1
|
Rahimi M, Kamyab T, Rahimi G, Abadi ECA, Ebrahimi E, Naimi S. Modeling and identification of affective parameters on cadmium's durability and evaluating cadmium pollution indicators caused by using chemical fertilizers in long term. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8829-8850. [PMID: 36944748 DOI: 10.1007/s10653-023-01535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Soil contamination by anthropogenic heavy metals has become a global issue. This study aimed to investigate cadmium (Cd) concentration, mobility, and contamination indices of Cd in soils in the Hamadan province, west of Iran. To investigate the concentration of Cd in soil, one hundred soil samples from wheat farms and five samples from control lands were collected. Pollution indexes, including Cd mobility, enrichment factor, geoaccumulation index, contamination index, and availability ratio, were investigated. The structural equation model was also used to evaluate effective parameters on cadmium durability in soil. Results showed that mean values of available phosphorus (P) were 83.65, 129, and 65 (mg kg-1) in three land-use types rainfed, irrigated, and controlled, respectively. The mean values of Cd in different land-use types of rainfed, irrigated, and controlled were 0.15, 0.18, and 0.08 (mg kg-1), respectively. The results indicated that the amount of Cd in both forms (available and total) in ones that received fertilizer, especially P fertilizers, was higher than in the controlled one. Other pollution indexes revealed that the study area had been slightly contaminated due to anthropogenic activities. Lime, clay, lead, and OM were identified as affective parameters on cadmium durability. Finally, the results demonstrated that the mobility rate was high. Cd had a higher potential mobility in soil samples in the rain-fed and irrigated land than in the controlled land, and Cd had a low retention time.
Collapse
Affiliation(s)
- Meisam Rahimi
- Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
| | - Taraneh Kamyab
- Department of Engineering Technology and Construction Management, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Ghasem Rahimi
- Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | | | - Eisa Ebrahimi
- Department of Soil Science, Faculty of Agriculture, Guilan University, Rasht, Iran.
| | - Salman Naimi
- Department of Soil Science, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
2
|
Wu R, Bao J, Kim M, Saykin AJ, Moore JH, Shen L, on behalf of ADNI. Mining High-Level Imaging Genetic Associations via Clustering AD Candidate Variants with Similar Brain Association Patterns. Genes (Basel) 2022; 13:1520. [PMID: 36140686 PMCID: PMC9498881 DOI: 10.3390/genes13091520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Brain imaging genetics examines associations between imaging quantitative traits (QTs) and genetic factors such as single nucleotide polymorphisms (SNPs) to provide important insights into the pathogenesis of Alzheimer's disease (AD). The individual level SNP-QT signals are high dimensional and typically have small effect sizes, making them hard to be detected and replicated. To overcome this limitation, this work proposes a new approach that identifies high-level imaging genetic associations through applying multigraph clustering to the SNP-QT association maps. Given an SNP set and a brain QT set, the association between each SNP and each QT is evaluated using a linear regression model. Based on the resulting SNP-QT association map, five SNP-SNP similarity networks (or graphs) are created using five different scoring functions, respectively. Multigraph clustering is applied to these networks to identify SNP clusters with similar association patterns with all the brain QTs. After that, functional annotation is performed for each identified SNP cluster and its corresponding brain association pattern. We applied this pipeline to an AD imaging genetic study, which yielded promising results. For example, in an association study between 54 AD SNPs and 116 amyloid QTs, we identified two SNP clusters with one responsible for amyloid beta clearances and the other regulating amyloid beta formation. These high-level findings have the potential to provide valuable insights into relevant genetic pathways and brain circuits, which can help form new hypotheses for more detailed imaging and genetics studies in independent cohorts.
Collapse
Affiliation(s)
- Ruiming Wu
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jingxuan Bao
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mansu Kim
- The Catholic University of Korea, Seoul 06591, Korea
| | | | | | - Li Shen
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
3
|
GC-CNNnet: Diagnosis of Alzheimer’s Disease with PET Images Using Genetic and Convolutional Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7413081. [PMID: 35983158 PMCID: PMC9381254 DOI: 10.1155/2022/7413081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
There is a wide variety of effects of Alzheimer's disease (AD), a neurodegenerative disease that can lead to cognitive decline, deterioration of daily life, and behavioral and psychological changes. A polymorphism of the ApoE gene ε 4 is considered a genetic risk factor for Alzheimer's disease. The purpose of this paper is to demonstrate that single-nucleotide polymorphic markers (SNPs) have a causal relationship with quantitative PET imaging traits. Additionally, the classification of AD is based on the frequency of brain tissue variations in PET images using a combination of k-nearest-neighbor (KNN), support vector machine (SVM), linear discrimination analysis (LDA), and convolutional neural network (CNN) techniques. According to the results, the suggested SNPs appear to be associated with quantitative traits more strongly than the SNPs in the ApoE genes. Regarding the classification result, the highest accuracy is obtained by the CNN with 91.1%. These results indicate that the KNN and CNN methods are beneficial in diagnosing AD. Nevertheless, the LDA and SVM are demonstrated with a lower level of accuracy.
Collapse
|
4
|
Wang G, Wu W, Xu Y, Yang Z, Xiao B, Long L. Imaging Genetics in Epilepsy: Current Knowledge and New Perspectives. Front Mol Neurosci 2022; 15:891621. [PMID: 35706428 PMCID: PMC9189397 DOI: 10.3389/fnmol.2022.891621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a neurological network disease with genetics playing a much greater role than was previously appreciated. Unfortunately, the relationship between genetic basis and imaging phenotype is by no means simple. Imaging genetics integrates multidimensional datasets within a unified framework, providing a unique opportunity to pursue a global vision for epilepsy. This review delineates the current knowledge of underlying genetic mechanisms for brain networks in different epilepsy syndromes, particularly from a neural developmental perspective. Further, endophenotypes and their potential value are discussed. Finally, we highlight current challenges and provide perspectives for the future development of imaging genetics in epilepsy.
Collapse
Affiliation(s)
- Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Wenyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yuchen Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuanyi Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- *Correspondence: Lili Long
| |
Collapse
|
5
|
Sheng J, Wang L, Cheng H, Zhang Q, Zhou R, Shi Y. Strategies for multivariate analyses of imaging genetics study in Alzheimer's disease. Neurosci Lett 2021; 762:136147. [PMID: 34332030 DOI: 10.1016/j.neulet.2021.136147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/27/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease primarily affecting the elderly population. Early diagnosis of AD is critical for the management of this disease. Imaging genetics examines the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on brain structure and function and many novel approaches of imaging genetics are proposed for studying AD. We review and synthesize the Alzheimer's Disease Neuroimaging Initiative (ADNI) genetic associations with quantitative disease endophenotypes including structural and functional neuroimaging, diffusion tensor imaging (DTI), positron emission tomography (PET), and fluid biomarker assays. In this review, we survey recent publications using neuroimaging and genetic data of AD, with a focus on methods capturing multivariate effects accommodating the large number variables from both imaging data and genetic data. We review methods focused on bridging the imaging and genetic data by establishing genotype-phenotype association, including sparse canonical correlation analysis, parallel independent component analysis, sparse reduced rank regression, sparse partial least squares, genome-wide association study, and so on. The broad availability and wide scope of ADNI genetic and phenotypic data has advanced our understanding of the genetic basis of AD and has nominated novel targets for future pharmaceutical therapy and biomarker development.
Collapse
Affiliation(s)
- Jinhua Sheng
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China.
| | - Luyun Wang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China; College of Information Engineering, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang 310018, China
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | | - Rougang Zhou
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China; School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Mstar Technologies Inc., Hangzhou, Zhejiang 310018, China
| | - Yuchen Shi
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
6
|
Fulcher BD, Arnatkeviciute A, Fornito A. Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data. Nat Commun 2021; 12:2669. [PMID: 33976144 PMCID: PMC8113439 DOI: 10.1038/s41467-021-22862-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Transcriptomic atlases have improved our understanding of the correlations between gene-expression patterns and spatially varying properties of brain structure and function. Gene-category enrichment analysis (GCEA) is a common method to identify functional gene categories that drive these associations, using gene-to-category annotation systems like the Gene Ontology (GO). Here, we show that applying standard GCEA methodology to spatial transcriptomic data is affected by substantial false-positive bias, with GO categories displaying an over 500-fold average inflation of false-positive associations with random neural phenotypes in mouse and human. The estimated false-positive rate of a GO category is associated with its rate of being reported as significantly enriched in the literature, suggesting that published reports are affected by this false-positive bias. We show that within-category gene-gene coexpression and spatial autocorrelation are key drivers of the false-positive bias and introduce flexible ensemble-based null models that can account for these effects, made available as a software toolbox.
Collapse
Affiliation(s)
- Ben D Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, Australia.
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia.
| | - Aurina Arnatkeviciute
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| |
Collapse
|
7
|
Yingxuan E, Yao X, Liu K, Risacher SL, Saykin AJ, Long Q, Zhao Y, Shen L. Polygenic mediation analysis of Alzheimer's disease implicated intermediate amyloid imaging phenotypes. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2021; 2020:422-431. [PMID: 33936415 PMCID: PMC8075527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mediation models have been employed in the study of brain disorders to detect the underlying mechanisms between genetic variants and diagnostic outcomes implicitly mediated by intermediate imaging biomarkers. However, the statistical power is influenced by the modest effects of individual genetic variants on both diagnostic and imaging phenotypes and the limited sample sizes ofimaging genetic cohorts. In this study, we propose a polygenic mediation analysis that comprises a polygenic risk score (PRS) to aggregate genetic effects ofa set ofcandidate variants and then explore the implicit effect ofimaging phenotypes between the PRS and disease status. We applied our proposed method to an amyloid imaging genetic study of Alzheimer's disease (AD), identified multiple imaging mediators linking PRS with AD, and further demonstrated the promise of the PRS on mediator detection over individual variants alone.
Collapse
Affiliation(s)
- Eng Yingxuan
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaohui Yao
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kefei Liu
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Qi Long
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yize Zhao
- Yale University, New Haven, CT 06511, USA
| | - Li Shen
- University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Cong S, Yao X, Huang Z, Risacher SL, Nho K, Saykin AJ, Shen L. Volumetric GWAS of medial temporal lobe structures identifies an ERC1 locus using ADNI high-resolution T2-weighted MRI data. Neurobiol Aging 2020; 95:81-93. [PMID: 32768867 PMCID: PMC7609616 DOI: 10.1016/j.neurobiolaging.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/09/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022]
Abstract
Medial temporal lobe (MTL) consists of hippocampal subfields and neighboring cortices. These heterogeneous structures are differentially involved in memory, cognitive and emotional functions, and present nonuniformly distributed atrophy contributing to cognitive disorders. This study aims to examine how genetics influences Alzheimer's disease (AD) pathogenesis via MTL substructures by analyzing high-resolution magnetic resonance imaging (MRI) data. We performed genome-wide association study to examine the associations between 565,373 single nucleotide polymorphisms (SNPs) and 14 MTL substructure volumes. A novel association with right Brodmann area 36 volume was discovered in an ERC1 SNP (i.e., rs2968869). Further analyses on larger samples found rs2968869 to be associated with gray matter density and glucose metabolism measures in the right hippocampus, and disease status. Tissue-specific transcriptomic analysis identified the minor allele of rs2968869 (rs2968869-C) to be associated with reduced ERC1 expression in the hippocampus. All the findings indicated a protective role of rs2968869-C in AD. We demonstrated the power of high-resolution MRI and the promise of fine-grained MTL substructures for revealing the genetic basis of AD biomarkers.
Collapse
Affiliation(s)
- Shan Cong
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Xiaohui Yao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhi Huang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Yao X, Cong S, Yan J, Risacher SL, Saykin AJ, Moore JH, Shen L. Regional imaging genetic enrichment analysis. Bioinformatics 2020; 36:2554-2560. [PMID: 31860065 DOI: 10.1093/bioinformatics/btz948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/19/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Brain imaging genetics aims to reveal genetic effects on brain phenotypes, where most studies examine phenotypes defined on anatomical or functional regions of interest (ROIs) given their biologically meaningful interpretation and modest dimensionality compared with voxelwise approaches. Typical ROI-level measures used in these studies are summary statistics from voxelwise measures in the region, without making full use of individual voxel signals. RESULTS In this article, we propose a flexible and powerful framework for mining regional imaging genetic associations via voxelwise enrichment analysis, which embraces the collective effect of weak voxel-level signals and integrates brain anatomical annotation information. Our proposed method achieves three goals at the same time: (i) increase the statistical power by substantially reducing the burden of multiple comparison correction; (ii) employ brain annotation information to enable biologically meaningful interpretation and (iii) make full use of fine-grained voxelwise signals. We demonstrate our method on an imaging genetic analysis using data from the Alzheimer's Disease Neuroimaging Initiative, where we assess the collective regional genetic effects of voxelwise FDG-positron emission tomography measures between 116 ROIs and 565 373 single-nucleotide polymorphisms. Compared with traditional ROI-wise and voxelwise approaches, our method identified 2946 novel imaging genetic associations in addition to 33 ones overlapping with the two benchmark methods. In particular, two newly reported variants were further supported by transcriptome evidences from region-specific expression analysis. This demonstrates the promise of the proposed method as a flexible and powerful framework for exploring imaging genetic effects on the brain. AVAILABILITY AND IMPLEMENTATION The R code and sample data are freely available at https://github.com/lshen/RIGEA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xiaohui Yao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shan Cong
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jingwen Yan
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jason H Moore
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
10
|
Shen L, Thompson PM. Brain Imaging Genomics: Integrated Analysis and Machine Learning. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:125-162. [PMID: 31902950 PMCID: PMC6941751 DOI: 10.1109/jproc.2019.2947272] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Brain imaging genomics is an emerging data science field, where integrated analysis of brain imaging and genomics data, often combined with other biomarker, clinical and environmental data, is performed to gain new insights into the phenotypic, genetic and molecular characteristics of the brain as well as their impact on normal and disordered brain function and behavior. It has enormous potential to contribute significantly to biomedical discoveries in brain science. Given the increasingly important role of statistical and machine learning in biomedicine and rapidly growing literature in brain imaging genomics, we provide an up-to-date and comprehensive review of statistical and machine learning methods for brain imaging genomics, as well as a practical discussion on method selection for various biomedical applications.
Collapse
Affiliation(s)
- Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90232, USA
| |
Collapse
|
11
|
Yao X, Cong S, Yan J, Risacher SL, Saykin AJ, Moore JH, Shen L. Mining Regional Imaging Genetic Associations via Voxel-wise Enrichment Analysis. ... IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS. IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2019; 2019. [PMID: 31742256 DOI: 10.1109/bhi.2019.8834450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Brain imaging genetics aims to reveal genetic effects on brain phenotypes, where most studies examine phenotypes defined on anatomical or functional regions of interest (ROIs) given their biologically meaningful annotation and modest dimensionality compared with voxel-wise approaches. Typical ROI-level measures used in these studies are summary statistics from voxel-wise measures in the region, without making full use of individual voxel signals. In this paper, we propose a flexible and powerful framework for mining regional imaging genetic associations via voxel-wise enrichment analysis, which embraces the collective effect of weak voxel-level signals within an ROI. We demonstrate our method on an imaging genetic analysis using data from the Alzheimers Disease Neuroimaging Initiative, where we assess the collective regional genetic effects of voxel-wise FDGPET measures between 116 ROIs and 19 AD candidate SNPs. Compared with traditional ROI-wise and voxel-wise approaches, our method identified 102 additional significant associations, some of which were further supported by evidences in brain tissue-specific expression analysis. This demonstrates the promise of the proposed method as a flexible and powerful framework for exploring imaging genetic effects on the brain.
Collapse
Affiliation(s)
- Xiaohui Yao
- Biostatistics, Epidemiology and Informatics University of Pennsylvania, Philadelphia, PA
| | - Shan Cong
- Electrical and Computer Engineering Purdue University, West Lafayette, IN
| | - Jingwen Yan
- Informatics and Computing Indiana University, Indianapolis, IN
| | - Shannon L Risacher
- Radiology and Imaging Sciences Indiana University School of Medicine, Indianapolis, IN
| | - Andrew J Saykin
- Radiology and Imaging Sciences Indiana University School of Medicine, Indianapolis, IN
| | - Jason H Moore
- Biostatistics, Epidemiology and Informatics University of Pennsylvania, Philadelphia, PA
| | - Li Shen
- Biostatistics, Epidemiology and Informatics University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
12
|
Veitch DP, Weiner MW, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Morris JC, Petersen RC, Saykin AJ, Shaw LM, Toga AW, Trojanowski JQ. Understanding disease progression and improving Alzheimer's disease clinical trials: Recent highlights from the Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement 2018; 15:106-152. [PMID: 30321505 DOI: 10.1016/j.jalz.2018.08.005] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The overall goal of the Alzheimer's Disease Neuroimaging Initiative (ADNI) is to validate biomarkers for Alzheimer's disease (AD) clinical trials. ADNI is a multisite, longitudinal, observational study that has collected many biomarkers since 2004. Recent publications highlight the multifactorial nature of late-onset AD. We discuss selected topics that provide insights into AD progression and outline how this knowledge may improve clinical trials. METHODS We used standard methods to identify nearly 600 publications using ADNI data from 2016 and 2017 (listed in Supplementary Material and searchable at http://adni.loni.usc.edu/news-publications/publications/). RESULTS (1) Data-driven AD progression models supported multifactorial interactions rather than a linear cascade of events. (2) β-Amyloid (Aβ) deposition occurred concurrently with functional connectivity changes within the default mode network in preclinical subjects and was followed by specific and progressive disconnection of functional and anatomical networks. (3) Changes in functional connectivity, volumetric measures, regional hypometabolism, and cognition were detectable at subthreshold levels of Aβ deposition. 4. Tau positron emission tomography imaging studies detailed a specific temporal and spatial pattern of tau pathology dependent on prior Aβ deposition, and related to subsequent cognitive decline. 5. Clustering studies using a wide range of modalities consistently identified a "typical AD" subgroup and a second subgroup characterized by executive impairment and widespread cortical atrophy in preclinical and prodromal subjects. 6. Vascular pathology burden may act through both Aβ dependent and independent mechanisms to exacerbate AD progression. 7. The APOE ε4 allele interacted with cerebrovascular disease to impede Aβ clearance mechanisms. 8. Genetic approaches identified novel genetic risk factors involving a wide range of processes, and demonstrated shared genetic risk for AD and vascular disorders, as well as the temporal and regional pathological associations of established AD risk alleles. 9. Knowledge of early pathological changes guided the development of novel prognostic biomarkers for preclinical subjects. 10. Placebo populations of randomized controlled clinical trials had highly variable trajectories of cognitive change, underscoring the importance of subject selection and monitoring. 11. Selection criteria based on Aβ positivity, hippocampal volume, baseline cognitive/functional measures, and APOE ε4 status in combination with improved cognitive outcome measures were projected to decrease clinical trial duration and cost. 12. Multiple concurrent therapies targeting vascular health and other AD pathology in addition to Aβ may be more effective than single therapies. DISCUSSION ADNI publications from 2016 and 2017 supported the idea of AD as a multifactorial disease and provided insights into the complexities of AD disease progression. These findings guided the development of novel biomarkers and suggested that subject selection on the basis of multiple factors may lower AD clinical trial costs and duration. The use of multiple concurrent therapies in these trials may prove more effective in reversing AD disease progression.
Collapse
Affiliation(s)
- Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Northern California Institute for Research and Education (NCIRE), Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|