1
|
Ma Y, Xu Y, Zhang Y, Duan X. Molecular Mechanisms of Craniofacial and Dental Abnormalities in Osteopetrosis. Int J Mol Sci 2023; 24:10412. [PMID: 37373559 DOI: 10.3390/ijms241210412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Osteopetrosis is a group of genetic bone disorders characterized by increased bone density and defective bone resorption. Osteopetrosis presents a series of clinical manifestations, including craniofacial deformities and dental problems. However, few previous reports have focused on the features of craniofacial and dental problems in osteopetrosis. In this review, we go through the clinical features, types, and related pathogenic genes of osteopetrosis. Then we summarize and describe the characteristics of craniofacial and dental abnormalities in osteopetrosis that have been published in PubMed from 1965 to the present. We found that all 13 types of osteopetrosis have craniomaxillofacial and dental phenotypes. The main pathogenic genes, such as chloride channel 7 gene (CLCN7), T cell immune regulator 1 (TCIRG1), osteopetrosis-associated transmembrane protein 1 (OSTM1), pleckstrin homology domain-containing protein family member 1 (PLEKHM1), and carbonic anhydrase II (CA2), and their molecular mechanisms involved in craniofacial and dental phenotypes, are discussed. We conclude that the telltale craniofacial and dental abnormalities are important for dentists and other clinicians in the diagnosis of osteopetrosis and other genetic bone diseases.
Collapse
Affiliation(s)
- Yu Ma
- College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yali Xu
- College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yanli Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
2
|
Abstract
Carbonic anhydrase II deficiency (OMIM # 259730), initially called "osteopetrosis with renal tubular acidosis and cerebral calcification syndrome", reveals an important role for the enzyme carbonic anhydrase II (CA II) in osteoclast and renal tubule function. Discovered in 1972 and subsequently given various names, CA II deficiency now describes >100 affected individuals encountered predominantly from the Middle East and Mediterranean region. In 1983, CA II deficiency emerged as the first osteopetrosis (OPT) understood metabolically, and in 1991 the first understood molecularly. CA II deficiency is the paradigm OPT featuring failure of osteoclasts to resorb bone due to inability to acidify their pericellular milieu. The disorder presents late in infancy or early in childhood with fracturing, developmental delay, weakness, short stature, and/or cranial nerve compression and palsy. Mental retardation is common. The skeletal findings may improve by adult life, and CA II deficiency can be associated with a normal life-span. Therefore, it has been considered an "intermediate" type of OPT. In CA II deficiency, OPT is uniquely accompanied by renal tubular acidosis (RTA) of proximal, distal, or combined type featuring hyperchloremic metabolic acidosis, rarely with hypokalemia and paralysis. Cerebral calcification uniquely appears in early childhood. The etiology is bi-allelic loss-of-function mutations of CA2 that encodes CA II. Prenatal diagnosis requires mutational analysis of CA2. Although this enzymopathy reveals how CA II is important for the skeleton and kidney tubule, the pathogenesis of the mental subnormality and cerebral calcification is less well understood. Several mouse models of CA II deficiency have shown growth hormone deficiency, yet currently there is no standard pharmacologic therapy for patients. Treatment of the systemic acidosis is often begun when growth is complete. Although CA II deficiency is an "osteoclast-rich" OPT, and therefore transplantation of healthy osteoclasts can improve the skeletal disease, the RTA and central nervous system difficulties persist.
Collapse
Affiliation(s)
- Michael P Whyte
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Viggiano D, Bruchfeld A, Carriazo S, de Donato A, Endlich N, Ferreira AC, Figurek A, Fouque D, Franssen CFM, Giannakou K, Goumenos D, Hoorn EJ, Nitsch D, Arduan AO, Pešić V, Rastenyté D, Soler MJ, Rroji M, Trepiccione F, Unwin RJ, Wagner CA, Wiecek A, Zacchia M, Zoccali C, Capasso G. Brain dysfunction in tubular and tubulointerstitial kidney diseases. Nephrol Dial Transplant 2021; 37:ii46-ii55. [PMID: 34792176 PMCID: PMC8713153 DOI: 10.1093/ndt/gfab276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/14/2022] Open
Abstract
Kidney function has two important elements: glomerular filtration and tubular function (secretion and reabsorption). A persistent decrease in glomerular filtration rate (GFR), with or without proteinuria, is diagnostic of chronic kidney disease (CKD). While glomerular injury or disease is a major cause of CKD and usually associated with proteinuria, predominant tubular injury, with or without tubulointerstitial disease, is typically non-proteinuric. CKD has been linked with cognitive impairment, but it is unclear how much this depends on a reduced GFR, altered tubular function or the presence of proteinuria. Since CKD is often accompanied by tubular and interstitial dysfunction, we explore here for the first time the potential role of the tubular and tubulointerstitial compartments in cognitive dysfunction. To help address this issue, we have selected a group of primary tubular diseases with preserved GFR, in which to review the evidence for any association with brain dysfunction. Cognition, mood, neurosensory, and motor disturbances are not well characterized in tubular diseases, possibly because they are subclinical and less prominent than other clinical manifestations. The available literature suggests that brain dysfunction in tubular and tubulointerstitial diseases is usually mild and is more often seen in disorders of water handling. Brain dysfunction may occur when severe electrolyte and water disorders in young children persist over a long period of time before the diagnosis is made. We have chosen as examples to highlight this topic, Bartter and Gitelman syndromes and nephrogenic diabetes insipidus. We discuss current published findings, some unanswered questions, and propose topics for future research.
Collapse
Affiliation(s)
- Davide Viggiano
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino. Italy
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden. Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Antonio de Donato
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino. Italy
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Germany
| | - Ana Carina Ferreira
- Nephrology Department, Centro Hospitalar E Universitário de Lisboa Central, Lisbon, Portugal; Universidade Nova de Lisboa
- Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Denis Fouque
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Benite, France; University of Lyon, France
| | - Casper F M Franssen
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Konstantinos Giannakou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Dimitrios Goumenos
- Department of Nephrology and Renal Transplantation, Patras University Hospital, Patras, Greece
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dorothea Nitsch
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alberto Ortiz Arduan
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Vesna Pešić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Daiva Rastenyté
- Medical Academy, Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Maria José Soler
- Nephrology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Merita Rroji
- Department of Nephrology, University Hospital Center "Mother Tereza", Tirana, Albania
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Robert J Unwin
- Department of Renal Medicine, Division of Medicine, University College London, UK
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Zurich, Switzerland
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Miriam Zacchia
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, USA and Associazione Ipertensione, Nefrologia, Trapianto Renale (IPNET), Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | | |
Collapse
|