serious hepatic diseases, in particular non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. Lifestyle intervention, bariatric surgery and several drug therapies have now accumulated evidence of efficacy in treating NASH. On the other hand, their durability and safety in the long-term is yet to be proven and their use may be sometimes associated with side effects or higher risk of adverse events limiting the regular administration or contraindicating it. Professional health care providers, building awareness about the importance of these hepatic complications, should put more efforts in primary prevention using a behavioral therapy needing a multidisciplinary approach, in secondary prevention applying on a regular basis in the clinical setting available predictive algorithms to identify the patients at higher cardiovascular and hepatologic risk, and in tertiary prevention treating, when not contraindicated, the diabetic patients preferentially with drugs with proven benefit on NAFLD/NASH.
Collapse
Affiliation(s)
- M G Radaelli
- Dipartimento di Medicina e Riabilitazione, Policlinico di Monza, Via Amati 111, 20900, Monza, MB, Italy
| | - F Martucci
- Dipartimento di Medicina e Riabilitazione, Policlinico di Monza, Via Amati 111, 20900, Monza, MB, Italy
| | - S Perra
- Dipartimento di Medicina e Riabilitazione, Policlinico di Monza, Via Amati 111, 20900, Monza, MB, Italy
| | - S Accornero
- Dipartimento di Medicina e Riabilitazione, Policlinico di Monza, Via Amati 111, 20900, Monza, MB, Italy
| | - G Castoldi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano Bicocca, Milan, MI, Italy
| | - G Lattuada
- Dipartimento di Medicina e Riabilitazione, Policlinico di Monza, Via Amati 111, 20900, Monza, MB, Italy
| | - G Manzoni
- Dipartimento di Medicina e Riabilitazione, Policlinico di Monza, Via Amati 111, 20900, Monza, MB, Italy
| | - G Perseghin
- Dipartimento di Medicina e Riabilitazione, Policlinico di Monza, Via Amati 111, 20900, Monza, MB, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano Bicocca, Milan, MI, Italy.
| |
Collapse
|
9
|
Qiu S, Vazquez JT, Boulger E, Liu H, Xue P, Hussain MA, Wolfe A. Hepatic estrogen receptor α is critical for regulation of gluconeogenesis and lipid metabolism in males. Sci Rep 2017; 7:1661. [PMID: 28490809 PMCID: PMC5431852 DOI: 10.1038/s41598-017-01937-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/06/2017] [Indexed: 12/19/2022] Open
Abstract
Impaired estrogens action is associated with features of the metabolic syndrome in animal models and humans. We sought to determine whether disruption of hepatic estrogens action in adult male mice could recapitulate aspects of the metabolic syndrome to understand the mechanistic basis for the phenotype. We found 17β-estradiol (E2) inhibited hepatic gluconeogenic genes such as phosphoenolpyruvate carboxykinase 1 (Pck-1) and glucose 6-phosphatase (G6Pase) and this effect was absent in mice lacking liver estrogen receptor α (Esr1) (LERKO mice). Male LERKO mice displayed elevated hepatic gluconeogenic activity and fasting hyperglycemia. We also observed increased liver lipid deposits and triglyceride levels in male LERKO mice, resulting from increased hepatic lipogenesis as reflected by increased mRNA levels of fatty acid synthase (Fas) and acetyl-CoA carboxylase (Acc1). ChIP assay demonstrated estradiol (E2) induced ESR1 binding to Pck-1, G6Pase, Fas and Acc1 promoters. Metabolic phenotyping demonstrated both basal metabolic rate and feeding were lower for the LERKO mice as compared to Controls. Furthermore, the respiratory exchange rate was significantly lower in LERKO mice than in Controls, suggesting an increase in lipid oxidation. Our data indicate that hepatic E2/ESR1 signaling plays a key role in the maintenance of gluconeogenesis and lipid metabolism in males.
Collapse
Affiliation(s)
- Shuiqing Qiu
- Division of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Erin Boulger
- School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ping Xue
- Division of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mehboob Ali Hussain
- Division of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Wolfe
- Division of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Bedogni G, Grugni G, Tringali G, Marazzi N, Sartorio A. Does segmental body composition differ in women with Prader-Willi syndrome compared to women with essential obesity? J Endocrinol Invest 2015; 38:957-61. [PMID: 25840793 DOI: 10.1007/s40618-015-0266-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Subjects with Prader-Willi syndrome (PWS) have a higher fat mass and a lower fat-free mass compared to subjects with essential obesity. However, few data are presently available on the segmental body composition (BC) of PWS subjects. AIM To evaluate whether women with PWS and women with essential obesity, matched for age and percent body fat, differ in segmental fat distribution and surrogate markers of cardiometabolic disease (CMD). SUBJECTS AND METHODS 35 women with PWS and 50 women with essential obesity were matched for age and percent body fat using coarsened exact matching. BC was measured by dual-energy X-ray absorptiometry. Oral glucose tolerance testing and measurements of cholesterol, triglycerides, C-reactive protein, and blood pressure were performed. Comparisons between PWS and obese women were performed using generalized linear models. RESULTS Trunk fat was lower in PWS than in obese women on both absolute [-7.3 (95% confidence interval -9.4 to -5.2) kg] and relative [-4.1 (-6.9 to -1.4)% of body fat] grounds. PWS and obese women had similar surrogate markers of CMD, with the exception of HDL-cholesterol, which was higher in PWS women. CONCLUSION Trunk fat is lower in obese women with PWS than in those with essential obesity. Surrogate markers of CMD are, however, mostly similar in the two groups.
Collapse
Affiliation(s)
- G Bedogni
- Clinical Epidemiology Unit, Liver Research Center, Building Q, AREA Science Park, Strada Statale 14 km 163.5, 34012, Basovizza, Trieste, Italy,
| | | | | | | | | |
Collapse
|
11
|
Fabbrini E, Magkos F. Hepatic Steatosis as a Marker of Metabolic Dysfunction. Nutrients 2015; 7:4995-5019. [PMID: 26102213 PMCID: PMC4488828 DOI: 10.3390/nu7064995] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of the complex metabolic derangements associated with obesity. NAFLD is characterized by excessive deposition of fat in the liver (steatosis) and develops when hepatic fatty acid availability from plasma and de novo synthesis exceeds hepatic fatty acid disposal by oxidation and triglyceride export. Hepatic steatosis is therefore the biochemical result of an imbalance between complex pathways of lipid metabolism, and is associated with an array of adverse changes in glucose, fatty acid, and lipoprotein metabolism across all tissues of the body. Intrahepatic triglyceride (IHTG) content is therefore a very good marker (and in some cases may be the cause) of the presence and the degree of multiple-organ metabolic dysfunction. These metabolic abnormalities are likely responsible for many cardiometabolic risk factors associated with NAFLD, such as insulin resistance, type 2 diabetes mellitus, and dyslipidemia. Understanding the factors involved in the pathogenesis and pathophysiology of NAFLD will lead to a better understanding of the mechanisms responsible for the metabolic complications of obesity, and hopefully to the discovery of novel effective treatments for their reversal.
Collapse
Affiliation(s)
- Elisa Fabbrini
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Faidon Magkos
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|