1
|
Fujii Y, Matsumura H, Murayama K, Okazaki Y, Ashida A. Presence of mitochondrial dysfunction in a case of Fanconi syndrome with normoglycemic MODY1. CEN Case Rep 2025; 14:291-296. [PMID: 39527373 PMCID: PMC11958908 DOI: 10.1007/s13730-024-00948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Maturity-onset diabetes of the young 1 (MODY1) is characterized by macrosomia and transient hypoglycemia in neonates, in addition to diabetes mellitus (DM). Only patients with MODY1 harboring a pathogenic variant (c.187C > T; p.R63W) in HNF4A are sure to develop Fanconi syndrome (FS). Here we report the successful diagnosis of MODY1 in a patient harboring p.R63W before confirmation of DM-related hyperglycemia after being alerted to the presence of abnormal mitochondria in a kidney-biopsy specimen revealed by electron microscopy. The patient was born at 39 weeks of gestation with macrosomia, elevated levels of liver enzymes, and transient hypoglycemia. At three years of age, proteinuria was found by chance, and further laboratory investigations revealed metabolic acidosis, mild renal dysfunction, hypouricemia, proteinuria, aminoaciduria, and glycosuria. On this basis, we diagnosed the patient as having FS and performed percutaneous renal biopsy. Light microscopy revealed no evidence of proximal tubule disorder, but electron microscopy demonstrated mitochondria with disordered cristae in glomerular podocytes and giant mitochondria in proximal tubules. Mitochondrial nephropathy was suspected, and skin fibroblasts from the patient grown on galactose medium showed decreased oxygen consumption suggestive of mitochondrial dysfunction. Therefore, genetic testing was performed and a pathogenic variant (c.187C > T; p.R63W) in HNF4A was detected. Mitochondrial dysfunction in a Drosophila and murine model of patients with both MODY1 and FS has already been reported, and we detected it in this human MODY1/FS patient on the basis of functional tests and imaging. We believe mitochondrial dysfunction may be involved in the pathogenesis of MODY1/FS.
Collapse
Affiliation(s)
- Yuko Fujii
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, Japan.
| | - Hideki Matsumura
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-Cho, Midori-Ku, Chiba-City, Chiba, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Graduate School of Medicine, Intractable Disease Research Center, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Akira Ashida
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, Japan
| |
Collapse
|
2
|
Kim T, Surapaneni AL, Schmidt IM, Eadon MT, Kalim S, Srivastava A, Palsson R, Stillman IE, Hodgin JB, Menon R, Otto EA, Coresh J, Grams ME, Waikar SS, Rhee EP. Plasma Proteins Associated with Chronic Histopathologic Lesions on Kidney Biopsy. J Am Soc Nephrol 2024; 35:910-922. [PMID: 38656806 PMCID: PMC11230715 DOI: 10.1681/asn.0000000000000358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
Key Points Proteomic profiling identified 35 blood proteins associated with chronic histopathologic lesions in the kidney. Testican-2 was expressed in the glomerulus, released by the kidney into circulation, and inversely associated with glomerulosclerosis severity. NELL1 was expressed in tubular epithelial cells, released by the kidney into circulation, and inversely associated with interstitial fibrosis and tubular atrophy severity. Background The severity of chronic histopathologic lesions on kidney biopsy is independently associated with higher risk of progressive CKD. Because kidney biopsies are invasive, identification of blood markers that report on underlying kidney histopathology has the potential to enhance CKD care. Methods We examined the association between 6592 plasma protein levels measured by aptamers and the severity of interstitial fibrosis and tubular atrophy (IFTA), glomerulosclerosis, arteriolar sclerosis, and arterial sclerosis among 434 participants of the Boston Kidney Biopsy Cohort. For proteins significantly associated with at least one histologic lesion, we assessed renal arteriovenous protein gradients among 21 individuals who had undergone invasive catheterization and assessed the expression of the cognate gene among 47 individuals with single-cell RNA sequencing data in the Kidney Precision Medicine Project. Results In models adjusted for eGFR, proteinuria, and demographic factors, we identified 35 proteins associated with one or more chronic histologic lesions, including 20 specific for IFTA, eight specific for glomerulosclerosis, and one specific for arteriolar sclerosis. In general, higher levels of these proteins were associated with more severe histologic score and lower eGFR. Exceptions included testican-2 and NELL1, which were associated with less glomerulosclerosis and IFTA, respectively, and higher eGFR; notably, both of these proteins demonstrated significantly higher levels from artery to renal vein, demonstrating net kidney release. In the Kidney Precision Medicine Project, 13 of the 35 protein hits had cognate gene expression enriched in one or more cell types in the kidney, including podocyte expression of select glomerulosclerosis markers (including testican-2) and tubular expression of several IFTA markers (including NELL1). Conclusions Proteomic analysis identified circulating proteins associated with chronic histopathologic lesions, some of which had concordant site-specific expression within the kidney.
Collapse
Affiliation(s)
- Taesoo Kim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Aditya L. Surapaneni
- Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Insa M. Schmidt
- Section of Nephrology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Anand Srivastava
- Division of Nephrology, University of Illinois Chicago, Chicago, Illinois
| | - Ragnar Palsson
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Isaac E. Stillman
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeffrey B. Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Edgar A. Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Josef Coresh
- Departments of Population Health and Medicine, New York University Grossman School of Medicine, New York, New York
| | - Morgan E. Grams
- Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Eugene P. Rhee
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
3
|
Ragate DC, Memon SS, Karlekar M, Lila AR, Sarathi V, Jamale T, Thakare S, Patil VA, Shah NS, Bandgar TR. Inherited Fanconi renotubular syndromes: unveiling the intricacies of hypophosphatemic rickets/osteomalacia. J Bone Miner Metab 2024; 42:155-165. [PMID: 38310177 DOI: 10.1007/s00774-023-01490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Fanconi renotubular syndromes (FRTS) are a rare group of inherited phosphaturic disorders with limited Indian as well as global data on this condition. Here, we describe the experience of a single Endocrinology center from Western India on FRTS. MATERIALS AND METHODS Comprehensive clinical, biochemical, radiological, management, and genetic details of FRTS patients managed between 2010 and 2023 were collected and analyzed. RESULTS FRTS probands had mutations (eight novel) in six genes [CLCN5 (n = 4), SLC2A2 (n = 2), GATM, EHHADH, HNF4A, and OCRL (1 each)]. Among 15 FRTS patients (11 families), rickets/osteomalacia was the most common (n = 14) presentation with wide inter- and intra-familial phenotypic variability. Delayed diagnosis (median: 8.8 years), initial misdiagnosis (8/11 probands), and syndrome-specific discriminatory features (8/11 probands) were commonly seen. Hypophosphatemia, elevated alkaline phosphatase, normal parathyroid hormone (median: 36 pg/ml), high-normal/elevated 1,25(OH)2D (median: 152 pg/ml), hypercalciuria (median spot urinary calcium to creatinine ratio: 0.32), and variable proximal tubular dysfunction(s) were observed. Elevated C-terminal fibroblast growth factor 23 in two probands was misleading, till the genetic diagnosis was reached. Novel observations in our FRTS cohort were preserved renal function (till sixth decade) and enthesopathy in FRTS1 and FRTS3 families, respectively. CONCLUSION Our findings underscore frequent under- and misdiagnosis of FRTS; hence, a high index of suspicion for FRTS in phosphopenic rickets/osteomalacia, with early consideration of genetic testing is essential to ensure timely diagnosis of FRTS. The novel variants and phenotypic manifestations described here expand the disease spectrum of FRTS.
Collapse
Affiliation(s)
- Divya C Ragate
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India
| | - Saba Samad Memon
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India.
| | - Manjiri Karlekar
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India
| | - Anurag Ranjan Lila
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India
| | - Tukaram Jamale
- Department of Nephrology, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Sayali Thakare
- Department of Nephrology, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Virendra A Patil
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India
| | - Nalini S Shah
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India
| | - Tushar R Bandgar
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India
| |
Collapse
|