1
|
Chen Y, Liu J, Ren B, Zhou Z, He Y, Li F, Jin M, Liu L, Wang X, Shen H. Validation of DNA methylation and transcriptional characteristics in CCL5 and CXCL8 genes in autoimmune thyroiditis with varying iodine levels. Sci Rep 2025; 15:6006. [PMID: 39972165 PMCID: PMC11840062 DOI: 10.1038/s41598-025-90499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
AIT (autoimmune thyroiditis) is a complex disease influenced by genetic and environmental factors as well as immune dysregulation. Epigenetics has unveiled potential connections among environmental factors, gene expression and thyroid autoimmunity. Among epigenetic modifications, DNA methylation is the first discovered and the most extensively-studied. Investigations both domestically and internationally indicate that iodine supplementation in areas with either excessive or insufficient iodine levels increases the incidence of AIT. Chemokines also play a crucial role in the pathogenesis of AIT. Therefore, does iodine influence the DNA methylation of chemokine genes of patients with AIT, and what are the potential mechanisms involved?. Healthy controls and patients with AIT were matched at the ratio of 1:1 according to age, sex, BMI and residential address, and a total of 176 patients with AIT together with 176 controls were included from regions with varying iodine levels. DNA methylation and mRNA expression levels were analyzed in whole blood using MethylTarget and qRT-PCR methods. At the same time, the GSE138198 and GSE54958 datasets were downloaded from GEO to obtain transcriptional datasets of thyroid tissues from patients with AIT. AIT patients had lower DNA methylation levels in CCL5_2 and CXCL8_1 target regions than controls, while the mRNA expression of CCL5 and CXCL8 genes was significantly higher. A negative correlation was found between the DNA methylation of CCL5_2 and its CpG sites as well as CCL5 gene expression. Higher CCL5 mRNA expression was validated in the thyroid tissues of patients with AIT using GSE datasets. DNA methylation differences at different iodine levels were mainly observed in CCL5_1, CCL5_2, CXCL8_1 and CXCR5_1. CXCL8_1 showed a positive correlation with UIC (urinary iodine concentration). This study demonstrates an association between the DNA methylation status of CCL5 and CXCL8 genes and AIT. The DNA methylation level of the CCL5 gene can serve as an epigenetic marker and biological indicator for AIT. Additionally, long-term iodine deficiency supplementation has a more pronounced impact on the DNA methylation levels of CCL5 and CXCL8 genes.
Collapse
Affiliation(s)
- Yun Chen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Jinjin Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Bingxuan Ren
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Zheng Zhou
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Yanhong He
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Fan Li
- Control Infection Department, Xi'an First Hospital, Xi'an, People's Republic of China
| | - Meihui Jin
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Lixiang Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Xuebing Wang
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Hongmei Shen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Chen Z, Wang Y, Xu Y. Genetic association between autoimmune thyroiditis and microscopic polyangiitis: A two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40827. [PMID: 39654194 PMCID: PMC11630985 DOI: 10.1097/md.0000000000040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) is a group of life-threatening autoimmune small vessel vasculitis and the prognosis depends heavily on whether a prompt diagnosis is achieved. Autoimmune thyroiditis is the most common autoimmune endocrine disease and could overlap with other autoimmune diseases. It remains elusive whether autoimmune thyroiditis affects the risk of AAV development. We performed a 2-sample Mendelian randomization analysis to explore the true association between autoimmune thyroiditis and microscopic polyangiitis (MPA), a subtype of AAV. Independent single-nucleotide polymorphisms associated with Hashimoto thyroiditis or Grave disease with genome-wide significance were selected as instrumental variables from large genome-wide association study. MPA genome-wide association study summary statistics were obtained from FinnGen consortium. The inverse-variance weighted method was conducted as the primary analysis for estimating the effect of the exposure on the outcome. Mendelian randomization-Egger and the weighted median method were used to confirm the results. We found a causal association between Hashimoto thyroiditis and MPA while no causal effect of Grave disease on MPA. This study contributed a genetic viewpoint to the understanding of the link between autoimmune thyroiditis and AAV.
Collapse
Affiliation(s)
- Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yujia Wang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Wang R, Lv Y, Dou T, Yang Q, Yu C, Guan Q. Autoimmune thyroid disease and ovarian hypofunction: a review of literature. J Ovarian Res 2024; 17:125. [PMID: 38877588 PMCID: PMC11177435 DOI: 10.1186/s13048-024-01451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Thyroid hormones(THs) are essential for the proper functioning of the ovaries, and multiple studies have shown that thyroid abnormalities, especially during adolescence and reproductive age, can lead to lifelong ovarian dysfunction. Autoimmune thyroid disease (AITD), one of the most common organ specific autoimmune diseases, is mainly mediated by cellular autoimmune reactions, and has strong inflammatory infiltration and immune active cells, including chemokines and cytokines, which are important components of ovarian aging. This suggests that autoimmune and inflammatory molecular processes may play a role in the emergence of ovarian dysfunction. The purpose of this review is to summarize recent in vivo and in vitro evidence of a complex relationship between AITD and ovarian dysfunction. AITD is closely related to the decline of ovarian function from the perspective of antibody, cytokine, oxidative stress, and genetic factors. Finally, some of the currently known treatments for AITD and hypo ovarian disease are summarized.
Collapse
Affiliation(s)
- Ru Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging,Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital of Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Youyuan Lv
- Internal Medicine Department of the Second Affiliated Hospital of Shandong University, Jinan, 250021, Shandong, China
| | - Tao Dou
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging,Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital of Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Qian Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging,Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital of Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Chunxiao Yu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging,Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital of Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
| | - Qingbo Guan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging,Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital of Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
| |
Collapse
|
4
|
Gong B, Meng F, Wang X, Han Y, Yang W, Wang C, Shan Z. Effects of iodine intake on gut microbiota and gut metabolites in Hashimoto thyroiditis-diseased humans and mice. Commun Biol 2024; 7:136. [PMID: 38287080 PMCID: PMC10824742 DOI: 10.1038/s42003-024-05813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Hashimoto thyroiditis (HT) is an organ-specific autoimmune disease linked to iodine intake. Emerging evidence highlights the gut microbiota's role in HT pathogenesis via the microbiota-gut-thyroid axis. However, the process through which iodine intake modifies the microbiota and triggers HT remains unclear. This study examines how iodine affects gut dysbiosis and HT, recruiting 23 patients with HT and 25 healthy individuals to assess gut microbiota composition and metabolic features. Furthermore, we establish a spontaneously developed thyroiditis mouse model using NOD.H-2h4 mice highlighting the influence of iodine intake on HT progression. The butanoate metabolism significantly differs between these two groups according to the enrichment results, and butyric acid is significantly decreased in patients with HT compared with those in healthy individuals. Gut dysbiosis, driven by excessive iodine intake, disrupts TH17/Treg balance by reducing butyric acid. In summary, iodine intake alters intestinal microbiota composition and metabolic changes influencing the microbiota-gut-thyroid axis.
Collapse
Affiliation(s)
- Boshen Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Fanrui Meng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Xichang Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yutong Han
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Wanyu Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Chuyuan Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China.
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Zhou Z, Jin M, Li B, He Y, Liu L, Ren B, Li J, Li F, Liu J, Chen Y, Wan S, Shen H. Effects of different iodine levels on the DNA methylation of intrinsic apoptosis-associated genes and analysis of gene-environment interactions in patients with autoimmune thyroiditis. Br J Nutr 2023; 130:2039-2052. [PMID: 37183696 DOI: 10.1017/s0007114523001216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Iodine is an essential nutrient that may change the occurrence of autoimmune thyroiditis (AIT). Apoptosis and DNA methylation participate in the pathogenesis and destructive mechanism of AIT. We detected the methylation and the expression of mRNA of intrinsic apoptosis-associated genes (YWHAG, ING4, BRSK2 and GJA1) to identify the potential interactions between the levels of methylation in these genes and different levels of iodine. 176 adult patients with AIT in Shandong Province, China, were included. The MethylTargetTM assay was used to verify the levels of methylation. We used PCR to detect the mRNA levels of the candidate genes. Interactions between methylation levels of the candidate genes and iodine levels were evaluated with multiplicative and addictive interaction models and GMDR. In the AIT group, YWHAG_1 and six CpG sites and BRSK2_1 and eight CpG sites were hypermethylated, whereas ING4_1 and one CpG site were hypomethylated. A negative correlation was found between methylation levels of YWHAG and mRNA expression. The combination of iodine fortification, YWHAG_1 hypermethylation and BRSK2_1 hypermethylation was significantly associated with elevated AIT risk. A four-locus model (YWHAG_1 × ING4_1 × BRSK2_1 × iodine level) was found to be the best model of the gene-environment interactions. We identified abnormal changes in the methylation status of YWHAG, ING4 and BRSK2 in patients with AIT in different iodine levels. Iodine fortification not only affected the methylation levels of YWHAG and BRSK2 but also interacted with the methylation levels of these genes and may ultimately increase the risk of AIT.
Collapse
Affiliation(s)
- Zheng Zhou
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Meihui Jin
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Baoxiang Li
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Yanhong He
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Lixiang Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Bingxuan Ren
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Jianshuang Li
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Fan Li
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Jinjin Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Yun Chen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Siyuan Wan
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar City, Heilongjiang Province161006, People's Republic of China
| | - Hongmei Shen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| |
Collapse
|
6
|
Pahkuri S, Ekman I, Vandamme C, Näntö-Salonen K, Toppari J, Veijola R, Knip M, Kinnunen T, Ilonen J, Lempainen J. DNA methylation differences within INS, PTPN22 and IL2RA promoters in lymphocyte subsets in children with type 1 diabetes and controls. Autoimmunity 2023; 56:2259118. [PMID: 37724526 DOI: 10.1080/08916934.2023.2259118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
We elucidated the effect of four known T1D-susceptibility associated single nucleotide polymorphism (SNP) markers in three genes (rs12722495 and rs2104286 in IL2RA, rs689 in INS and rs2476601 in PTPN22) on CpG site methylation of their proximal promoters in different lymphocyte subsets using pyrosequencing. The study cohort comprised 25 children with newly diagnosed T1D and 25 matched healthy controls. The rs689 SNP was associated with methylation at four CpG sites in INS promoter: -234, -206, -102 and -69. At all four CpG sites, the susceptibility genotype AA was associated with a higher methylation level compared to the other genotypes. We also found an association between rs12722495 and methylation at CpG sites -373 and -356 in IL2RA promoter in B cells, where the risk genotype AA was associated with lower methylation level compared to the AG genotype. The other SNPs analyzed did not demonstrate significant associations with CpG site methylation in the examined genes. Additionally, we compared the methylation between children with T1D and controls, and found statistically significant methylation differences at CpG -135 in INS in CD8+ T cells (p = 0.034), where T1D patients had a slightly higher methylation compared to controls (87.3 ± 7.2 vs. 78.8 ± 8.9). At the other CpG sites analyzed, the methylation was similar. Our results not only confirm the association between INS methylation and rs689 discovered in earlier studies but also report this association in sorted immune cells. We also report an association between rs12722495 and IL2RA promoter methylation in B cells. These results suggest that at least part of the genetic effect of rs689 and rs12722495 on T1D pathogenesis may be conveyed by DNA methylation.
Collapse
Affiliation(s)
- Sirpa Pahkuri
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilse Ekman
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Céline Vandamme
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsti Näntö-Salonen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Eastern Finland Laboratory Centre (ISLAB), Kuopio, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Zhou Z, Liu J, Chen Y, Ren B, Wan S, Chen Y, He Y, Wei Q, Gao H, Liu L, Shen H. Genome-wide DNA methylation pattern in whole blood of patients with Hashimoto thyroiditis. Front Endocrinol (Lausanne) 2023; 14:1259903. [PMID: 38075038 PMCID: PMC10704911 DOI: 10.3389/fendo.2023.1259903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Background Hashimoto thyroiditis (HT), a prevalent autoimmune disorder, is not yet thoroughly understood, especially when it comes to the influence of epigenetics in its pathogenesis. The primary goal of this research was to probe the DNAm profile across the genome in the whole blood derived from patients suffering from HT. Method Using the Illumina 850K BeadChip, we conducted a genome-wide DNAm assessment on 10 matched pairs of HT sufferers and healthy individuals. Genes with differential methylation (DMGs) were identified and underwent functional annotation via the databases of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The transcriptional significance of potential epigenetic biomarker genes was corroborated through qRT-PCR. Results The DNAm profiling across the genome indicated an overall reduction in methylation in HT subjects in comparison with their healthy counterparts. We detected 283 DMPs (adjusted P < 0.05 and |Δβ| > 0.1), among which 152 exhibited hypomethylation and 131 demonstrated hypermethylation. Further analysis exposed a noteworthy concentration of hypermethylated DMPs in the 3´UTR, North Shore, and CpG islands, while there was a significant decrease in the Open Sea (all P < 0.001). The 283 DMPs were broadly distributed from chromosome 1 to 22, with chromosome 6 harboring the most DMPs (n = 51) and chromosome 12 carrying the most DMGs (n = 15). The SLFN12 gene, which presented with extreme hypomethylation in its promoter DMPs among HT patients, was identified as the epigenetic marker gene. Consequently, the SLFN12 mRNA expression was markedly upregulated in HT, displaying a negative relationship with its methylation levels. The area under curve (AUC) value for the SLFN12 gene among HT patients was 0.85 (sensitivity: 0.7, specificity: 0.7), a significant difference compared with healthy controls. The methylation levels of all DMPs in SLFN12 gene were negatively correlated with TSH and one CpG site (cg24470734) was positively assocciated with FT4. Conclusion This investigation presents an initial comprehensive DNAm blueprint for individuals with HT, which permits clear differentiation between HT subjects and normal controls through an epigenetic lens. The SLFN12 gene plays a pivotal role in the onset of HT, suggesting that the methylation status of this gene could serve as a potential epigenetic indicator for HT.
Collapse
Affiliation(s)
- Zheng Zhou
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinjin Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yun Chen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bingxuan Ren
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Siyuan Wan
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yao Chen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanhong He
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qiuyang Wei
- First Clinical Medical Department, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Second Department of Endocrinology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiyan Gao
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixiang Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongmei Shen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Lafontaine N, Wilson SG, Walsh JP. DNA Methylation in Autoimmune Thyroid Disease. J Clin Endocrinol Metab 2023; 108:604-613. [PMID: 36420742 DOI: 10.1210/clinem/dgac664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Graves disease and Hashimoto disease form part of the spectrum of autoimmune thyroid disease (AITD), to which genetic and environmental factors are recognized contributors. Epigenetics provides a potential link between environmental influences, gene expression, and thyroid autoimmunity. DNA methylation (DNAm) is the best studied epigenetic process, and global hypomethylation of leukocyte DNA is reported in several autoimmune disorders. This review summarizes the current understanding of DNAm in AITD. Targeted DNAm studies of blood samples from AITD patients have reported differential DNAm in the promoter regions of several genes implicated in AITD, including TNF, IFNG, IL2RA, IL6, ICAM1, and PTPN22. In many cases, however, the findings await replication and are unsupported by functional studies to support causal roles in AITD pathogenesis. Furthermore, thyroid hormones affect DNAm, and in many studies confounding by reverse causation has not been considered. Recent studies have shown that DNAm patterns in candidate genes including ITGA6, PRKAA2, and DAPK1 differ between AITD patients from regions with different iodine status, providing a potential mechanism for associations between iodine and AITD. Research focus in the field is moving from candidate gene studies to an epigenome-wide approach. Genome-wide methylation studies of AITD patients have demonstrated multiple differentially methylated positions, including some in immunoregulatory genes such as NOTCH1, HLA-DRB1, TNF, and ICAM1. Large, epigenome-wide studies are required to elucidate the pathophysiological role of DNAm in AITD, with the potential to provide novel diagnostic and prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Nicole Lafontaine
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- Medical School, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- Medical School, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
9
|
Jin B, Wang S, Fan Z. Pathogenesis Markers of Hashimoto's Disease-A Mini Review. FRONT BIOSCI-LANDMRK 2022; 27:297. [PMID: 36336870 DOI: 10.31083/j.fbl2710297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 01/07/2023]
Abstract
Hashimoto's thyroiditis (HT) is the most common autoimmune disease involving the thyroid gland. HT often clinically manifest as hypothyroidism due to the destruction of thyroid cells mediated by humoral and cellular immunity. The pathogenesis of HT is a complex process in which environmental factors, hereditary inclination, trace elements immune factors, cytokines, and DNA and miRNA all play an important role. Herein, we summarize the precision factors involved in the pathogenesis of HT and offer an update over the past 5 years to provide a theoretical basis for further investigation of the relevant targets for HT treatment.
Collapse
Affiliation(s)
- Binghui Jin
- Department of General Surgery, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, Liaoning, China
- Department of Central Laboratory, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, Liaoning, China
| | - Shuang Wang
- Department of Endocrinology, Second Affiliated Hospital of Dalian Medical University, 116021, Dalian, Liaoning, China
| | - Zhe Fan
- Department of General Surgery, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, Liaoning, China
- Department of Central Laboratory, Third People's Hospital of Dalian, Dalian Medical University, 116033, Dalian, Liaoning, China
| |
Collapse
|
10
|
Ren B, Wan S, Wu H, Qu M, Chen Y, Liu L, Jin M, Zhou Z, Shen H. Effect of different iodine levels on the DNA methylation of PRKAA2, ITGA6, THEM4 and PRL genes in PI3K-AKT signaling pathway and population-based validation from autoimmune thyroiditis patients. Eur J Nutr 2022; 61:3571-3583. [PMID: 35622138 DOI: 10.1007/s00394-022-02907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/05/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Autoimmune thyroiditis (AIT) is one of the most common autoimmune endocrine diseases. The currently recognized causes are genetic susceptibility, environmental factors and immune disorders. It is important to clarify the pathogenesis for the prevention, diagnosis, treatment of AIT and scientific iodine supplementation. This study analyzed the DNA methylation levels of PRKAA2, ITGA6, PRL and THEM4 genes related to PI3K-AKT signaling pathway, compared the DNA methylation levels between cases and controls from different water iodine levels in Shandong Province of China, and evaluated the contribution of PI3K-AKT signaling pathway-related genes in AIT. METHODS A total of 176 adult AIT patients were included from three different water iodine areas, and 176 healthy controls were included according to gender, age and BMI. According to the results of the Illumina Methylation 850 K BeadChip in our previous research, the significant methylation differences of genes on the PI3K-AKT signaling pathway related to AIT were determined. The MethylTarget™ assay was used to detect the methylation levels of the target genes, and real-time PCR experiments were used to verify the mRNA expression levels. RESULTS Compared with the control group, PRKAA2_3 and 15 CpG sites were hyper-methylated. ITGA6 gene and 2 CpG sites were hypo-methylated in AIT cases. The mRNA expression of ITGA6 gene was negatively correlated with the DNA methylation levels of ITGA6 gene and 2 CpG sites. Compared with cases and controls in areas with different water iodine levels, methylation differences were mainly in PRKAA2 and ITGA6 genes. The methylation levels of PRKAA2_1 and PRKAA2_3 were positively correlated with age. The methylation levels of PRL and THEM4 genes were negatively correlated with age. The methylation level of PRKAA2_3 was positively correlated with FT4. CONCLUSION In summary, we identified aberrant DNA methylation levels of PRKAA2 and ITGA6 genes related to PI3K-AKT signaling pathway in the blood of AIT patients. Both iodine supplementation after long-term iodine deficiency and iodine excess can affect the DNA methylation levels of PRKAA2 and ITGA6 genes, and the former affects more obviously. In ITGA6 gene, this aberrant epigenetic modification is associated with the increased mRNA expression.
Collapse
Affiliation(s)
- Bingxuan Ren
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Siyuan Wan
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,Department of Preventive Medicine, Qiqihar Medical University, Qiqihar City, 161006, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Huaiyong Wu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Mengying Qu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Yao Chen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Lixiang Liu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Meihui Jin
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Zheng Zhou
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China.,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Hongmei Shen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, 150081, Heilongjiang Province, People's Republic of China. .,National Health Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China. .,Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China.
| |
Collapse
|