1
|
Karimi M, Pirzad S, Pourfaraji SMA, Parhizkar Roudsari P, Shirsalimi N, Ahmadizad S. Effects of L-carnitine supplementation on lipid profile in adult patients under hemodialysis: a systematic review and meta-analysis of RCTs. Front Med (Lausanne) 2024; 11:1454921. [PMID: 39687901 PMCID: PMC11646722 DOI: 10.3389/fmed.2024.1454921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background Chronic kidney disease (CKD) affects 10% of the global population and leads to end-stage renal disease (ESRD). Hemodialysis is a common treatment for ESRD, but patients often have low carnitine levels, leading to dyslipidemia, a risk factor for cardiovascular disease and the leading cause of mortality. This study aimed to assess the effects of L-carnitine on lipid profiles in adult hemodialysis patients. Methods A comprehensive search was conducted across the online databases from inception to June 2024 to identify randomized clinical trials (RCTs) evaluating the effects of L-carnitine on lipid profiles in hemodialysis patients. Data extraction and quality assessment were performed, focusing on primary outcomes, including changes in triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL), and secondary outcomes including blood pressure (BP) and body mass index (BMI). Results A total of 28 RCTs were eligible for the current systematic review, including 1,340 hemodialysis patients (671 intervention, 669 control). There were no significant differences in the mean change of TG (SMD: -0.006; 95% CI, -0.272 to 0.259; P = 0.95), TC (SMD: -0.086; 95% CI, -0.253 to -0.079; P = 0.29), HDL (SMD: 0.060; 95% CI, -0.057 to 0.177; P = 0.29), LDL (SMD: -0.075; 95% CI, -0.274 to 0.123; P = 0.43), VLDL (SMD: -0.064; 95% CI, -0.272 to 0.142; P = 0.51), BMI (SMD: -0.025; 95% CI, -0.139 to 0.088; P = 0.56), systolic BP (SMD: 0.055; 95% CI, -0.110 to 0.220; P = 0.43), and diastolic BP (SMD: -0.028; 95% CI, 0.156 to 0.099; P = 0.56). The same insignificant findings were observed after conducting a subgroup analysis based on the route of administration (intravenous vs. Oral). Conclusion L-carnitine supplementation does not significantly change and improve the serum lipid profile, including TG, TC, HDL, LDL, and VLDL levels. Additionally, it has no notable effects on BMI, systolic, or diastolic BP.
Collapse
Affiliation(s)
- Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
| | - Samira Pirzad
- Faculty of Medicine, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | | | | | - Niyousha Shirsalimi
- Faculty of Medicine, Hamadan University of Medical Science (UMSHA), Hamadan, Iran
| | - Sajad Ahmadizad
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Zou QC, Hu JP, Cao Y, She C, Liang LH, Liu ZY. Causal relationship between serum metabolites and idiopathic pulmonary fibrosis: Insights from a two-sample Mendelian randomization study. Heliyon 2024; 10:e36125. [PMID: 39229516 PMCID: PMC11369467 DOI: 10.1016/j.heliyon.2024.e36125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is an irreversible lung disease with unclear pathological mechanisms. In this study, we utilized bidirectional Mendelian randomization (MR) to analyze the relationship between serum metabolites and IPF, and conducted metabolic pathway analysis. Aim To determine the causal relationship between serum metabolites and IPF using MR analysis. Methods A two-sample MR analysis was conducted to evaluate the causal relationship between 824 serum metabolites and IPF. The inverse variance weighted (IVW) method was used to estimate the causal relationship between exposure and results. Sensitivity analysis was conducted using MR Egger, weighted median, and maximum likelihood to eliminate pleiotropy. Additionally, metabolic pathway analysis was conducted to identify potential metabolic pathways. Results We identified 12 serum metabolites (6 risks and 6 protective) associated with IPF from 824 metabolites. Among them, 11 were known and 1 was unknown. 1-Eicosatrienoylglycophorophospholine and 1-myristoylglycophorophospholine were bidirectional MR positive factors, with 1-myristoylglycophorophospholine being a risk factor (1.0013, 1.0097) and 1-eicosatrienoylglycophorine being a protective factor (0.9914, 0.9990). The four lipids (1-linoleoylglycerophoethanolamine*, total cholesterol in large high-density lipoprotein [HDL], cholesterol esters in very large HDL, and phospholipids in very large HDL) and one NA metabolite (degree of unsaturation) were included in the known hazardous metabolites. The known protective metabolites included three types of lipids (carnitine, 1-linoleoylglycerophoethanolamine*, and 1-eicosatrienoylglycerophophophorine), one amino acid (hypoxanthine), and two unknown metabolites (the ratio of omega-6 fatty acids to omega-3 fatty acids, and the ratio of photoshopids to total lipids ratio in chylomicrons and extremely large very low-density lipoprotein [VLDL]). Moreover, sn-Glycerol 3-phosphate and 1-Acyl-sn-glycero-3-phosphocline were found to be involved in the pathogenesis of IPF through metabolic pathways such as Glycerolide metabolism and Glycerophospholipid metabolism. Conclusion Our study identified 6 causal risks and 6 protective serum metabolites associated with IPF. Additionally, 2 metabolites were found to be involved in the pathogenesis of IPF through metabolic pathways, providing a new perspective for further understanding the metabolic pathway and the pathogenesis of IPF.
Collapse
Affiliation(s)
- Qiong-Chao Zou
- Cardiology Department, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- Research Center for Cardiovascular Epidemiology in Hunan Province, Changsha, 410000, Hunan Province, China
| | - Jun-Pei Hu
- Geriatrics Department, Hunan Provincial People's Hospital, Changsha, 410005, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
| | - Yan Cao
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- Department of Emergency, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
| | - Chang She
- Cardiology Department, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
| | - Li-Hui Liang
- Geriatrics Department, Hunan Provincial People's Hospital, Changsha, 410005, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- Research Center for Cardiovascular Epidemiology in Hunan Province, Changsha, 410000, Hunan Province, China
| | - Zheng-Yu Liu
- Cardiology Department, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan Province, China
- Research Center for Cardiovascular Epidemiology in Hunan Province, Changsha, 410000, Hunan Province, China
| |
Collapse
|
3
|
Rastgoo S, Fateh ST, Nikbaf-Shandiz M, Rasaei N, Aali Y, Zamani M, Shiraseb F, Asbaghi O. The effects of L-carnitine supplementation on inflammatory and anti-inflammatory markers in adults: a systematic review and dose-response meta-analysis. Inflammopharmacology 2023; 31:2173-2199. [PMID: 37656233 DOI: 10.1007/s10787-023-01323-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/31/2023] [Indexed: 09/02/2023]
Abstract
L-carnitine supplementation may be beneficial in improving inflammatory conditions and reducing the level of inflammatory cytokines. Therefore, according to the finding of randomized controlled trials (RCTs), the systematic review and meta-analysis aimed to investigate the effect of L-carnitine supplementation on inflammation in adults. To obtain acceptable articles up to October 2022, a thorough search was conducted in databases including PubMed, ISI Web of Science, the Cochrane Library, and Scopus. A random-effects model was used to estimate the weighted mean difference (WMD). We included the 48 RCTs (n = 3255) with 51 effect sizes in this study. L-carnitine supplementation had a significant effect on C-reactive protein (CRP) (p < 0.001), interleukin-6 (IL-6) (p = 0.001), tumor necrosis factor-α (TNF-α) (p = 0.002), malondialdehyde (MDA) (p = 0.001), total antioxidant capacity (TAC) (p = 0.029), alanine transaminase (ALT) (p < 0.001), and aspartate transaminase (AST) (p < 0.001) in intervention, compared to the placebo group. Subgroup analyses showed that L-carnitine supplementation had a lowering effect on CRP and TNF-α in trial duration ≥ 12 weeks in type 2 diabetes and BMI ≥ 25 kg/m2. L-carnitine supplementation reduced ALT levels in overweight and normal BMI subjects at any trial dose and trial duration ≥ 12 weeks and reduced AST levels in overweight subjects and trial dose ≥ 2 g/day. This meta-analysis revealed that L-carnitine supplementation effectively reduces the inflammatory state by increasing the level of TAC and decreasing the levels of CRP, IL-6, TNF-α and MDA in the serum.
Collapse
Affiliation(s)
- Samira Rastgoo
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yasaman Aali
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Omid Asbaghi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Musazadeh V, Alinejad H, Esfahani NK, Kavyani Z, Keramati M, Roshanravan N, Mosharkesh E, Dehghan P. The effect of L-carnitine supplementation on lipid profile in adults: an umbrella meta-analysis on interventional meta-analyses. Front Nutr 2023; 10:1214734. [PMID: 37727632 PMCID: PMC10506516 DOI: 10.3389/fnut.2023.1214734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Previous meta-analyses investigating the therapeutic effects of L-carnitine on lipid profiles have demonstrated inconsistent results. The present umbrella meta-analysis aimed to investigate the impact of efficacy of L-carnitine on lipid profiles in adults. Methods Databases including PubMed, Scopus, and Embase, Web of Science, and Google Scholar were searched up to June 2023. Meta-analysis was performed using a random-effects model. Results Our results from thirteen meta-analyses indicated that L-carnitine supplementation significantly total cholesterol (TC) (ES = -1.05 mg/dL, 95% CI: -1.71, -0.39; p = 0.002), triglycerides (TG) (ES = -2.51 mg/dL; 95% CI: -3.62, -1.39, p < 0.001), and low-density lipoprotein-cholesterol (LDL-C) (ES = -4.81 mg/dL; 95% CI: -6.04, -3.59; p < 0.001). It also increased high-density lipoprotein-cholesterol (HDL-C) (ES: 0.66 mg/dL, 95% CI: 0.20, 1.12, p = 0.005) levels. Conclusion The present umbrella meta-analysis suggests supplementation with L-carnitine in a dosage of more than 2 g/day can improve lipid profile. Thus, L-carnitine supplementation can be recommended as an adjuvant anti-hyperlipidemic agent.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanie Alinejad
- Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | | | - Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Keramati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mosharkesh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Al-Dhuayan IS. Biomedical role of L-carnitine in several organ systems, cellular tissues, and COVID-19. BRAZ J BIOL 2023; 82:e267633. [PMID: 36629544 DOI: 10.1590/1519-6984.267633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/20/2022] [Indexed: 01/11/2023] Open
Abstract
Carnitine is a conditionally necessary vitamin that aids in energy creation and fatty acid metabolism. Its bioavailability is higher in vegetarians than in meat-eaters. Deficits in carnitine transporters occur because of genetic mutations or in conjunction with other illnesses. Carnitine shortage can arise in health issues and diseases-including hypoglycaemia, heart disease, starvation, cirrhosis, and ageing-because of abnormalities in carnitine control. The physiologically active form of L-carnitine supports immunological function in diabetic patients. Carnitine has been demonstrated to be effective in the treatment of Alzheimer's disease, several painful neuropathies, and other conditions. It has been used as a dietary supplement for the treatment of heart disease, and it also aids in the treatment of obesity and reduces blood glucose levels. Therefore, L-carnitine shows the potential to eliminate the influences of fatigue in COVID-19, and its consumption is recommended in future clinical trials to estimate its efficacy and safety. This review focused on carnitine and its effect on tissues, covering the biosynthesis, metabolism, bioavailability, biological actions, and its effects on various body systems and COVID-19.
Collapse
Affiliation(s)
- I S Al-Dhuayan
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Biology, Dammam, Saudi Arabia
| |
Collapse
|
6
|
Nishioka N, Luo Y, Taniguchi T, Ohnishi T, Kimachi M, Ng RC, Watanabe N. Carnitine supplements for people with chronic kidney disease requiring dialysis. Cochrane Database Syst Rev 2022; 12:CD013601. [PMID: 36472884 PMCID: PMC9724937 DOI: 10.1002/14651858.cd013601.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Carnitine deficiency is common in patients with chronic kidney disease (CKD) who require dialysis. Several clinical studies have suggested that carnitine supplementation is beneficial for dialysis-related symptoms. However, the clinical effectiveness and potential adverse effects of carnitine supplementation in dialysis patients have not been determined. OBJECTIVES This review aimed to evaluate the effectiveness and safety of carnitine supplementation for the treatment of dialysis-related complications in CKD patients requiring dialysis. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 16 August 2022 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included all randomised controlled trials (RCTs) and quasi-RCTs (RCTs in which allocation to treatment was obtained by alternation, use of alternate medical records, date of birth, or other predictable methods) that compared carnitine supplements with placebo or standard care in people with CKD requiring dialysis. DATA COLLECTION AND ANALYSIS Two authors independently extracted study data and assessed study quality. We used a random-effects model to perform a quantitative synthesis of the data. We used the I² statistic to measure heterogeneity amongst the studies in each analysis. We indicated summary estimates as a risk ratio (RR) for dichotomous outcomes, mean difference (MD) for continuous outcomes, or standardised mean differences (SMD) if different scales were used, with 95% confidence intervals (CI). We assessed the certainty of the evidence for each of the main outcomes using the GRADE (Grades of Recommendation, Assessment, Development, and Evaluation) approach. MAIN RESULTS We included 52 studies (47 parallel RCTs and five cross-over RCTs) (3398 randomised participants). All studies compared L-carnitine with a placebo, other treatment, or no treatment. Standard care was continued as co-interventions in each group. Most studies were judged to have an unclear or high risk of bias. L-carnitine may have little or no effect on the quality of life (QoL) SF-36 physical component score (PCS) (4 studies, 134 participants: SMD 0.57, 95% CI -0.15 to 1.28; I² = 73%; low certainty of evidence), and the total QoL score (Kidney Disease Quality of Life (KDQOL), VAS (general well-being), or PedsQL) (3 studies, 230 participants: SMD -0.02, 95% CI -0.29 to 0.25; I² = 0%; low certainty of evidence). L-carnitine may improve SF-36 mental component score (MCS) (4 studies, 134 participants: SMD 0.70, 95% CI 0.22 to 1.18; I² = 42%; low certainty of evidence). L-carnitine may have little or no effect on fatigue score (2 studies, 353 participants: SMD 0.01, 95% CI -0.20 to 0.23; I² = 0%; low certainty of evidence), adverse events (12 studies, 1041 participants: RR, 1.14, 95% CI 0.86 to 1.51; I² = 0%; low certainty of evidence), muscle cramps (2 studies, 102 participants: RR, 0.44, 95% CI 0.18 to 1.09; I² = 23%; low certainty of evidence), and intradialytic hypotension (3 studies, 128 participants: RR, 0.76, 95% CI 0.34 to 1.69; I² = 0%; low certainty of evidence). L-carnitine may improve haemoglobin levels (26 studies, 1795 participants: MD 0.46 g/dL, 95% CI 0.18 to 0.74; I² = 86%; low certainty of evidence) and haematocrit values (14 studies, 950 participants: MD 1.78%, 95% CI 0.38 to 3.18; I² = 84%; low certainty of evidence). AUTHORS' CONCLUSIONS The available evidence does not currently support the use of carnitine supplementation in the treatment of dialysis-related carnitine deficiency. Although carnitine supplementation may slightly improve anaemia-related markers, carnitine supplementation makes little or no difference to adverse events. However, these conclusions are based on limited data and, therefore, should be interpreted with caution.
Collapse
Affiliation(s)
- Norihiro Nishioka
- Department of Preventive Services, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yan Luo
- Department of Health Promotion and Human Behaviour, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
| | - Takuya Taniguchi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsuyoshi Ohnishi
- Department of Nephrology, Kasukabe Chuo General Hospital, Saitama, Japan
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miho Kimachi
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Roland Ck Ng
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Norio Watanabe
- Department of Psychiatry, Soseikai General Hospital, Kyoto, Japan
| |
Collapse
|
7
|
Kaneko S, Yanai K, Kitano T, Miyazawa H, Hirai K, Ookawara S, Morishita Y. Change in Anemia by Carnitine Supplementation in Patients Undergoing Peritoneal Dialysis: A Retrospective Observational Study. Front Med (Lausanne) 2021; 8:767945. [PMID: 34805230 PMCID: PMC8602557 DOI: 10.3389/fmed.2021.767945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Carnitine supplementation improves various dialysis-related symptoms including erythropoietin-resistant anemia in patients who are undergoing hemodialysis. However, the utility of carnitine supplementation in patients who are undergoing peritoneal dialysis (PD) is not fully understood. Methods: Thirteen patients undergoing PD [mean age: 54.2 ± 14.8 years, males: 9/13 (69%)] administered oral carnitine supplementation (mean dose: 9.1 ± 3.3 mg/kg/day) for 4–6 months were retrospectively investigated. Changes in serum carnitine levels and other clinical variables including the erythropoietin resistance index (ERI) were analyzed after carnitine supplementation. Results: Carnitine supplementation increased serum total carnitine (48.5 ± 10.2 vs. 130.1 ± 37.2 μmol/L, P < 0.01), free carnitine (31.1 ± 8.3 vs. 83.1 ± 24.6 μmol/L, P < 0.01), and acyl carnitine (17.4 ± 2.8 vs. 46.9 ± 13.8, P < 0.01) levels. The acyl carnitine/free carnitine ratio was not affected (0.6 ± 0.1 vs. 0.6 ± 0.1, P = 0.75). Although the mean ERI was not affected by carnitine supplementation [13.7 ± 4.7 vs. 11.6 ± 3.4 IU/kg/(g/dL)/week, P = 0.28], the ERI change rate was significantly decreased (1.00 ± 0.00 vs. 0.87 ± 0.11, P < 0.01). Conclusion: Carnitine supplementation may improve erythropoietin resistance in patients who are undergoing PD.
Collapse
Affiliation(s)
- Shohei Kaneko
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Katsunori Yanai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Taisuke Kitano
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Haruhisa Miyazawa
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
8
|
Takashima H, Maruyama T, Abe M. Significance of Levocarnitine Treatment in Dialysis Patients. Nutrients 2021; 13:1219. [PMID: 33917145 PMCID: PMC8067828 DOI: 10.3390/nu13041219] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 01/04/2023] Open
Abstract
Carnitine is a naturally occurring amino acid derivative that is involved in the transport of long-chain fatty acids to the mitochondrial matrix. There, these substrates undergo β-oxidation, producing energy. The major sources of carnitine are dietary intake, although carnitine is also endogenously synthesized in the liver and kidney. However, in patients on dialysis, serum carnitine levels progressively fall due to restricted dietary intake and deprivation of endogenous synthesis in the kidney. Furthermore, serum-free carnitine is removed by hemodialysis treatment because the molecular weight of carnitine is small (161 Da) and its protein binding rates are very low. Therefore, the dialysis procedure is a major cause of carnitine deficiency in patients undergoing hemodialysis. This deficiency may contribute to several clinical disorders in such patients. Symptoms of dialysis-related carnitine deficiency include erythropoiesis-stimulating agent-resistant anemia, myopathy, muscle weakness, and intradialytic muscle cramps and hypotension. However, levocarnitine administration might replenish the free carnitine and help to increase carnitine levels in muscle. This article reviews the previous research into levocarnitine therapy in patients on maintenance dialysis for the treatment of renal anemia, cardiac dysfunction, dyslipidemia, and muscle and dialytic symptoms, and it examines the efficacy of the therapeutic approach and related issues.
Collapse
Affiliation(s)
| | | | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610, Japan; (H.T.); (T.M.)
| |
Collapse
|
9
|
The efficacy of L-carnitine in improving malnutrition in patients on maintenance hemodialysis: a meta-analysis. Biosci Rep 2021; 40:225131. [PMID: 32490516 PMCID: PMC7295622 DOI: 10.1042/bsr20201639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
The improvement of malnutrition with levocarnitine in maintenance hemodialysis (MHD) patients is controversial. We performed a meta-analysis to evaluate the efficacy of levocarnitine in improving malnutrition in MHD patients. We performed a literature search for relevant articles related to the treatment of malnutrition by L-carnitine in MHD patients in PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and Wanfang databases. We set the publication dates from 1950 to July 2019. The levels of albumin, prealbumin, total protein, and transferrin before and after treatment were used for assessing malnutrition. Twenty-seven studies were included in the present analysis. The results of the random effects model indicated that L-carnitine treatment improved the albumin level in patients on MHD patients. The pooled standardized mean difference of albumin level was 2.51 (95% confidence interval (CI): 2.13-2.90, P<0.001). The pooled total protein level was 3.83 (95% CI: 2.41-5.24, P = 0.000) and the pooled transferrin level was 0.35 (95% CI: 0.18-0.52, P = 0.000). Significant differences were observed with the total protein and transferrin levels. The results indicated that levocarnitine significantly improved the prealbumin level in patients on MHD. The pooled prealbumin level was 70.86 (95% CI: 42.99-98.73, P = 0.000). No publication bias was detected (P>0.05). The present meta-analysis indicated that L-carnitine can have a favorable effect on malnutrition biomarkers in patients on MHD, including the increase in albumin, total protein, transferrin, and prealbumin levels. The L-carnitine could be an option for treatment of MHD patients.
Collapse
|
10
|
Liu D, Zeng X, Li L, Ou ZL. Carnitine promotes recovery from oxidative stress and extends lifespan in C. elegans. Aging (Albany NY) 2020; 13:813-830. [PMID: 33290254 PMCID: PMC7835055 DOI: 10.18632/aging.202187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
Carnitine is required for transporting fatty acids into the mitochondria for β-oxidation. Carnitine has been used as an energy supplement but the roles in improving health and delaying aging remain unclear. Here we show in C. elegans that L-carnitine improves recovery from oxidative stress and extends lifespan. L-carnitine promotes recovery from oxidative stress induced by paraquat or juglone and improves mobility and survival in response to H2O2 and human amyloid (Aβ) toxicity. L-carnitine also alleviates the oxidative stress during aging, resulting in moderate but significant lifespan extension, which was dependent on SKN-1 and DAF-16. Long-lived worms with germline loss (glp-1) or reduced insulin receptor activity (daf-2) recover from aging-associated oxidative stress faster than wild-type controls and their long lifespans were not further increased by L-carnitine. A new gene, T08B1.1, aligned to a known carnitine transporter OCTN1 in humans, is required for L-carnitine uptake in C. elegans. T08B1.1 expression is elevated in daf-2 and glp-1 mutants and its knockdown prevents L-carnitine from improving oxidative stress recovery and prolonging lifespan. Together, our study suggests an important role of L-carnitine in oxidative stress recovery that might be important for healthy aging in humans.
Collapse
Affiliation(s)
- Dongliang Liu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaofang Zeng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Le Li
- Hunan Yuantai Biotechnology Co., Ltd, Changsha 410000, Hunan, China
| | - Zheng-Lin Ou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
11
|
Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nat Rev Nephrol 2020; 17:153-171. [PMID: 32963366 DOI: 10.1038/s41581-020-00345-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
The observation that unhealthy diets (those that are low in whole grains, fruits and vegetables, and high in sugar, salt, saturated fat and ultra-processed foods) are a major risk factor for poor health outcomes has boosted interest in the concept of 'food as medicine'. This concept is especially relevant to metabolic diseases, such as chronic kidney disease (CKD), in which dietary approaches are already used to ameliorate metabolic and nutritional complications. Increased awareness that toxic uraemic metabolites originate not only from intermediary metabolism but also from gut microbial metabolism, which is directly influenced by diet, has fuelled interest in the potential of 'food as medicine' approaches in CKD beyond the current strategies of protein, sodium and phosphate restriction. Bioactive nutrients can alter the composition and metabolism of the microbiota, act as modulators of transcription factors involved in inflammation and oxidative stress, mitigate mitochondrial dysfunction, act as senolytics and impact the epigenome by altering one-carbon metabolism. As gut dysbiosis, inflammation, oxidative stress, mitochondrial dysfunction, premature ageing and epigenetic changes are common features of CKD, these findings suggest that tailored, healthy diets that include bioactive nutrients as part of the foodome could potentially be used to prevent and treat CKD and its complications.
Collapse
|
12
|
L-Carnitine's Effect on the Biomarkers of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2020; 12:nu12092795. [PMID: 32932644 PMCID: PMC7551203 DOI: 10.3390/nu12092795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
A systematic review and meta-analysis of randomized controlled trials (RCTs) was carried out to assess L-carnitine supplements’ influence on the biomarkers of metabolic syndrome (MetSyn). PubMed, EMBASE, Cochrane library, and CINAHL were used to collect RCT studies published prior to February 2020. RCT studies were included if they had at least one of the following biomarker outcome measurements: waist circumference (WC), blood pressure (BP), fasting blood sugar (FBS), triglyceride (TG), or high density lipoprotein-cholesterol (HDLc). Nine of twenty studies with adequate methodological quality were included in this meta-analysis. The dose of L-carnitine supplementation administered varied between 0.75 and 3 g/day for durations of 8–24 weeks. L-carnitine supplementation significantly reduced WC and systolic BP (SBP), with no significant effects on FBS, TG, and HDLc. We found that L-carnitine supplementation at a dose of more than 1 g/d significantly reduced FBS and TG and increased HDLc. In conclusion, L-carnitine supplementation is correlated with a significant reduction of WC and BP. A dose of 1–3 g/d could improve the biomarkers of MetSyn by reducing FBS and TG and increasing HDLc.
Collapse
|
13
|
Hanai T, Shiraki M, Imai K, Suetugu A, Takai K, Shimizu M. Usefulness of Carnitine Supplementation for the Complications of Liver Cirrhosis. Nutrients 2020; 12:nu12071915. [PMID: 32610446 PMCID: PMC7401279 DOI: 10.3390/nu12071915] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Carnitine is a vitamin-like substance that regulates lipid metabolism and energy production. Carnitine homeostasis is mainly regulated by dietary intake and biosynthesis in the organs, including the skeletal muscle and the liver. Therefore, liver cirrhotic patients with reduced food intake, malnutrition, biosynthetic disorder, and poor storage capacity of carnitine in the skeletal muscle and liver are more likely to experience carnitine deficiency. In particular, liver cirrhotic patients with sarcopenia are at a high risk for developing carnitine deficiency. Carnitine deficiency impairs the important metabolic processes of the liver, such as gluconeogenesis, fatty acid metabolism, albumin biosynthesis, and ammonia detoxification by the urea cycle, and causes hypoalbuminemia and hyperammonemia. Carnitine deficiency should be suspected in liver cirrhotic patients with severe malaise, hepatic encephalopathy, sarcopenia, muscle cramps, and so on. Importantly, the blood carnitine level does not always decrease in patients with liver cirrhosis, and it sometimes exceeds the normal level. Therefore, patients with liver cirrhosis should be treated as if they are in a state of relative carnitine deficiency at the liver, skeletal muscle, and mitochondrial levels, even if the blood carnitine level is not decreased. Recent clinical trials have revealed the effectiveness of carnitine supplementation for the complications of liver cirrhosis, such as hepatic encephalopathy, sarcopenia, and muscle cramps. In conclusion, carnitine deficiency is not always rare in liver cirrhosis, and it requires constant attention in the daily medical care of this disease. Carnitine supplementation might be an important strategy for improving the quality of life of patients with liver cirrhosis.
Collapse
Affiliation(s)
- Tatsunori Hanai
- Correspondence: ; Tel.: +81-(58)-230-6308; Fax: +81-(58)-230-6310
| | | | | | | | | | | |
Collapse
|
14
|
Reply - Letter to the Editor - Meta-analysis of L-carnitine supplementation on lipid profile and glycemic control: inadequate search strategy and other methodological issues. Clin Nutr 2020; 39:1977. [PMID: 32386859 DOI: 10.1016/j.clnu.2020.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022]
|
15
|
Kaneko S, Hirai K, Morino J, Minato S, Yanai K, Mutsuyoshi Y, Ishii H, Matsuyama M, Kitano T, Shindo M, Aomatsu A, Miyazawa H, Ueda Y, Ito K, Ookawara S, Morishita Y. Association between carnitine deficiency and the erythropoietin resistance index in patients undergoing peritoneal dialysis: a cross-sectional observational study. Ren Fail 2020; 42:146-153. [PMID: 32003308 PMCID: PMC7034042 DOI: 10.1080/0886022x.2020.1719847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Carnitine deficiency contributes to developing various pathological conditions, such as cardiac dysfunction, muscle weakness, and erythropoietin-resistant anemia in patients undergoing hemodialysis. However, a conclusion has not been reached concerning the prevalence and the effect of carnitine deficiency in patients undergoing peritoneal dialysis (PD). In this study, the prevalence of carnitine deficiency and the clinical factors associated with carnitine deficiency were investigated in 60 patients undergoing PD. The median age of the patients was 62.5 years (52.5–72.5 years), the proportion of male sex was 44/60 (73.3%), and the median PD period was 24 months (12–45 months). Carnitine deficiency (acyl carnitine/free carnitine ratio >0.4) was detected in 56/60 (93%) patients. Multiple regression analysis showed that the erythropoietin resistance index was independently associated with carnitine deficiency (β = 0.283, p = 0.04). These results suggest that carnitine plays pivotal roles in hematogenesis in patients undergoing PD.
Collapse
Affiliation(s)
- Shohei Kaneko
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Junki Morino
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Saori Minato
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Katsunori Yanai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yuko Mutsuyoshi
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hiroki Ishii
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Momoko Matsuyama
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Taisuke Kitano
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Mitsutoshi Shindo
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Akinori Aomatsu
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Haruhisa Miyazawa
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yuichiro Ueda
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
16
|
Prevalence of Carnitine Deficiency and Decreased Carnitine Levels in Patients on Peritoneal Dialysis. Nutrients 2019; 11:nu11112645. [PMID: 31689941 PMCID: PMC6893685 DOI: 10.3390/nu11112645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Carnitine deficiency is common in patients on dialysis. Serum free carnitine concentration is significantly lower in patients on hemodialysis (HD) than in healthy individuals. However, there are few reports on serum free carnitine concentration in patients on peritoneal dialysis (PD). Methods: We examined serum concentrations of total, free, and acylcarnitine and the acylcarnitine/free carnitine ratio in 34 PD and 34 age-, sex-, and dialysis duration-matched HD patients. We investigated the prevalence of carnitine deficiency and clinical factors associated with carnitine deficiency in the PD group. Results: Prevalence of carnitine deficiency was 8.8% in the PD group and 17.7% in the HD group (p = 0.283). High risk of carnitine deficiency was found in 73.5% of the PD group and 76.4% of the HD group (p = 0.604). Carnitine insufficiency was found in 82.3% of the PD group and 88.2% of HD group (p = 0.733). Multivariate analysis revealed that duration of dialysis and age were independent predictors of serum free carnitine level in the PD group. Conclusions: The prevalence of carnitine deficiency, high risk of carnitine deficiency, and carnitine insufficiency in PD patients was 8.8%, 73.5%, and 82.3%, respectively. These rates were comparable to those in patients on HD.
Collapse
|
17
|
Askarpour M, Hadi A, Symonds ME, Miraghajani M, Sheikhi A, Ghaedi E. Efficacy of l-carnitine supplementation for management of blood lipids: A systematic review and dose-response meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2019; 29:1151-1167. [PMID: 31561944 DOI: 10.1016/j.numecd.2019.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM l-carnitine has an important role in fatty acid metabolism and could therefore act as an adjuvant agent in the improvement of dyslipidemia. The purpose of present systematic review and meta-analysis was to critically assess the efficacy of l-carnitine supplementation on lipid profiles. METHODS AND RESULTS We performed a systematic search of all available randomized controlled trials (RCTs) in the following databases: Scopus, PubMed, ISI Web of Science, The Cochrane Library. Mean difference (MD) of any effect was calculated using a random-effects model. In total, there were 55 eligible RCTs included with 58 arms, and meta-analysis revealed that l-carnitine supplementation significantly reduced total cholesterol (TC) (56 arms-MD: -8.53 mg/dl, 95% CI: -13.46, -3.6, I2: 93%), low-density lipoprotein-cholesterol (LDL-C) (47 arms-MD: -5.48 mg/dl, 95% CI: -8.49, -2.47, I2: 94.5) and triglyceride (TG) (56 arms-MD: -9.44 mg/dl, 95% CI: -16.02, -2.87, I2: 91.8). It also increased high density lipoprotein-cholesterol (HDL-C) (51 arms-MD:1.64 mg/dl, 95% CI:0.54, 2.75, I2: 92.2). l-carnitine supplementation reduced TC in non-linear fashion based on dosage (r = 21.11). Meta-regression analysis indicated a linear relationship between dose of l-carnitine and absolute change in TC (p = 0.029) and LDL-C (p = 0.013). Subgroup analyses showed that l-carnitine supplementation did not change TC, LDL-C and TG in patients under hemodialysis treatment. Intravenous l-carnitine and lower doses (>2 g/day) had no effect on TC, LDL-C and triglycerides. CONCLUSION l-carnitine supplementation at doses above 2 g/d has favorable effects on patients' lipid profiles, but is modulated on participant health and route of administration.
Collapse
Affiliation(s)
- Moein Askarpour
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hadi
- Halal Research Center of IRI, FDA, Tehran, Iran; Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael E Symonds
- The Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, and Nottingham Digestive Disease Centre and Biomedical Research Centre, The School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Maryam Miraghajani
- The Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, and Nottingham Digestive Disease Centre and Biomedical Research Centre, The School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Sheikhi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ghaedi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Antioxidant Supplementation in Renal Replacement Therapy Patients: Is There Evidence? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9109473. [PMID: 30774749 PMCID: PMC6350615 DOI: 10.1155/2019/9109473] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022]
Abstract
The disruption of balance between production of reactive oxygen species and antioxidant systems in favor of the oxidants is termed oxidative stress (OS). To counteract the damaging effects of prooxidant free radicals, all aerobic organisms have antioxidant defense mechanisms that are aimed at neutralizing the circulating oxidants and repair the resulting injuries. Antioxidants are either endogenous (the natural defense mechanisms produced by the human body) or exogenous, found in supplements and foods. OS is present at the early stages of chronic kidney disease, augments progressively with renal function deterioration, and is further exacerbated by renal replacement therapy. End-stage renal disease patients, on hemodialysis (HD) or peritoneal dialysis (PD), suffer from accelerated OS, which has been associated with increased risk for mortality and cardiovascular disease. During HD sessions, the bioincompatibility of dialyzers and dialysate trigger activation of white blood cells and formation of free radicals, while a significant loss of antioxidants is also present. In PD, the bioincompatibility of solutions, including high osmolality, elevated lactate levels, low pH, and accumulation of advanced glycation end-products trigger formation of prooxidants, while there is significant loss of vitamins in the ultrafiltrate. A number of exogenous antioxidants have been suggested to ameliorate OS in dialysis patients. Vitamins B, C, D, and E, coenzyme Q10, L-carnitine, a-lipoic acid, curcumin, green tea, flavonoids, polyphenols, omega-3 polyunsaturated fatty acids, statins, trace elements, and N-acetylcysteine have been studied as exogenous antioxidant supplements in both PD and HD patients.
Collapse
|
19
|
Liakopoulos V, Roumeliotis S, Zarogiannis S, Eleftheriadis T, Mertens PR. Oxidative stress in hemodialysis: Causative mechanisms, clinical implications, and possible therapeutic interventions. Semin Dial 2018; 32:58-71. [PMID: 30288786 DOI: 10.1111/sdi.12745] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress (OS) is the result of prooxidant molecules overwhelming the antioxidant defense mechanisms. Hemodialysis (HD) constitutes a state of elevated inflammation and OS, due to loss of antioxidants during dialysis and activation of white blood cells triggering production of reactive oxygen species. Dialysis vintage, dialysis methods, and type and condition of vascular access, biocompatibility of dialyzer membrane and dialysate, iron administration, and anemia all can play a role in aggravating OS, which in turn has been associated with increased morbidity and mortality. Oral or intravenous administration of antioxidants may detoxify the oxidative molecules and at least in part repair OS-mediated tissue damage. Lifestyle interventions and optimization of a highly biocompatible HD procedure might ameliorate OS development in dialysis.
Collapse
Affiliation(s)
- Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sotirios Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Theodoros Eleftheriadis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
20
|
Naturally Occurring Compounds: New Potential Weapons against Oxidative Stress in Chronic Kidney Disease. Int J Mol Sci 2017; 18:ijms18071481. [PMID: 28698529 PMCID: PMC5535971 DOI: 10.3390/ijms18071481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/22/2017] [Accepted: 07/08/2017] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is a well-described imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense system of cells and tissues. The overproduction of free radicals damages all components of the cell (proteins, lipids, nucleic acids) and modifies their physiological functions. As widely described, this condition is a biochemical hallmark of chronic kidney disease (CKD) and may dramatically influence the progression of renal impairment and the onset/development of major systemic comorbidities including cardiovascular diseases. This state is exacerbated by exposure of the body to uremic toxins and dialysis, a treatment that, although necessary to ensure patients' survival, exposes cells to non-physiological contact with extracorporeal circuits and membranes with consequent mitochondrial and anti-redox cellular system alterations. Therefore, it is undeniable that counteracting oxidative stress machinery is a major pharmacological target in medicine/nephrology. As a consequence, in recent years several new naturally occurring compounds, administered alone or integrated with classical therapies and an appropriate lifestyle, have been proposed as therapeutic tools for CKD patients. In this paper, we reviewed the recent literature regarding the "pioneering" in vivo testing of these agents and their inclusion in small clinical trials performed in patients affected by CKD.
Collapse
|
21
|
Left ventricular mass and cardiac function in pediatric dialysis patients. PROGRESS IN PEDIATRIC CARDIOLOGY 2016. [DOI: 10.1016/j.ppedcard.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Serban MC, Sahebkar A, Mikhailidis DP, Toth PP, Jones SR, Muntner P, Blaha MJ, Andrica F, Martin SS, Borza C, Lip GYH, Ray KK, Rysz J, Hazen SL, Banach M. Impact of L-carnitine on plasma lipoprotein(a) concentrations: A systematic review and meta-analysis of randomized controlled trials. Sci Rep 2016; 6:19188. [PMID: 26754058 PMCID: PMC4709689 DOI: 10.1038/srep19188] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023] Open
Abstract
We aimed to assess the impact of L-carnitine on plasma Lp(a) concentrations through systematic review and meta-analysis of available RCTs. The literature search included selected databases up to 31st January 2015. Meta-analysis was performed using fixed-effects or random-effect model according to I2 statistic. Effect sizes were expressed as weighted mean difference (WMD) and 95% confidence interval (CI). The meta-analysis showed a significant reduction of Lp(a) levels following L-carnitine supplementation (WMD: −8.82 mg/dL, 95% CI: −10.09, −7.55, p < 0.001). When the studies were categorized according to the route of administration, a significant reduction in plasma Lp(a) concentration was observed with oral (WMD: −9.00 mg/dL, 95% CI: −10.29, −7.72, p < 0.001) but not intravenous L-carnitine (WMD: −2.91 mg/dL, 95% CI: −10.22, 4.41, p = 0.436). The results of the meta-regression analysis showed that the pooled estimate is independent of L-carnitine dose (slope: −0.30; 95% CI: −4.19, 3.59; p = 0.878) and duration of therapy (slope: 0.18; 95% CI: −0.22, 0.59; p = 0.374). In conclusion, the meta-analysis suggests a significant Lp(a) lowering by oral L-carnitine supplementation. Taking into account the limited number of available Lp(a)-targeted drugs, L-carnitine might be an effective alternative to effectively reduce Lp(a). Prospective outcome trials will be required to fully elucidate the clinical value and safety of oral L-carnitine supplementation.
Collapse
Affiliation(s)
- Maria-Corina Serban
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- Preventive Cardiology, CGH Medical Center, Sterling, Illinois, USA.,The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Steven R Jones
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Paul Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael J Blaha
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Florina Andrica
- Faculty of Pharmacy, Discipline of Pharmaceutical Chemistry "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Seth S Martin
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Claudia Borza
- Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Gregory Y H Lip
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Kausik K Ray
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, UK
| | - Jacek Rysz
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland
| | - Stanley L Hazen
- Department for Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland
| |
Collapse
|
23
|
Effects of L-carnitine supplementation on nutritional, immunological, and cardiac parameters in hemodialysis patients: a pilot study. RENAL REPLACEMENT THERAPY 2015. [DOI: 10.1186/s41100-015-0004-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
Cruciani RA, Revuelta M, Dvorkin E, Homel P, Lesage P, Esteban-Cruciani N. L-carnitine supplementation in patients with HIV/AIDS and fatigue: a double-blind, placebo-controlled pilot study. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2015; 7:65-73. [PMID: 25733927 PMCID: PMC4340370 DOI: 10.2147/hiv.s66695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background The purpose of this study was to determine the effect of L-carnitine supplementation on fatigue in patients with terminal human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). Methods In this randomized, double-blind, placebo-controlled, parallel-group study, patients who had end-stage HIV/AIDS with carnitine deficiency and fatigue received 3 g of oral L-carnitine or placebo for 2 weeks, followed by a 2-week, open-label phase with the same amount of L-carnitine for all patients. The primary outcome was the degree of fatigue according to the Brief Fatigue Inventory. Secondary outcomes included serum carnitine and lactate levels, physical, emotional, social, and functional well-being, performance status, mood, and CD4 count. Results Eighteen patients in the treatment arm and 17 in the placebo arm completed the trial. At the end of the double-blind phase, total and free carnitine levels in the treatment arm rose from 28±9 to 48±17 nM/L (P<0.001) and from 24±8 to 40±13 nM/L (P<0.001) respectively, with no changes in the placebo arm. The primary outcome, ie, fatigue measured at the end of the blinded phase, did not improve. Secondary outcomes of function, quality of life, and mood did not show improvement either. The secondary outcome of serum lactate decreased from baseline in the treatment group (1.45±0.76 to 1.28±0.52 mmol/L) and increased in the placebo group (1.38±0.62 to 1.84±0.74 mmol/L; P<0.005). Conclusion Our study suggests that 3 g of oral L-carnitine supplementation for 2 weeks in terminally ill HIV/AIDS patients does not improve fatigue. This study might help to determine the dose and duration of treatment used in future clinical trials, as higher doses and/or longer periods of supplementation might be needed in order to detect an improvement. The reduction in serum lactate levels suggests a potential role for L-carnitine supplementation in patients undergoing certain types of antiretroviral therapy. This study contributes evidence-based data to the field of alternative and complementary medicine, a multibillion dollar industry in which controlled studies are not the norm.
Collapse
Affiliation(s)
- Ricardo A Cruciani
- Center for Comprehensive Pain Management and Palliative Care, Capital Institute for Neurosciences, Capital Health Medical Center, Pennington, NJ, USA
| | | | - Ella Dvorkin
- Institutional Review Board, New York University, New York, NY, USA
| | - Peter Homel
- Department of Pain Medicine and Palliative Care, Beth Israel Medical Center, New York, NY, USA
| | | | - Nora Esteban-Cruciani
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
25
|
IWASA M, SUGIMOTO R, ISHIHARA T, SEKOGUCHI-FUJIKAWA N, YOSHIKAWA K, MIFUJI-MOROKA R, TANAKA H, KOBAYASHI Y, HASEGAWA H, TAKEI Y. Usefulness of Levocarnitine and/or Branched-Chain Amino Acids during Invasive Treatment for Hepatocellular Carcinoma. J Nutr Sci Vitaminol (Tokyo) 2015; 61:433-40. [DOI: 10.3177/jnsv.61.433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Motoh IWASA
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine
| | - Ryosuke SUGIMOTO
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine
| | - Tomoaki ISHIHARA
- Department of Gastroenterology and Hepatology, Yokkaichi Digestive Disease Center
| | | | - Kyoko YOSHIKAWA
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine
| | - Rumi MIFUJI-MOROKA
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine
| | - Hideaki TANAKA
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine
| | - Yoshinao KOBAYASHI
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine
| | - Hiroshi HASEGAWA
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine
| | - Yoshiyuki TAKEI
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine
| |
Collapse
|
26
|
Khalatbari-Soltani S, Tabibi H. Inflammation and l-carnitine therapy in hemodialysis patients: a review. Clin Exp Nephrol 2014; 19:331-5. [DOI: 10.1007/s10157-014-1061-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/21/2014] [Indexed: 12/11/2022]
|
27
|
D'Antona G, Nabavi SM, Micheletti P, Di Lorenzo A, Aquilani R, Nisoli E, Rondanelli M, Daglia M. Creatine, L-carnitine, and ω3 polyunsaturated fatty acid supplementation from healthy to diseased skeletal muscle. BIOMED RESEARCH INTERNATIONAL 2014; 2014:613890. [PMID: 25243159 PMCID: PMC4163371 DOI: 10.1155/2014/613890] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Abstract
Myopathies are chronic degenerative pathologies that induce the deterioration of the structure and function of skeletal muscle. So far a definitive therapy has not yet been developed and the main aim of myopathy treatment is to slow the progression of the disease. Current nonpharmacological therapies include rehabilitation, ventilator assistance, and nutritional supplements, all of which aim to delay the onset of the disease and relieve its symptoms. Besides an adequate diet, nutritional supplements could play an important role in the treatment of myopathic patients. Here we review the most recent in vitro and in vivo studies investigating the role supplementation with creatine, L-carnitine, and ω3 PUFAs plays in myopathy treatment. Our results suggest that these dietary supplements could have beneficial effects; nevertheless continued studies are required before they could be recommended as a routine treatment in muscle diseases.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- Department of Molecular Medicine and Laboratory for Motor Activities in Rare Diseases (LUSAMMR), University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran, Iran
| | - Piero Micheletti
- Department of Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Roberto Aquilani
- Maugeri Foundation IRCCS, Montescano Scientific Institute, Via Per Montescano 31, 27040 Montescano, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Mariangela Rondanelli
- Human Nutrition Section, Health Sciences Department, University of Pavia, Azienda di Servizi alla Persona, Via Emilia 12, 27100 Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|