1
|
Schoch SF, Jaramillo V, Markovic A, Huber R, Kohler M, Jenni OG, Lustenberger C, Kurth S. Bedtime to the brain: how infants' sleep behaviours intertwine with non-rapid eye movement sleep electroencephalography features. J Sleep Res 2024; 33:e13936. [PMID: 37217191 DOI: 10.1111/jsr.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Adequate sleep is critical for development and facilitates the maturation of the neurophysiological circuitries at the basis of cognitive and behavioural function. Observational research has associated early life sleep problems with worse later cognitive, psychosocial, and somatic health outcomes. Yet, the extent to which day-to-day sleep behaviours (e.g., duration, regularity) in early life relate to non-rapid eye movement (NREM) neurophysiology-acutely and the long-term-remains to be studied. We measured sleep behaviours in 32 healthy 6-month-olds assessed with actimetry and neurophysiology with high-density electroencephalography (EEG) to investigate the association between NREM sleep and habitual sleep behaviours. Our study revealed four findings: first, daytime sleep behaviours are related to EEG slow-wave activity (SWA). Second, night-time movement and awakenings from sleep are connected with spindle density. Third, habitual sleep timing is linked to neurophysiological connectivity quantified as delta coherence. And lastly, delta coherence at 6 months predicts night-time sleep duration at 12 months. These novel findings widen our understanding that infants' sleep behaviours are closely intertwined with three particular levels of neurophysiology: sleep pressure (determined by SWA), the maturation of the thalamocortical system (spindles), and the maturation of cortical connectivity (coherence). The crucial next step is to extend this concept to clinical groups to objectively characterise infants' sleep behaviours 'at risk' that foster later neurodevelopmental problems.
Collapse
Affiliation(s)
- Sarah F Schoch
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Valeria Jaramillo
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, UK
| | - Andjela Markovic
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Reto Huber
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
- Children's Research Center, University Children's Hospital Zürich, University of Zürich (UZH), Zürich, Switzerland
| | - Caroline Lustenberger
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Salome Kurth
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Rial RV, Akaârir M, Canellas F, Barceló P, Rubiño JA, Martín-Reina A, Gamundí A, Nicolau MC. Mammalian NREM and REM sleep: Why, when and how. Neurosci Biobehav Rev 2023; 146:105041. [PMID: 36646258 DOI: 10.1016/j.neubiorev.2023.105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
This report proposes that fish use the spinal-rhombencephalic regions of their brain to support their activities while awake. Instead, the brainstem-diencephalic regions support the wakefulness in amphibians and reptiles. Lastly, mammals developed the telencephalic cortex to attain the highest degree of wakefulness, the cortical wakefulness. However, a paralyzed form of spinal-rhombencephalic wakefulness remains in mammals in the form of REMS, whose phasic signs are highly efficient in promoting maternal care to mammalian litter. Therefore, the phasic REMS is highly adaptive. However, their importance is low for singletons, in which it is a neutral trait, devoid of adaptive value for adults, and is mal-adaptive for marine mammals. Therefore, they lost it. The spinal-rhombencephalic and cortical wakeful states disregard the homeostasis: animals only attend their most immediate needs: foraging defense and reproduction. However, these activities generate allostatic loads that must be recovered during NREMS, that is a paralyzed form of the amphibian-reptilian subcortical wakefulness. Regarding the regulation of tonic REMS, it depends on a hypothalamic switch. Instead, the phasic REMS depends on an independent proportional pontine control.
Collapse
Affiliation(s)
- Rubén V Rial
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Mourad Akaârir
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Francesca Canellas
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut; Hospital Son Espases, 07120, Palma de Mallorca (España).
| | - Pere Barceló
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - José A Rubiño
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut; Hospital Son Espases, 07120, Palma de Mallorca (España).
| | - Aida Martín-Reina
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Antoni Gamundí
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - M Cristina Nicolau
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| |
Collapse
|
3
|
Nollet M, Franks NP, Wisden W. Understanding Sleep Regulation in Normal and Pathological Conditions, and Why It Matters. J Huntingtons Dis 2023; 12:105-119. [PMID: 37302038 PMCID: PMC10473105 DOI: 10.3233/jhd-230564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Sleep occupies a peculiar place in our lives and in science, being both eminently familiar and profoundly enigmatic. Historically, philosophers, scientists and artists questioned the meaning and purpose of sleep. If Shakespeare's verses from MacBeth depicting "Sleep that soothes away all our worries" and "relieves the weary laborer and heals hurt minds" perfectly epitomize the alleviating benefits of sleep, it is only during the last two decades that the growing understanding of the sophisticated sleep regulatory mechanisms allows us to glimpse putative biological functions of sleep. Sleep control brings into play various brain-wide processes occurring at the molecular, cellular, circuit, and system levels, some of them overlapping with a number of disease-signaling pathways. Pathogenic processes, including mood disorders (e.g., major depression) and neurodegenerative illnesses such Huntington's or Alzheimer's diseases, can therefore affect sleep-modulating networks which disrupt the sleep-wake architecture, whereas sleep disturbances may also trigger various brain disorders. In this review, we describe the mechanisms underlying sleep regulation and the main hypotheses drawn about its functions. Comprehending sleep physiological orchestration and functions could ultimately help deliver better treatments for people living with neurodegenerative diseases.
Collapse
Affiliation(s)
- Mathieu Nollet
- UK Dementia Research Institute and Department of Life Sciences, Imperial College London, London, UK
| | - Nicholas P. Franks
- UK Dementia Research Institute and Department of Life Sciences, Imperial College London, London, UK
| | - William Wisden
- UK Dementia Research Institute and Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
4
|
Functional roles of REM sleep. Neurosci Res 2022; 189:44-53. [PMID: 36572254 DOI: 10.1016/j.neures.2022.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Rapid eye movement (REM) sleep is an enigmatic and intriguing sleep state. REM sleep differs from non-REM sleep by its characteristic brain activity and from wakefulness by a reduced anti-gravity muscle tone. In addition to these key traits, diverse physiological phenomena appear across the whole body during REM sleep. However, it remains unclear whether these phenomena are the causes or the consequences of REM sleep. Experimental approaches using humans and animal models have gradually revealed the functional roles of REM sleep. Extensive efforts have been made to interpret the characteristic brain activity in the context of memory functions. Numerous physical and psychological functions of REM sleep have also been proposed. Moreover, REM sleep has been implicated in aspects of brain development. Here, we review the variety of functional roles of REM sleep, mainly as revealed by animal models. In addition, we discuss controversies regarding the functional roles of REM sleep.
Collapse
|
5
|
Lokhandwala S, Spencer RMC. Relations between sleep patterns early in life and brain development: A review. Dev Cogn Neurosci 2022; 56:101130. [PMID: 35779333 PMCID: PMC9254005 DOI: 10.1016/j.dcn.2022.101130] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Sleep supports healthy cognitive functioning in adults. Over the past decade, research has emerged advancing our understanding of sleep's role in cognition during development. Infancy and early childhood are marked by unique changes in sleep physiology and sleep patterns as children transition from biphasic to monophasic sleep. Growing evidence suggests that, during development, there are parallel changes in sleep and the brain and that sleep may modulate brain structure and activity and vice versa. In this review, we survey studies of sleep and brain development across childhood. By summarizing these findings, we provide a unique understanding of the importance of healthy sleep for healthy brain and cognitive development. Moreover, we discuss gaps in our understanding, which will inform future research.
Collapse
Affiliation(s)
- Sanna Lokhandwala
- Department of Psychological & Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States; Developmental Sciences Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Rebecca M C Spencer
- Department of Psychological & Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States; Developmental Sciences Program, University of Massachusetts Amherst, Amherst, MA, United States; Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States; Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
6
|
Casaglia E, Luppi PH. Is paradoxical sleep setting up innate and acquired complex sensorimotor and adaptive behaviours?: A proposed function based on literature review. J Sleep Res 2022; 31:e13633. [PMID: 35596591 DOI: 10.1111/jsr.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
We summarize here the progress in identifying the neuronal network as well as the function of paradoxical sleep and the gaps of knowledge that should be filled in priority. The core system generating paradoxical sleep localized in the brainstem is now well identified, and the next step is to clarify the role of the forebrain in particular that of the hypothalamus including the melanin-concentrating hormone neurons and of the basolateral amygdala. We discuss these two options, and also the discovery that cortical activation during paradoxical sleep is restricted to a few limbic cortices activated by the lateral supramammillary nucleus and the claustrum. Such activation nicely supports the findings recently obtained showing that neuronal reactivation occurs during paradoxical sleep in these structures, and induces both memory consolidation of important memory and forgetting of less relevant ones. The question that still remains to be answered is whether paradoxical sleep is playing more crucial roles in processing emotional and procedural than other types of memories. One attractive hypothesis is that paradoxical sleep is responsible for erasing negative emotional memories, and that this function is not properly functioning in depressed patients. On the other hand, the presence of a muscle atonia during paradoxical sleep is in favour of a role in procedural memory as new types of motor behaviours can be tried without harm during the state. In a way, it also fits with the proposed role of paradoxical sleep in setting up the sensorimotor system during development.
Collapse
Affiliation(s)
- Elisa Casaglia
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France.,University Lyon 1, Lyon, France.,University of Cagliari, Cagliari, Italy
| | - Pierre-Hervé Luppi
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France.,University Lyon 1, Lyon, France
| |
Collapse
|
7
|
Schoch SF, Castro-Mejía JL, Krych L, Leng B, Kot W, Kohler M, Huber R, Rogler G, Biedermann L, Walser JC, Nielsen DS, Kurth S. From Alpha Diversity to Zzz: Interactions among sleep, the brain, and gut microbiota in the first year of life. Prog Neurobiol 2021; 209:102208. [PMID: 34923049 DOI: 10.1016/j.pneurobio.2021.102208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Sleep disorders have been linked to alterations of gut microbiota composition in adult humans and animal models, but it is unclear how this link develops. With longitudinal assessments in 162 healthy infants, we present a so far unrecognized sleep-brain-gut interrelationship. First, we report a link between sleep habits and gut microbiota: daytime sleep is associated with bacterial diversity, and nighttime sleep fragmentation and variability link with bacterial maturity and enterotype. Second, we demonstrate a sleep-brain-gut link: bacterial diversity and enterotype are associated with sleep neurophysiology. Third, we show that the sleep-brain-gut link is relevant in development: sleep habits and bacterial markers predict behavioral-developmental outcomes. Our results demonstrate the dynamic interplay between sleep, gut microbiota, and the maturation of brain and behavior during infancy, which aligns with the lately emerging concept of a sleep-brain-gut axis. Importantly, sleep and gut microbiota represent promising health targets since both can be modified non-invasively. As many adult diseases root in early childhood, leveraging protective factors of adequate sleep and age-appropriate gut microbiota in infancy could constitute a health promoting factor across the entire human lifespan.
Collapse
Affiliation(s)
- S F Schoch
- Department of PulmonOlogy, University Hospital Zurich, Zurich, Switzerland; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| | | | - L Krych
- Department of Food Science, University of Copenhagen, Denmark
| | - B Leng
- Department of Food Science, University of Copenhagen, Denmark
| | - W Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - M Kohler
- Department of PulmonOlogy, University Hospital Zurich, Zurich, Switzerland; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| | - R Huber
- Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland; Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Switzerland
| | - G Rogler
- Department for Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - L Biedermann
- Department for Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - J C Walser
- Genetic Diversity Center, ETH Zurich, Zurich, Switzerland
| | - D S Nielsen
- Department of Food Science, University of Copenhagen, Denmark
| | - S Kurth
- Department of PulmonOlogy, University Hospital Zurich, Zurich, Switzerland; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland; Department of Psychology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
8
|
Thakkar KN, Mathalon DH, Ford JM. Reconciling competing mechanisms posited to underlie auditory verbal hallucinations. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190702. [PMID: 33308062 PMCID: PMC7741078 DOI: 10.1098/rstb.2019.0702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
Perception is not the passive registration of incoming sensory data. Rather, it involves some analysis by synthesis, based on past experiences and context. One adaptive consequence of this arrangement is imagination-the ability to richly simulate sensory experiences, interrogate and manipulate those simulations, in service of action and decision making. In this paper, we will discuss one possible cost of this adaptation, namely hallucinations-perceptions without sensory stimulation, which characterize serious mental illnesses like schizophrenia, but which also occur in neurological illnesses, and-crucially for the present piece-are common also in the non-treatment-seeking population. We will draw upon a framework for imagination that distinguishes voluntary from non-voluntary experiences and explore the extent to which the varieties and features of hallucinations map onto this distinction, with a focus on auditory-verbal hallucinations (AVHs)-colloquially, hearing voices. We will propose that sense of agency for the act of imagining is key to meaningfully dissecting different forms and features of AVHs, and we will outline the neural, cognitive and phenomenological sequelae of this sense. We will conclude that a compelling unifying framework for action, perception and belief-predictive processing-can incorporate observations regarding sense of agency, imagination and hallucination. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Katharine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Department of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, MI, USA
| | - Daniel H. Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, USA
| | - Judith M. Ford
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, USA
| |
Collapse
|
9
|
Mukherjee D, Sokoloff G, Blumberg MS. Corollary discharge in precerebellar nuclei of sleeping infant rats. eLife 2018; 7:38213. [PMID: 30516134 PMCID: PMC6281370 DOI: 10.7554/elife.38213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/15/2018] [Indexed: 11/21/2022] Open
Abstract
In week-old rats, somatosensory input arises predominantly from external stimuli or from sensory feedback (reafference) associated with myoclonic twitches during active sleep. A previous study suggested that the brainstem motor structures that produce twitches also send motor copies (or corollary discharge, CD) to the cerebellum. We tested this possibility by recording from two precerebellar nuclei—the inferior olive (IO) and lateral reticular nucleus (LRN). In most IO and LRN neurons, twitch-related activity peaked sharply around twitch onset, consistent with CD. Next, we identified twitch-production areas in the midbrain that project independently to the IO and LRN. Finally, we blocked calcium-activated slow potassium (SK) channels in the IO to explain how broadly tuned brainstem motor signals can be transformed into precise CD signals. We conclude that the precerebellar nuclei convey a diversity of sleep-related neural activity to the developing cerebellum to enable processing of convergent input from CD and reafferent signals.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, United States.,Delta Center, University of Iowa, Iowa, United States
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, United States.,Delta Center, University of Iowa, Iowa, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa, United States
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, United States.,Delta Center, University of Iowa, Iowa, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa, United States.,Department of Biology, University of Iowa, Iowa, United States
| |
Collapse
|
10
|
Sánchez-López A, Silva-Pérez M, Escudero M. Temporal dynamics of the transition period between nonrapid eye movement and rapid eye movement sleep in the rat. Sleep 2018; 41:5042786. [DOI: 10.1093/sleep/zsy121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 01/02/2023] Open
Affiliation(s)
- Alvaro Sánchez-López
- Departamento de Fisiología, Neurociencia y Comportamiento, Universidad de Sevilla, Avda. Reina Mercedes, – Seville, Spain
| | - Manuel Silva-Pérez
- Departamento de Fisiología, Neurociencia y Comportamiento, Universidad de Sevilla, Avda. Reina Mercedes, – Seville, Spain
| | - Miguel Escudero
- Departamento de Fisiología, Neurociencia y Comportamiento, Universidad de Sevilla, Avda. Reina Mercedes, – Seville, Spain
| |
Collapse
|
11
|
Delcour M, Massicotte VS, Russier M, Bras H, Peyronnet J, Canu MH, Cayetanot F, Barbe MF, Coq JO. Early movement restriction leads to enduring disorders in muscle and locomotion. Brain Pathol 2018; 28:889-901. [PMID: 29437246 DOI: 10.1111/bpa.12594] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/21/2017] [Accepted: 02/09/2018] [Indexed: 01/01/2023] Open
Abstract
Motor control and body representation in the central nervous system (CNS) as well as musculoskeletal architecture and physiology are shaped during development by sensorimotor experience and feedback, but the emergence of locomotor disorders during maturation and their persistence over time remain a matter of debate in the absence of brain damage. By using transient immobilization of the hind limbs, we investigated the enduring impact of postnatal sensorimotor restriction (SMR) on gait and posture on treadmill, age-related changes in locomotion, musculoskeletal histopathology and Hoffmann reflex in adult rats without brain damage. SMR degrades most gait parameters and induces overextended knees and ankles, leading to digitigrade locomotion that resembles equinus. Based on variations in gait parameters, SMR appears to alter age-dependent plasticity of treadmill locomotion. SMR also leads to small but significantly decreased tibial bone length, chondromalacia, degenerative changes in the knee joint, gastrocnemius myofiber atrophy and muscle hyperreflexia, suggestive of spasticity. We showed that reduced and atypical patterns of motor outputs, and somatosensory inputs and feedback to the immature CNS, even in the absence of perinatal brain damage, play a pivotal role in the emergence of movement disorders and musculoskeletal pathologies, and in their persistence over time. Understanding how atypical sensorimotor development likely contributes to these degradations may guide effective rehabilitation treatments in children with either acquired (ie, with brain damage) or developmental (ie, without brain injury) motor disabilities.
Collapse
Affiliation(s)
- Maxime Delcour
- Neurosciences Intégratives et Adaptatives, UMR 7260, CNRS, Aix-Marseille Université, Marseille, France
| | - Vicky S Massicotte
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Michaël Russier
- Neurosciences Intégratives et Adaptatives, UMR 7260, CNRS, Aix-Marseille Université, Marseille, France
| | - Hélène Bras
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Julie Peyronnet
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Marie-Hélène Canu
- Université de Lille, EA 7369 « Activité Physique, Muscle et Santé » - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, 59000 Lille, France
| | - Florence Cayetanot
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jacques-Olivier Coq
- Neurosciences Intégratives et Adaptatives, UMR 7260, CNRS, Aix-Marseille Université, Marseille, France.,Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| |
Collapse
|
12
|
Khazipov R, Milh M. Early patterns of activity in the developing cortex: Focus on the sensorimotor system. Semin Cell Dev Biol 2018; 76:120-129. [DOI: 10.1016/j.semcdb.2017.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023]
|
13
|
The Nature of the Sensory Input to the Neonatal Rat Barrel Cortex. J Neurosci 2017; 36:9922-32. [PMID: 27656029 DOI: 10.1523/jneurosci.1781-16.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sensory input plays critical roles in the development of the somatosensory cortex during the neonatal period. This early sensory input may involve: (1) stimulation arising from passive interactions with the mother and littermates and (2) sensory feedback arising from spontaneous infant movements. The relative contributions of these mechanisms under natural conditions remain largely unknown, however. Here, we show that, in the whisker-related barrel cortex of neonatal rats, spontaneous whisker movements and passive stimulation by the littermates cooperate, with comparable efficiency, in driving cortical activity. Both tactile signals arising from the littermate's movements under conditions simulating the littermates' position in the litter, and spontaneous whisker movements efficiently triggered bursts of activity in barrel cortex. Yet, whisker movements with touch were more efficient than free movements. Comparison of the various experimental conditions mimicking the natural environment showed that tactile signals arising from the whisker movements with touch and stimulation by the littermates, support: (1) a twofold higher level of cortical activity than in the isolated animal, and (2) a threefold higher level of activity than in the deafferented animal after the infraorbital nerve cut. Together, these results indicate that endogenous (self-generated movements) and exogenous (stimulation by the littermates) mechanisms cooperate in driving cortical activity in newborn rats and point to the importance of the environment in shaping cortical activity during the neonatal period. SIGNIFICANCE STATEMENT Sensory input plays critical roles in the development of the somatosensory cortex during the neonatal period. However, the origins of sensory input to the neonatal somatosensory cortex in the natural environment remain largely unknown. Here, we show that in the whisker-related barrel cortex of neonatal rats, spontaneous whisker movements and passive stimulation by the littermates cooperate, with comparable efficiency, in driving cortical activity during the critical developmental period.
Collapse
|
14
|
Del Rio-Bermudez C, Kim J, Sokoloff G, Blumberg MS. Theta Oscillations during Active Sleep Synchronize the Developing Rubro-Hippocampal Sensorimotor Network. Curr Biol 2017; 27:1413-1424.e4. [PMID: 28479324 DOI: 10.1016/j.cub.2017.03.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/02/2017] [Accepted: 03/29/2017] [Indexed: 12/15/2022]
Abstract
Neuronal oscillations comprise a fundamental mechanism by which distant neural structures establish and express functional connectivity. Long-range functional connectivity between the hippocampus and other forebrain structures is enabled by theta oscillations. Here, we show for the first time that the infant rat red nucleus (RN)-a brainstem sensorimotor structure-exhibits theta (4-7 Hz) oscillations restricted primarily to periods of active (REM) sleep. At postnatal day 8 (P8), theta is expressed as brief bursts immediately following myoclonic twitches; by P12, theta oscillations are expressed continuously across bouts of active sleep. Simultaneous recordings from the hippocampus and RN at P12 show that theta oscillations in both structures are coherent, co-modulated, and mutually interactive during active sleep. Critically, at P12, inactivation of the medial septum eliminates theta in both structures. The developmental emergence of theta-dependent functional coupling between the hippocampus and RN parallels that between the hippocampus and prefrontal cortex. Accordingly, disruptions in the early expression of theta could underlie the cognitive and sensorimotor deficits associated with neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Carlos Del Rio-Bermudez
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; DeLTA Center, University of Iowa, Iowa City, IA 52242, USA
| | - Jangjin Kim
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; DeLTA Center, University of Iowa, Iowa City, IA 52242, USA
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA; DeLTA Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
15
|
Brooks P, Peever J. A Temporally Controlled Inhibitory Drive Coordinates Twitch Movements during REM Sleep. Curr Biol 2016; 26:1177-82. [DOI: 10.1016/j.cub.2016.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/15/2016] [Accepted: 03/02/2016] [Indexed: 11/24/2022]
|