1
|
Li M, Wang X, Wang F, Wang F, Zhao D, Liu S. JAG1 Variants Confer Genetic Susceptibility to Thyroid Dysgenesis and Thyroid Dyshormonogenesis in 813 Congenital Hypothyroidism in China. Int J Gen Med 2024; 17:885-894. [PMID: 38468821 PMCID: PMC10926855 DOI: 10.2147/ijgm.s445557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background and Objective Congenital hypothyroidism (CH) is indeed a prevalent neonatal endocrine disorder, affecting approximately 1 in 2000-3000 newborns worldwide, and 1 in 2400 newborns in China. Despite its high incidence, the genetic causes of CH, particularly those related to thyroid dysgenesis (TD), are still not well understood. However, previous studies have suggested that JAG1 may be a potential susceptibility gene for congenital thyroid defects. To explore the association between JAG1 and CH, we screened JAG1 variants in a large cohort of 813 CH patients. Methods We performed genetic analysis of JAG1 using next-generation sequencing in 813 CH cases. The pathogenicity of the variants was assessed by bioinformatics softwares, protein sequence conservation analysis, and hydrophobic analysis. Further genetic analysis was conducted targeting 20 CH-related genes in these 25 JAG1 variant carriers. Results We identified 10 pathogenic missense mutations (p.V45L, p.V272I, p.P552L, p.G610E, p.G852D, p.A891T, p.E1030K, p.R1060W, p.A1131T, p.P1174L) carried by 25 patients, the mutation rate of JAG1 in CH was 3.08%. Among these 25 patients, 16 with 1 variant, 6 with 2 variants, and the other 3 with 3 variants. Our findings indicated that JAG1 variants confer genetic susceptibility to both TD and DH, but with different inheritance models. JAG1 variants lead to TD mainly through monogenic model, while for DH cases, both monogenic mechanisms and oligogenic mechanisms play a pivotal role. Oligogenicity may contribute to the disease severity of DH. Conclusion JAG1 is a shared genetic factor in TD and DH, with a detection rate of 3.08% in Chinese individuals with CH. A comparison between the oligogenic and monogenic groups suggests a gene dosage effect in CH. Patients with the same JAG1 mutation exhibit diverse clinical phenotypes, indicating complex mechanisms underlying phenotypic heterogeneity.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiaoyu Wang
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Fang Wang
- Endocrinology Department, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Fengqi Wang
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Dehua Zhao
- Neonatal Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shiguo Liu
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
2
|
Zhang HY, Wu FY, Zhang CX, Wu CY, Cui RJ, Liu XY, Yang L, Zhang Y, Sun F, Cheng F, Yang RM, Song HD, Zhao SX. Contactin 6, A Novel Causative Gene for Congenital Hypothyroidism, Mediates Thyroid Hormone Biosynthesis Through Notch Signaling. Thyroid 2024; 34:324-335. [PMID: 38183624 DOI: 10.1089/thy.2023.0594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Background: Congenital hypothyroidism (CH) is the most common neonatal metabolic disorder. In patients with CH in China, thyroid dyshormonogenesis is more common than thyroid dysgenesis; however, the genetic causes of CH due to thyroid dyshormonogenesis remain largely unknown. Therefore, we aimed at identifying novel candidate causative genes for CH. Methods: To identify novel CH candidate genes, a total of 599 patients with CH were enrolled and next-generation sequencing was performed. The functions of the identified variants were confirmed using HEK293T and FTC-133 cell lines in vitro and in a mouse model organism in vivo. Results: Three pathogenic contactin 6 (CNTN6) variants were identified in two patients with CH. Pedigree analysis showed that CH caused by CNTN6 variants was inherited in an autosomal recessive pattern. The CNTN6 gene was highly expressed in the thyroid in humans and mice. Cntn6 knockout mice presented with thyroid dyshormonogenesis and CH due to the decreased expression of crucial genes for thyroid hormone biosynthesis (Slc5a5, Tpo, and Duox2). All three CNTN6 variants resulted in the blocking of the release of the Notch intracellular domain, which could not translocate into the nucleus, impaired NOTCH1 transcriptional activity, and decreased expression of SLC5A5, TPO, and DUOX2. Further, we found that DTX1 was required for CNTN6 to promote thyroid hormone biosynthesis through Notch signaling. Conclusions: This study demonstrated that CNTN6 is a novel causative gene for CH through the mediation of thyroid hormone biosynthesis via Notch signaling, which provides new insights into the genetic background and mechanisms involved in CH and thyroid dyshormonogenesis.
Collapse
Affiliation(s)
- Hai-Yang Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Yao Wu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cao-Xu Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Yang Wu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren-Jie Cui
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yu Liu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Yang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Cheng
- Department of Laboratory Medicine, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Rui-Meng Yang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Feng X, Ping J, Gao S, Han D, Song W, Li X, Tao Y, Wang L. Novel JAG1 variants leading to Alagille syndrome in two Chinese cases. Sci Rep 2024; 14:1812. [PMID: 38245625 PMCID: PMC10799942 DOI: 10.1038/s41598-024-52357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Alagille Syndrome (ALGS) is a complex genetic disorder characterized by cholestasis, congenital cardiac anomalies, and butterfly vertebrae. The variable phenotypic expression of ALGS can lead to challenges in accurately diagnosing affected infants, potentially resulting in misdiagnoses or underdiagnoses. This study highlights novel JAG1 gene mutations in two cases of ALGS. The first case with a novel p.Pro325Leufs*87 variant was diagnosed at 2 months of age and exhibited a favorable prognosis and an unexpected manifestation of congenital hypothyroidism. Before the age of 2, the second patient was incorrectly diagnosed with liver structural abnormalities, necessitating extensive treatment. In addition, he exhibited delays in language acquisition that may have been a result of SNAP25 haploinsufficiency. The identification of ALGS remains challenging, highlighting the importance of early detection and genetic testing for effective patient management. The variant p.Pro325Leufs*87 is distinct from reported variants linked to congenital hypothyroidism in ALGS patients, thereby further confirming the clinical and genetic complexity of ALGS. This emphasizes the critical need for individualized and innovative approaches to diagnosis and medical interventions, uniquely intended to address the complexity of this syndrome.
Collapse
Affiliation(s)
- Xiufang Feng
- Department of Pediatrics, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Jiangyuan Ping
- Department of Pediatrics, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Shan Gao
- Department of Pediatrics, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Dong Han
- Medical Genetic Center, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Wenxia Song
- Obstetrics Department, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Xiaoze Li
- Medical Genetic Center, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Yilun Tao
- Medical Genetic Center, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China.
- Precision Medicine Research Division, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China.
| | - Lihong Wang
- Department of Pediatrics, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China.
| |
Collapse
|
4
|
Zhang X, Zhang Y, Feng X, Zhao H, Ye H, Fang X, Cui J, Qi W, Ye L. The role of estrogen receptors (ERs)-Notch pathway in thyroid toxicity induced by Di-2-ethylhexyl phthalate (DEHP) exposure: Population data and in vitro studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115727. [PMID: 38042133 DOI: 10.1016/j.ecoenv.2023.115727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND This study aimed to assess the exposure level and risk of Di-2-ethylhexyl Phthalate (DEHP) among adults in Jilin Province, China, clarify the impact of DEHP on human thyroid function, and to explore the role of estrogen receptors (ERs)-Notch signaling pathway in the effect of DEHP metabolites on thyroid hormones based on population data and in vitro experiments. METHODS 312 adults participated in this study. Urinary DEHP metabolites were determined by high performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS). Two pharmacokinetic models were used to evaluate the estimated daily intake (EDI) and hazard quotient (HQ) of the adults. Multiple linear regression and mediating effect models were used to evaluate the target associations. In cell experiments, thyroid follicular epithelial (Nthy-ori3-1) cells were exposed to mono (2-ethylhexyl) phthalate (MEHP) for testing. The inhibitions of ERα and Notch pathway were conducted by siRNA and Notch pathway inhibitor DAPT. RESULTS The detection rate of five DEHP metabolites was 97.1∼100.0%. The HQ value of 0.3% of adults was higher than 1. The levels of urinary DEHP metabolites were significantly correlated with thyrotropin (TSH), thyrotropin-releasing hormone (TRH), total triiodothyronine (TT3), total thyroxine (TT4), free triiodothyronine (FT3) and free thyroxine (FT4) and gene (estrogen receptor α (ERα), Notch1, Dll4) levels. The ERα-Notch pathway played a mediating role in the association between DEHP metabolite levels and FT4. The cell results showed, the levels of FT3 and FT4 in cell supernatant decreased after MEHP exposure, and the downward trend was reversed after ERα and notch pathways were inhibited, notch pathway genes also decreased after ERα inhibition. CONCLUSION Adults in the Jilin Province of China were widely exposed to DEHP. ERs-Notch pathway played an important role in the effect of DEHP metabolites on thyroid hormones.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Xin Feng
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Hui Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Xiaoqi Fang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China.
| |
Collapse
|
5
|
Pandey P, Khan F, Singh M, Verma A, Kumar H, Mazumder A, Rakhra G. Study Deciphering the Crucial Involvement of Notch Signaling Pathway in Human Cancers. Endocr Metab Immune Disord Drug Targets 2024; 24:1241-1253. [PMID: 37997805 DOI: 10.2174/0118715303261691231107113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023]
Abstract
In recent years, dysregulation of the notch pathway has been associated with the development and progression of various cancers. Notch signaling is involved in several cellular processes, such as proliferation, differentiation, apoptosis, and angiogenesis, and its abnormal activation can lead to uncontrolled cell growth and tumorigenesis. In various human cancers, the Notch pathway has been shown to have both tumor-promoting and tumor-suppressive effects, depending on the context and stage of cancer development. Notch signaling has been implicated in tumor initiation, cancer cell proliferation, cell migration and maintenance of cancer stem cells in several human cancers, including leukemia, breast, pancreatic and lung cancer. Understanding the role of the Notch pathway in cancer development and progression may provide new opportunities for the development of potent targeted therapies for cancer treatment. Several drugs targeting the Notch pathway are currently in preclinical or clinical development and may hold promise for anticancer therapy in the future.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Megha Singh
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Aditi Verma
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Hariom Kumar
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Avijit Mazumder
- Department of Pharmacology, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Gurmeen Rakhra
- Department of Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Mosteiro L, Nguyen TTT, Hankeova S, Alvarez-Sierra D, Reichelt M, Vandriel SM, Lai Z, Choudhury FK, Sangaraju D, Kamath BM, Scherl A, Pujol-Borrell R, Piskol R, Siebel CW. Notch signaling in thyrocytes is essential for adult thyroid function and mammalian homeostasis. Nat Metab 2023; 5:2094-2110. [PMID: 38123718 DOI: 10.1038/s42255-023-00937-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
The thyroid functions as an apex endocrine organ that controls growth, differentiation and metabolism1, and thyroid diseases comprise the most common endocrine disorders2. Nevertheless, high-resolution views of the cellular composition and signals that govern the thyroid have been lacking3,4. Here, we show that Notch signalling controls homeostasis and thermoregulation in adult mammals through a mitochondria-based mechanism in a subset of thyrocytes. We discover two thyrocyte subtypes in mouse and human thyroids, identified in single-cell analyses by different levels of metabolic activity and Notch signalling. Therapeutic antibody blockade of Notch in adult mice inhibits a thyrocyte-specific transcriptional program and induces thyrocyte defects due to decreased mitochondrial activity and ROS production. Thus, disrupting Notch signalling in adult mice causes hypothyroidism, characterized by reduced levels of circulating thyroid hormone and dysregulation of whole-body thermoregulation. Inducible genetic deletion of Notch1 and 2 in thyrocytes phenocopies this antibody-induced hypothyroidism, establishing a direct role for Notch in adult murine thyrocytes. We confirm that hypothyroidism is enriched in children with Alagille syndrome, a genetic disorder marked by Notch mutations, suggesting that these findings translate to humans.
Collapse
Grants
- NA Genentech (Genentech, Inc.)
- NA Genentech (Genentech, Inc.)
- NA Genentech (Genentech, Inc.)
- NA Genentech (Genentech, Inc.)
- NA Genentech (Genentech, Inc.)
- NA Genentech (Genentech, Inc.)
- NA Genentech (Genentech, Inc.)
- NA Genentech (Genentech, Inc.)
- NA Genentech (Genentech, Inc.)
- NA Genentech (Genentech, Inc.)
Collapse
Affiliation(s)
- Lluc Mosteiro
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA.
| | - Thi Thu Thao Nguyen
- Department of Oncology Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Simona Hankeova
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Daniel Alvarez-Sierra
- Translational Immunology Group, Vall d'Hebron Institut de Recerca (VHIR), Campus Vall Hebron, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mike Reichelt
- Department of Research Pathology, Genentech, South San Francisco, CA, USA
| | - Shannon M Vandriel
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Zijuan Lai
- Department of Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, CA, USA
| | - Feroza K Choudhury
- Department of Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, CA, USA
| | - Dewakar Sangaraju
- Department of Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, CA, USA
| | - Binita M Kamath
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alexis Scherl
- Department of Research Pathology, Genentech, South San Francisco, CA, USA
| | - Ricardo Pujol-Borrell
- Translational Immunology Group, Vall d'Hebron Institut de Recerca (VHIR), Campus Vall Hebron, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Vall Hebron Institute of Oncology (VHIO), Campus Vall Hebron, Barcelona, Spain
| | - Robert Piskol
- Department of Oncology Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
7
|
Lendahl U. The thyroid gland under Notch control. Nat Metab 2023; 5:2037-2038. [PMID: 38123717 DOI: 10.1038/s42255-023-00911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Wu FY, Yang RM, Zhang HY, Zhan M, Tu PH, Fang Y, Zhang CX, Song SY, Dong M, Cui RJ, Liu XY, Yang L, Yan CY, Sun F, Zhang RJ, Wang Z, Liang J, Song HD, Cheng F, Zhao SX. Pathogenic variations in MAML2 and MAMLD1 contribute to congenital hypothyroidism due to dyshormonogenesis by regulating the Notch signalling pathway. J Med Genet 2023; 60:874-884. [PMID: 36898841 DOI: 10.1136/jmg-2022-108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND In several countries, thyroid dyshormonogenesis is more common than thyroid dysgenesis in patients with congenital hypothyroidism (CH). However, known pathogenic genes are limited to those directly involved in hormone biosynthesis. The aetiology and pathogenesis of thyroid dyshormonogenesis remain unknown in many patients. METHODS To identify additional candidate pathogenetic genes, we performed next-generation sequencing in 538 patients with CH and then confirmed the functions of the identified genes in vitro using HEK293T and Nthy-ori 3.1 cells, and in vivo using zebrafish and mouse model organisms. RESULTS We identified one pathogenic MAML2 variant and two pathogenic MAMLD1 variants that downregulated canonical Notch signalling in three patients with CH. Zebrafish and mice treated with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester, a γ-secretase inhibitor exhibited clinical manifestations of hypothyroidism and thyroid dyshormonogenesis. Through organoid culture of primary mouse thyroid cells and transcriptome sequencing, we demonstrated that Notch signalling within thyroid cells directly affects thyroid hormone biosynthesis rather than follicular formation. Additionally, these three variants blocked the expression of genes associated with thyroid hormone biosynthesis, which was restored by HES1 expression. The MAML2 variant exerted a dominant-negative effect on both the canonical pathway and thyroid hormone biosynthesis. MAMLD1 also regulated hormone biosynthesis through the expression of HES3, the target gene of the non-canonical pathway. CONCLUSIONS This study identified three mastermind-like family gene variants in CH and revealed that both canonical and non-canonical Notch signalling affected thyroid hormone biosynthesis.
Collapse
Affiliation(s)
- Feng-Yao Wu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Meng Yang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Yang Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Hui Tu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Fang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cao-Xu Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Yang Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei Dong
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren-Jie Cui
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yu Liu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Yang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Yan Yan
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Jia Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Cheng
- Department of Laboratory Medicine, Fujian Provincial Maternity and Children's Hospital, Fuzhou, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Stoupa A, Kariyawasam D, Polak M, Carré A. Genetics of congenital hypothyroidism: Modern concepts. Pediatr Investig 2022; 6:123-134. [PMID: 35774517 PMCID: PMC9218988 DOI: 10.1002/ped4.12324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder and one of the most common preventable causes of intellectual disability in the world. CH may be due to developmental or functional thyroid defects (primary or peripheral CH) or be hypothalamic-pituitary in origin (central CH). In most cases, primary CH is caused by a developmental malformation of the gland (thyroid dysgenesis, TD) or by a defect in thyroid hormones synthesis (dyshormonogenesis, DH). TD represents about 65% of CH and a genetic cause is currently identified in fewer than 5% of patients. The remaining 35% are cases of DH and are explained with certainty at the molecular level in more than 50% of cases. The etiology of CH is mostly unknown and may include contributions from individual and environmental factors. In recent years, the detailed phenotypic description of patients, high-throughput sequencing technologies, and the use of animal models have made it possible to discover new genes involved in the development or function of the thyroid gland. This paper reviews all the genetic causes of CH. The modes by which CH is transmitted will also be discussed, including a new oligogenic model. CH is no longer simply a dominant disease for cases of CH due to TD and recessive for cases of CH due to DH, but a far more complex disorder.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
| | - Dulanjalee Kariyawasam
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
| | - Michel Polak
- Department of Paediatric EndocrinologyGynaecology and DiabetologyIle de France Regional Neonatal Screening Centre (CRDN)Necker Enfants‐Malades University HospitalParisFrance
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
- Centre des maladies endocriniennes rares de la croissance et du dévelopementParisFrance
- Université de Paris CitéParisFrance
| | - Aurore Carré
- Institut IMAGINEINSERM U1163ParisFrance
- Institut CochinINSERM U1016ParisFrance
| |
Collapse
|
10
|
Zhang RJ, Yang GL, Cheng F, Sun F, Fang Y, Zhang CX, Wang Z, Wu FY, Zhang JX, Zhao SX, Liang J, Song HD. The mutation screening in candidate genes related to thyroid dysgenesis by targeted next-generation sequencing panel in the Chinese congenital hypothyroidism. Clin Endocrinol (Oxf) 2022; 96:617-626. [PMID: 34374102 DOI: 10.1111/cen.14577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/04/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Congenital hypothyroidism (CH) is known to be due to thyroid dyshormonogenesis (DH), which is mostly inherited in an autosomal recessive inheritance pattern or thyroid dysgenesis (TD), whose inheritance pattern is controversial and whose molecular etiology remains poorly understood. DESIGN AND METHODS The variants in 37 candidate genes of CH, including 25 genes related to TD, were screened by targeted exon sequencing in 205 Chinese patients whose CH cannot be explained by biallelic variants in genes related to DH. The inheritance pattern of the genes was analyzed in family trios or quartets. RESULTS Of the 205 patients, 83 patients carried at least one variant in 19 genes related to TD, and 59 of those 83 patients harbored more than two variants in distinct candidate genes for CH. Biallelic or de novo variants in the genes related to TD in Chinese patients are rare. We also found nine probands carried only one heterozygous variant in the genes related to TD that were inherited from a euthyroid either paternal or maternal parent. These findings did not support the monogenic inheritance pattern of the genes related to TD in CH patients. Notably, in family trio or quartet analysis, of 36 patients carrying more than two variants in distinct genes, 24 patients carried these variants inherited from both their parents, which indicated that the oligogenic inheritance pattern of the genes related to TD should be considered in CH. CONCLUSIONS Our study expanded the variant spectrum of the genes related to TD in Chinese CH patients. It is rare that CH in Chinese patients could be explained by monogenic germline variants in genes related to TD. The hypothesis of an oligogenic origin of the CH should be considered.
Collapse
Affiliation(s)
- Rui-Jia Zhang
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Lin Yang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Cheng
- Department of Laboratory Medicine, Fujian Children's Hospital, Fujian Provincial Maternity and Children's Hospital, Fuzhou, China
| | - Feng Sun
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Fang
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cao-Xu Zhang
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Yao Wu
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Xiu Zhang
- Department of Endocrinology, Maternal and Child Health Institute of Bozhou, Bozhou, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Stoupa A, Kariyawasam D, Polak M, Carré A. [Genetic of congenital hypothyroidism]. Med Sci (Paris) 2022; 38:263-273. [PMID: 35333163 DOI: 10.1051/medsci/2022028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Congenital hypothyroidism (CH) is the most frequent neonatal endocrine disorder. CH is due to thyroid development or thyroid function defects (primary) or may be of hypothalamic-pituitary origin (central). Primary CH is caused essentially by abnormal thyroid gland morphogenesis (thyroid dysgenesis, TD) or defective thyroid hormone synthesis (dyshormonogenesis, DH). DH accounts for about 35% of CH and a genetic cause is identified in 50% of patients. However, TD accounts for about 65% of CH, and a genetic cause is identified in less than 5% of patients. The pathogenesis of CH is largely unknown and may include the contribution of individual and environmental factors. During the last years, detailed phenotypic description of patients, next-generation sequence technologies and use of animal models allowed the discovery of novel candidate genes in thyroid development and function. We provide an overview of recent genetic causes of primary and central CH. In addition, mode of inheritance and the oligogenic model of CH are discussed.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France
| | - Dulanjalee Kariyawasam
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France
| | - Michel Polak
- Service d'endocrinologie, gynécologie et diabétologie pédiatriques, Centre régional de dépistage néonatal (CRDN) Île-de-France, Hôpital universitaire Necker-Enfants-malades, AP-HP Paris, France - Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France - Centre des maladies endocriniennes rares de la croissance et du développement, Paris, France - Université de Paris, Paris, France
| | - Aurore Carré
- Affilié Institut IMAGINE, Inserm U1163, Paris, France - Inserm U1016, Institut Cochin, Paris, France
| |
Collapse
|
12
|
Zhang X, Qi W, Xu Q, Li X, Zhou L, Ye L. Di(2-ethylhexyl) phthalate (DEHP) and thyroid: biological mechanisms of interference and possible clinical implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1634-1644. [PMID: 34677768 DOI: 10.1007/s11356-021-17027-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/10/2021] [Indexed: 05/15/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental endocrine disruptor. DEHP can be absorbed into the human body through the air, food, water, and skin. After entering the human body, DEHP is rapidly converted to mono(2-ethylhexyl) phthalate (MEHP) with greater toxicity than DEHP. An increasing number of studies indicates that DEHP or MEHP can damage the thyroid tissue and disrupt the function, but the mechanisms remain unclear. This article reviews the toxicity of DEHP on thyroid structures and functions and summarizes the potential mechanisms to provide evidence for preventing the thyroid-related diseases.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
13
|
Pierreux CE. Shaping the thyroid: From peninsula to de novo lumen formation. Mol Cell Endocrinol 2021; 531:111313. [PMID: 33961919 DOI: 10.1016/j.mce.2021.111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/06/2023]
Abstract
A challenging and stimulating question in biology deals with the formation of organs from groups of undifferentiated progenitor cells. Most epithelial organs indeed derive from the endodermal monolayer and evolve into various shape and tridimensional organization adapted to their specialized adult function. Thyroid organogenesis is no exception. In most mammals, it follows a complex and sequential process initiated from the endoderm and leading to the development of a multitude of independent closed spheres equipped and optimized for the synthesis, storage and production of thyroid hormones. The first sign of thyroid organogenesis is visible as a thickening of the anterior foregut endoderm. This group of thyroid progenitors then buds and detaches from the foregut to migrate caudally and then laterally. Upon reaching their final destination in the upper neck region on both sides of the trachea, thyroid progenitors mix with C cell progenitors and finally organize into hormone-producing thyroid follicles. Intrinsic and extrinsic factors controlling thyroid organogenesis have been identified in several species, but the fundamental cellular processes are not sufficiently considered. This review focuses on the cellular aspects of the key morphogenetic steps during thyroid organogenesis and highlights similarities and common mechanisms with developmental steps elucidated in other endoderm-derived organs, despite different final architecture and functions.
Collapse
|
14
|
Stoupa A, Kariyawasam D, Muzza M, de Filippis T, Fugazzola L, Polak M, Persani L, Carré A. New genetics in congenital hypothyroidism. Endocrine 2021; 71:696-705. [PMID: 33650047 DOI: 10.1007/s12020-021-02646-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Congenital hypothyroidism (CH) is the most frequent neonatal endocrine disorder and one of the most common preventable forms of mental retardation worldwide. CH is due to thyroid development or thyroid function defects (primary) or may be of hypothalamic-pituitary origin (central). Primary CH is caused essentially by abnormal thyroid gland morphogenesis (thyroid dysgenesis, TD) or defective thyroid hormone synthesis (dyshormonogenesis, DH). TD accounts for about 65% of CH, however a genetic cause is identified in less than 5% of patients. PURPOSE The pathogenesis of CH is largely unknown and may include the contribution of individual and environmental factors. During the last years, detailed phenotypic description of patients, next-generation sequence technologies and use of animal models allowed the discovery of novel candidate genes in thyroid development, function and pathways. RESULTS AND CONCLUSION We provide an overview of recent genetic causes of primary and central CH. In addition, mode of inheritance and the oligogenic model of CH are discussed.
Collapse
Affiliation(s)
- Athanasia Stoupa
- Pediatric Endocrinology, Gynecology, and Diabetology Department, Necker Children's University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- IMAGINE Institute affiliate, INSERM U1163, Paris, France
- Cochin Institute, INSERM U1016, Paris, France
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France
| | - Dulanjalee Kariyawasam
- Pediatric Endocrinology, Gynecology, and Diabetology Department, Necker Children's University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- IMAGINE Institute affiliate, INSERM U1163, Paris, France
- Cochin Institute, INSERM U1016, Paris, France
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France
| | - Marina Muzza
- Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, 20149, Milan, Italy
| | - Tiziana de Filippis
- Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, 20149, Milan, Italy
| | - Laura Fugazzola
- Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, 20149, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20100, Milan, Italy
| | - Michel Polak
- Pediatric Endocrinology, Gynecology, and Diabetology Department, Necker Children's University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- IMAGINE Institute affiliate, INSERM U1163, Paris, France
- Cochin Institute, INSERM U1016, Paris, France
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Luca Persani
- Lab of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, 20149, Milan, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, 20100, Milan, Italy
| | - Aurore Carré
- IMAGINE Institute affiliate, INSERM U1163, Paris, France.
- Cochin Institute, INSERM U1016, Paris, France.
| |
Collapse
|
15
|
van Trotsenburg P, Stoupa A, Léger J, Rohrer T, Peters C, Fugazzola L, Cassio A, Heinrichs C, Beauloye V, Pohlenz J, Rodien P, Coutant R, Szinnai G, Murray P, Bartés B, Luton D, Salerno M, de Sanctis L, Vigone M, Krude H, Persani L, Polak M. Congenital Hypothyroidism: A 2020-2021 Consensus Guidelines Update-An ENDO-European Reference Network Initiative Endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid 2021; 31:387-419. [PMID: 33272083 PMCID: PMC8001676 DOI: 10.1089/thy.2020.0333] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: An ENDO-European Reference Network (ERN) initiative was launched that was endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology with 22 participants from the ENDO-ERN and the two societies. The aim was to update the practice guidelines for the diagnosis and management of congenital hypothyroidism (CH). A systematic literature search was conducted to identify key articles on neonatal screening, diagnosis, and management of primary and central CH. The evidence-based guidelines were graded with the Grading of Recommendations, Assessment, Development and Evaluation system, describing both the strength of recommendations and the quality of evidence. In the absence of sufficient evidence, conclusions were based on expert opinion. Summary: The recommendations include the various neonatal screening approaches for CH as well as the etiology (also genetics), diagnostics, treatment, and prognosis of both primary and central CH. When CH is diagnosed, the expert panel recommends the immediate start of correctly dosed levothyroxine treatment and frequent follow-up including laboratory testing to keep thyroid hormone levels in their target ranges, timely assessment of the need to continue treatment, attention for neurodevelopment and neurosensory functions, and, if necessary, consulting other health professionals, and education of the child and family about CH. Harmonization of diagnostics, treatment, and follow-up will optimize patient outcomes. Lastly, all individuals with CH are entitled to a well-planned transition of care from pediatrics to adult medicine. Conclusions: This consensus guidelines update should be used to further optimize detection, diagnosis, treatment, and follow-up of children with all forms of CH in the light of the most recent evidence. It should be helpful in convincing health authorities of the benefits of neonatal screening for CH. Further epidemiological and experimental studies are needed to understand the increased incidence of this condition.
Collapse
Affiliation(s)
- Paul van Trotsenburg
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Athanasia Stoupa
- Pediatric Endocrinology, Gynecology and Diabetology Department, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Universitaire Necker Enfants Malades, Paris, France
- Université de Paris, Paris, France
- INSERM U1163, IMAGINE Institute, Paris, France
- INSERM U1016, Cochin Institute, Paris, France
| | - Juliane Léger
- Department of Pediatric Endocrinology and Diabetology, Reference Center for Growth and Development Endocrine Diseases, Assistance Publique-Hôpitaux de Paris, Robert Debré University Hospital, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1141, Paris, France
| | - Tilman Rohrer
- Department of Pediatric Endocrinology, University Children's Hospital, Saarland University Medical Center, Homburg, Germany
| | - Catherine Peters
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Laura Fugazzola
- Department of Endocrinology and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessandra Cassio
- Department of Pediatric Endocrinology, Unit of Pediatrics, Department of Medical & Surgical Sciences, University of Bologna, Bologna Italy
| | - Claudine Heinrichs
- Pediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Veronique Beauloye
- Unité d'Endocrinologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Joachim Pohlenz
- Department of Pediatrics, Johannes Gutenberg University Medical School, Mainz, Germany
| | - Patrice Rodien
- Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, Service EDN, CHU d'Angers, Institut MITOVASC, Université d'Angers, Angers, France
| | - Regis Coutant
- Unité d' Endocrinologie Diabetologie Pédiatrique and Centre des Maladies Rares de la Réceptivité Hormonale, CHU-Angers, Angers, France
| | - Gabor Szinnai
- Department of Pediatric Endocrinology, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Philip Murray
- European Society for Pediatric Endocrinology
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Beate Bartés
- Thyroid Group, European Patient Advocacy Group Patient Representative (ePAG), Association Vivre sans Thyroide, Léguevin, France
| | - Dominique Luton
- Department of Obstetrics and Gynecology, University Hospitals Paris Nord Val de Seine (HUPNVS), Assistance Publique Hôpitaux de Paris (APHP), Bichat Hospital, Paris, France
- Department Risks and Pregnancy (DHU), Université de Paris, Inserm U1141, Paris, France
| | - Mariacarolina Salerno
- Pediatric Endocrine Unit, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luisa de Sanctis
- Department of Public Health and Pediatrics, University of Turin, Regina Margherita Children's Hospital, Turin, Italy
| | - Mariacristina Vigone
- Department of Pediatrics, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Heiko Krude
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology Department, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Universitaire Necker Enfants Malades, Paris, France
- Université de Paris, Paris, France
- INSERM U1163, IMAGINE Institute, Paris, France
- INSERM U1016, Cochin Institute, Paris, France
- Paris Regional Newborn Screening Program, Centre régional de dépistage néonatal, Paris, France
- Centre de Référence Maladies Endocriniennes de la Croissance et du Développement, INSERM U1016, IMAGINE Institute, Paris, France
- ENDO-European Reference Network, Main Thematic Group 8, Paris, France
| |
Collapse
|
16
|
Li C, Beauregard-Lacroix E, Kondratev C, Rousseau J, Heo AJ, Neas K, Graham BH, Rosenfeld JA, Bacino CA, Wagner M, Wenzel M, Al Mutairi F, Al Deiab H, Gleeson JG, Stanley V, Zaki MS, Kwon YT, Leroux MR, Campeau PM. UBR7 functions with UBR5 in the Notch signaling pathway and is involved in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism. Am J Hum Genet 2021; 108:134-147. [PMID: 33340455 DOI: 10.1016/j.ajhg.2020.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
The ubiquitin-proteasome system facilitates the degradation of unstable or damaged proteins. UBR1-7, which are members of hundreds of E3 ubiquitin ligases, recognize and regulate the half-life of specific proteins on the basis of their N-terminal sequences ("N-end rule"). In seven individuals with intellectual disability, epilepsy, ptosis, hypothyroidism, and genital anomalies, we uncovered bi-allelic variants in UBR7. Their phenotype differs significantly from that of Johanson-Blizzard syndrome (JBS), which is caused by bi-allelic variants in UBR1, notably by the presence of epilepsy and the absence of exocrine pancreatic insufficiency and hypoplasia of nasal alae. While the mechanistic etiology of JBS remains uncertain, mutation of both Ubr1 and Ubr2 in the mouse or of the C. elegans UBR5 ortholog results in Notch signaling defects. Consistent with a potential role in Notch signaling, C. elegans ubr-7 expression partially overlaps with that of ubr-5, including in neurons, as well as the distal tip cell that plays a crucial role in signaling to germline stem cells via the Notch signaling pathway. Analysis of ubr-5 and ubr-7 single mutants and double mutants revealed genetic interactions with the Notch receptor gene glp-1 that influenced development and embryo formation. Collectively, our findings further implicate the UBR protein family and the Notch signaling pathway in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism that differs from JBS. Further studies exploring a potential role in histone regulation are warranted given clinical overlap with KAT6B disorders and the interaction of UBR7 and UBR5 with histones.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Eliane Beauregard-Lacroix
- Medical Genetics Division, Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada
| | - Christine Kondratev
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Justine Rousseau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Ah Jung Heo
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Katherine Neas
- Genetic Health Service New Zealand, Wellington South 6242, New Zealand
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratory, Houston, TX 77021, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University Munich and Institute of Neurogenomics, Helmholtz Zentrum Munchen, Neuherberg 85764, Germany
| | | | - Fuad Al Mutairi
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, and Medical Genetic Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh 11481, Saudi Arabia
| | - Hamad Al Deiab
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, and Medical Genetic Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh 11481, Saudi Arabia
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Valentina Stanley
- Rady Children's Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Yong Tae Kwon
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development, and Disease Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
17
|
López-Márquez A, Carrasco-López C, Fernández-Méndez C, Santisteban P. Unraveling the Complex Interplay Between Transcription Factors and Signaling Molecules in Thyroid Differentiation and Function, From Embryos to Adults. Front Endocrinol (Lausanne) 2021; 12:654569. [PMID: 33959098 PMCID: PMC8095082 DOI: 10.3389/fendo.2021.654569] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Thyroid differentiation of progenitor cells occurs during embryonic development and in the adult thyroid gland, and the molecular bases of these complex and finely regulated processes are becoming ever more clear. In this Review, we describe the most recent advances in the study of transcription factors, signaling molecules and regulatory pathways controlling thyroid differentiation and development in the mammalian embryo. We also discuss the maintenance of the adult differentiated phenotype to ensure the biosynthesis of thyroid hormones. We will focus on endoderm-derived thyroid epithelial cells, which are responsible for the formation of the thyroid follicle, the functional unit of the thyroid gland. The use of animal models and pluripotent stem cells has greatly aided in providing clues to the complicated puzzle of thyroid development and function in adults. The so-called thyroid transcription factors - Nkx2-1, Foxe1, Pax8 and Hhex - were the first pieces of the puzzle identified in mice. Other transcription factors, either acting upstream of or directly with the thyroid transcription factors, were subsequently identified to, almost, complete the puzzle. Among them, the transcription factors Glis3, Sox9 and the cofactor of the Hippo pathway Taz, have emerged as important players in thyroid differentiation and development. The involvement of signaling molecules increases the complexity of the puzzle. In this context, the importance of Bmps, Fgfs and Shh signaling at the onset of development, and of TSH, IGF1 and TGFβ both at the end of terminal differentiation in embryos and in the adult thyroid, are well recognized. All of these aspects are covered herein. Thus, readers will be able to visualize the puzzle of thyroid differentiation with most - if not all - of the pieces in place.
Collapse
Affiliation(s)
- Arístides López-Márquez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carlos Carrasco-López
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Fernández-Méndez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Pilar Santisteban,
| |
Collapse
|
18
|
Huang S, Yang L, Zhao L, Xu R, Wu Y. Novel In-Frame Deletion Mutation in NOTCH1 in a Chinese Sporadic Case of Adams-Oliver Syndrome. DNA Cell Biol 2020; 39:783-789. [PMID: 32129674 DOI: 10.1089/dna.2019.5200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adams-Oliver syndrome (AOS) is a rare hereditary disorder characterized by aplasia cutis congenita (ACC) and terminal transverse limb defects. The etiology of AOS has remained largely unknown, although mutations in the notch receptor 1 (NOTCH1) gene are most common genetic alteration associated with this disease. In this study, we aimed to identify the case of a 6-year-old boy, who presented with large ACC of the scalp and aortic valve stenosis, suggesting the possibility of AOS. Whole-exome sequencing identified a novel, de novo, in-frame deletion in the NOTCH1 gene (NOTCH1 c.1292_1294del, p.Asn431del) in the patient. The p.Asn431del variant was evaluated by several in silico analyses, which predicted that the mutant was likely to be pathogenic. In addition, molecular modeling with the PyMOL Molecular Graphics System suggested that the NOTCH1-N431del destabilizes calcium ion chelation, leading to decreased receptor-ligand binding efficiency. Quantitative reverse transcription PCR showed further significant downregulation of the Notch target genes, hes-related family bHLH transcription factor with YRPW motif 1 (HEY1) and hes family bHLH transcription factor 1 (HES1), suggesting that this mutation causes disease through dysregulation of the Notch signaling pathway. Our study provides evidence that the NOTCH1-N431del mutation is responsible for this case of AOS. To our knowledge, this is the first report of a patient with AOS caused by NOTCH1 mutation in Asia, and this information will be useful for providing the family with genetic counseling that can help to guide their future plans.
Collapse
Affiliation(s)
- Suqiu Huang
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Ling Yang
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Liqing Zhao
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yurong Wu
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
19
|
Mio C, Grani G, Durante C, Damante G. Molecular defects in thyroid dysgenesis. Clin Genet 2019; 97:222-231. [PMID: 31432505 DOI: 10.1111/cge.13627] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
Congenital hypothyroidism (CH) is a neonatal endocrine disorder that might occur as itself or be associated to congenital extra-thyroidal defects. About 85% of affected subjects experience thyroid dysgenesis (TD), characterized by defect in thyroid gland development. In vivo experiments on null mice paved the way for the identification of genes involved thyroid morphogenesis and development, whose mutation has been strongly associated to TD. Most of them are thyroid-specific transcription factors expressed during early thyroid development. Despite the arduous effort in unraveling the genetics of TD in animal models, up to now these data have been discontinuously confirmed in humans and only 5% of TD have associated with known null mice-related mutations (mainly PAX8 and TSHR). Notwithstanding, the advance in genetic testing represented by the next-generation sequencing (NGS) approach is steadily increasing the list of genes whose highly penetrant mutation predisposes to TD. In this review we intend to outline the molecular bases of TD, summarizing the current knowledge on thyroid development in both mice and humans and delineating the genetic features of its monogenetic forms. We will also highlight current strategies to enhance the insight into the non-Mendelian mechanisms of abnormal thyroid development.
Collapse
Affiliation(s)
- Catia Mio
- Department of Medicine, University of Udine, Udine, Italy
| | - Giorgio Grani
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Damante
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Medical Genetics, Academic Hospital "Azienda Sanitaria Universitaria Integrata di Udine", Udine, Italy
| |
Collapse
|
20
|
Porcheri C, Meisel CT, Mitsiadis T. Multifactorial Contribution of Notch Signaling in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:E1520. [PMID: 30917608 PMCID: PMC6471940 DOI: 10.3390/ijms20061520] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) defines a group of solid tumors originating from the mucosa of the upper aerodigestive tract, pharynx, larynx, mouth, and nasal cavity. It has a metastatic evolution and poor prognosis and is the sixth most common cancer in the world, with 600,000 new cases reported every year. HNSCC heterogeneity and complexity is reflected in a multistep progression, involving crosstalk between several molecular pathways. The Notch pathway is associated with major events supporting cancerogenic evolution: cell proliferation, self-renewal, angiogenesis, and preservation of a pro-oncogenic microenvironment. Additionally, Notch is pivotal in tumor development and plays a dual role acting as both oncogene and tumor suppressor. In this review, we summarize the role of the Notch pathway in HNSCC, with a special focus on its compelling role in major events of tumor initiation and growth.
Collapse
Affiliation(s)
- Cristina Porcheri
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Christian Thomas Meisel
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Thimios Mitsiadis
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| |
Collapse
|
21
|
Persani L, de Filippis T, Colombo C, Gentilini D. GENETICS IN ENDOCRINOLOGY: Genetic diagnosis of endocrine diseases by NGS: novel scenarios and unpredictable results and risks. Eur J Endocrinol 2018; 179:R111-R123. [PMID: 29880707 DOI: 10.1530/eje-18-0379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
Abstract
The technological advancements in genetics produced a profound impact on the research and diagnostics of non-communicable diseases. The availability of next-generation sequencing (NGS) allowed the identification of novel candidate genes but also an in-depth modification of the understanding of the architecture of several endocrine diseases. Several different NGS approaches are available allowing the sequencing of several regions of interest or the whole exome or genome (WGS, WES or targeted NGS), with highly variable costs, potentials and limitations that should be clearly known before designing the experiment. Here, we illustrate the NGS scenario, describe the advantages and limitations of the different protocols and review some of the NGS results obtained in different endocrine conditions. We finally give insights on the terminology and requirements for the implementation of NGS in research and diagnostic labs.
Collapse
Affiliation(s)
- Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Tiziana de Filippis
- Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Carla Colombo
- Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Davide Gentilini
- Labs of Molecular Biology Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Labs of University of Pavia, Pavia, Italy
| |
Collapse
|
22
|
Persani L, Rurale G, de Filippis T, Galazzi E, Muzza M, Fugazzola L. Genetics and management of congenital hypothyroidism. Best Pract Res Clin Endocrinol Metab 2018; 32:387-396. [PMID: 30086865 DOI: 10.1016/j.beem.2018.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several evidences support a relevant genetic origin for Congenital Hypothyroidism (CH), however familial forms are uncommon. CH can be due to morphogenetic or functional defects and several genes have been originally associated either with thyroid dysgenesis or dyshormonogenesis, with a highly variable expressivity and a frequently incomplete penetrance of the genetic defects. The phenotype-driven genetic analyses rarely yielded positive results in more than 10% of cases, thus raising doubts on the genetic origin of CH. However, more recent unsupervised approaches with systematic Next Generation Sequencing (NGS) analysis revealed the existence of hypomorphic alleles of these candidate genes whose combination can explain a significant portion of CH cases. The co-segregation studies of the hypothyroid phenotype with multiple gene variants in pedigrees confirmed the potential oligogenic origin of CH, which finally represents a suitable explanation for the frequent sporadic occurrence of this disease.
Collapse
Affiliation(s)
- Luca Persani
- Division of Endocrine and Metabolic Diseases & Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy.
| | - Giuditta Rurale
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Tiziana de Filippis
- Division of Endocrine and Metabolic Diseases & Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149, Milan, Italy
| | - Elena Galazzi
- Division of Endocrine and Metabolic Diseases & Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Marina Muzza
- Division of Endocrine and Metabolic Diseases & Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, 20122, Milan, Italy
| | - Laura Fugazzola
- Division of Endocrine and Metabolic Diseases & Labs of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, 20122, Milan, Italy
| |
Collapse
|
23
|
Nettore IC, Desiderio S, De Nisco E, Cacace V, Albano L, Improda N, Ungaro P, Salerno M, Colao A, Macchia PE. High-resolution melting analysis (HRM) for mutational screening of Dnajc17 gene in patients affected by thyroid dysgenesis. J Endocrinol Invest 2018; 41:711-717. [PMID: 29159607 DOI: 10.1007/s40618-017-0795-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Congenital hypothyroidism is a frequent disease occurring with an incidence of about 1/1500 newborns/year. In about 75% of the cases, CH is caused by alterations in thyroid morphogenesis, defined "thyroid dysgenesis" (TD). TD is generally a sporadic disease but in about 5% of the cases a genetic origin has been demonstrated. Previous studies indicate that Dnajc17 as a candidate modifier gene for hypothyroidism, since it is expressed in the thyroid bud, interacts with NKX2.1 and PAX8 and it has been associated to the hypothyroid phenotype in mice carrying a single Nkx2.1 and Pax8 genes (double heterozygous knock-out). PURPOSE The work evaluates the possible involvement of DNAJC17 in the pathogenesis of TD. METHODS High-resolution DNA melting analysis (HRM) and direct sequencing have been used to screen for mutations in the DNAJC17 coding sequence in 89 patients with TD. RESULTS Two mutations have been identified in the coding sequence of DNAJC17 gene, one in exon 5 (c.350A>C; rs79709714) and one in exon 9 (c.610G>C; rs117485355). The last one is a rare variant, while the rs79709714 is a polymorphism. Both are present in databases and the frequency of the alleles is not different between TD patients and controls. CONCLUSIONS DNAJC17 mutations are not frequently present in patients with TD.
Collapse
Affiliation(s)
- I C Nettore
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - S Desiderio
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - E De Nisco
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - V Cacace
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
- TIGEM, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - L Albano
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - N Improda
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - P Ungaro
- IEOS, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, "Gaetano Salvatore" Consiglio Nazionale delle Ricerche, Via S. Pansini, 5, 80131, Naples, Italy
| | - M Salerno
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - A Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - P E Macchia
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Via S. Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
24
|
Trimarchi F, De Luca F. A congenitally hypothyroid young man (Seated Dwarf, Goya's Studio, 19th century). J Endocrinol Invest 2018; 41:381-382. [PMID: 29349643 DOI: 10.1007/s40618-018-0834-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Affiliation(s)
- F Trimarchi
- Accademia Peloritana dei Pericolanti at the University of Messina, Messina, Italy.
| | - F De Luca
- Dipartimento di Patologia Umana dell'adulto e dell'età evolutiva Gaetano Barresi, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Abstract
Next-generation sequencing technologies have revolutionized the identification of disease-causing genes, accelerating the discovery of new mutations and new candidate genes for thyroid diseases. To face this flow of novel genetic information, it is important to have suitable animal models to study the mechanisms regulating thyroid development and thyroid hormone availability and activity. Zebrafish ( Danio rerio), with its rapid external embryonic development, has been extensively used in developmental biology. To date, almost all of the components of the zebrafish thyroid axis have been characterized and are structurally and functionally comparable with those of higher vertebrates. The availability of transgenic fluorescent zebrafish lines allows the real-time analysis of thyroid organogenesis and its alterations. Transient morpholino-knockdown is a solution to silence the expression of a gene of interest and promptly obtain insights on its contribution during the development of the zebrafish thyroid axis. The recently available tools for targeted stable gene knockout have further increased the value of zebrafish to the study of thyroid disease. All of the reported zebrafish models can also be used to screen small compounds and to test new drugs and may allow the establishment of experimental proof of concept to plan subsequent clinical trials.
Collapse
Affiliation(s)
- Federica Marelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|