1
|
Kok RNU, Tans SJ, van Zon JS. Minimizing cell number fluctuations in self-renewing tissues with a stem-cell niche. Phys Rev E 2023; 108:064403. [PMID: 38243426 DOI: 10.1103/physreve.108.064403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/02/2023] [Indexed: 01/21/2024]
Abstract
Self-renewing tissues require that a constant number of proliferating cells is maintained over time. This maintenance can be ensured at the single-cell level or the population level. Maintenance at the population level leads to fluctuations in the number of proliferating cells over time. Often, it is assumed that those fluctuations can be reduced by increasing the number of asymmetric divisions, i.e., divisions where only one of the daughter cells remains proliferative. Here, we study a model of cell proliferation that incorporates a stem-cell niche of fixed size, and explicitly model the cells inside and outside the niche. We find that in this model, fluctuations are minimized when the difference in growth rate between the niche and the rest of the tissue is maximized and all divisions are symmetric divisions, producing either two proliferating or two nonproliferating daughters. We show that this optimal state leaves visible signatures in clone size distributions and could thus be detected experimentally.
Collapse
Affiliation(s)
- Rutger N U Kok
- Autonomous Matter, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sander J Tans
- Autonomous Matter, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Jeroen S van Zon
- Autonomous Matter, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
2
|
Fischer MM, Blüthgen N. On tumoural growth and treatment under cellular dedifferentiation. J Theor Biol 2023; 557:111327. [PMID: 36341757 DOI: 10.1016/j.jtbi.2022.111327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Differentiated cancer cells may regain stem cell characteristics; however, the effects of such a cellular dedifferentiation on tumoural growth and treatment are currently understudied. Thus, we here extend a mathematical model of cancer stem cell (CSC) driven tumour growth to also include dedifferentiation. We show that dedifferentiation increases the likelihood of tumorigenesis and the speed of tumoural growth, both modulated by the proliferative potential of the non-stem cancer cells (NSCCs). We demonstrate that dedifferentiation also may lead to treatment evasion, especially when a treatment solely targets CSCs. Conversely, targeting both CSCs and NSCCs in parallel is shown to be more robust to dedifferentiation. Despite dedifferentiation, perturbing CSC-related parameters continues to exert the largest relative effect on tumoural growth; however, we show the existence of synergies between specific CSC- and NSCC-directed treatments which cause superadditive reductions of tumoural growth. Overall, our study demonstrates various effects of dedifferentiation on growth and treatment of tumoural lesions, and we anticipate our results to be helpful in guiding future molecular and clinical research on limiting tumoural growth in vivo.
Collapse
Affiliation(s)
- Matthias M Fischer
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany; Charité Universitätsmedizin Berlin, Institut für Pathologie, 10117 Berlin, Germany.
| | - Nils Blüthgen
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany; Charité Universitätsmedizin Berlin, Institut für Pathologie, 10117 Berlin, Germany.
| |
Collapse
|
3
|
Bergman D, Sweis RF, Pearson AT, Nazari F, Jackson TL. A global method for fast simulations of molecular dynamics in multiscale agent-based models of biological tissues. iScience 2022; 25:104387. [PMID: 35637730 PMCID: PMC9142654 DOI: 10.1016/j.isci.2022.104387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Agent-based models (ABMs) are a natural platform for capturing the multiple time and spatial scales in biological processes. However, these models are computationally expensive, especially when including molecular-level effects. The traditional approach to simulating this type of multiscale ABM is to solve a system of ordinary differential equations for the molecular events per cell. This significantly adds to the computational cost of simulations as the number of agents grows, which contributes to many ABMs being limited to around10 5 cells. We propose an approach that requires the same computational time independent of the number of agents. This speeds up the entire simulation by orders of magnitude, allowing for more thorough explorations of ABMs with even larger numbers of agents. We use two systems to show that the new method strongly agrees with the traditionally used approach. This computational strategy can be applied to a wide range of biological investigations.
Collapse
Affiliation(s)
- Daniel Bergman
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Randy F. Sweis
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, 5841 S Maryland Avenue, MC 2115, Chicago, IL 60605, USA
| | - Alexander T. Pearson
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, 5841 S Maryland Avenue, MC 2115, Chicago, IL 60605, USA
| | | | | |
Collapse
|
4
|
Wang Y, Zhao J, Park HJ, Zhou D. Effect of dedifferentiation on noise propagation in cellular hierarchy. Phys Rev E 2022; 105:054409. [PMID: 35706189 DOI: 10.1103/physreve.105.054409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Many fast renewing tissues have a hierarchical structure. Tissue-specific stem cells are at the root of this cellular hierarchy, which give rive to a whole range of specialized cells via cellular differentiation. However, increasing evidence shows that the hierarchical structure can be broken due to cellular dedifferentiation in which cells at differentiated stages can revert to the stem cell stage. Dedifferentiation has significant impacts on many aspects of hierarchical tissues. Here we investigate the effect of dedifferentiation on noise propagation by developing a stochastic model composed of different cell types. The moment equations are derived, via which we systematically investigate how the noise in the cell number is changed by dedifferentiation. Our results suggest that dedifferentiation have different effects on the noises in the numbers of stem cells and nonstem cells. Specifically, the noise in the number of stem cells is significantly reduced by increasing dedifferentiation probability. Due to the dual effect of dedifferentiation on nonstem cells, however, more complex changes could happen to the noise in the number of nonstem cells by increasing dedifferentiation probability. Furthermore, it is found that even though dedifferentiation could turn part of the noise propagation process into a noise-amplifying step, it is very unlikely to turn the entire process into a noise-amplifying cascade.
Collapse
Affiliation(s)
- Yuman Wang
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jintong Zhao
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hye Jin Park
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
5
|
Barua A, Beygi A, Hatzikirou H. Close to Optimal Cell Sensing Ensures the Robustness of Tissue Differentiation Process: The Avian Photoreceptor Mosaic Case. ENTROPY 2021; 23:e23070867. [PMID: 34356408 PMCID: PMC8303396 DOI: 10.3390/e23070867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022]
Abstract
The way that progenitor cell fate decisions and the associated environmental sensing are regulated to ensure the robustness of the spatial and temporal order in which cells are generated towards a fully differentiating tissue still remains elusive. Here, we investigate how cells regulate their sensing intensity and radius to guarantee the required thermodynamic robustness of a differentiated tissue. In particular, we are interested in finding the conditions where dedifferentiation at cell level is possible (microscopic reversibility), but tissue maintains its spatial order and differentiation integrity (macroscopic irreversibility). In order to tackle this, we exploit the recently postulated Least microEnvironmental Uncertainty Principle (LEUP) to develop a theory of stochastic thermodynamics for cell differentiation. To assess the predictive and explanatory power of our theory, we challenge it against the avian photoreceptor mosaic data. By calibrating a single parameter, the LEUP can predict the cone color spatial distribution in the avian retina and, at the same time, suggest that such a spatial pattern is associated with quasi-optimal cell sensing. By means of the stochastic thermodynamics formalism, we find out that thermodynamic robustness of differentiated tissues depends on cell metabolism and cell sensing properties. In turn, we calculate the limits of the cell sensing radius that ensure the robustness of differentiated tissue spatial order. Finally, we further constrain our model predictions to the avian photoreceptor mosaic.
Collapse
Affiliation(s)
- Arnab Barua
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Nöthnitzer Straße 46, 01062 Dresden, Germany; (A.B.); (A.B.)
| | - Alireza Beygi
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Nöthnitzer Straße 46, 01062 Dresden, Germany; (A.B.); (A.B.)
| | - Haralampos Hatzikirou
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Nöthnitzer Straße 46, 01062 Dresden, Germany; (A.B.); (A.B.)
- Mathematics Department, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
6
|
Wang Y, Lo WC, Chou CS. Modelling stem cell ageing: a multi-compartment continuum approach. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191848. [PMID: 32269805 PMCID: PMC7137970 DOI: 10.1098/rsos.191848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Stem cells are important to generate all specialized tissues at an early life stage, and in some systems, they also have repair functions to replenish the adult tissues. Repeated cell divisions lead to the accumulation of molecular damage in stem cells, which are commonly recognized as drivers of ageing. In this paper, a novel model is proposed to integrate stem cell proliferation and differentiation with damage accumulation in the stem cell ageing process. A system of two structured PDEs is used to model the population densities of stem cells (including all multiple progenitors) and terminally differentiated (TD) cells. In this system, cell cycle progression and damage accumulation are modelled by continuous dynamics, and damage segregation between daughter cells is considered at each division. Analysis and numerical simulations are conducted to study the steady-state populations and stem cell damage distributions under different damage segregation strategies. Our simulations suggest that equal distribution of the damaging substance between stem cells in a symmetric renewal and less damage retention in stem cells in the asymmetric division are favourable strategies, which reduce the death rate of the stem cells and increase the TD cell populations. Moreover, asymmetric damage segregation in stem cells leads to less concentrated damage distribution in the stem cell population, which may be more robust to the stochastic changes in the damage. The feedback regulation from stem cells can reduce oscillations and population overshoot in the process, and improve the fitness of stem cells by increasing the percentage of cells with less damage in the stem cell population.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Wing-Cheong Lo
- Department of Mathematics, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ching-Shin Chou
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Zhou D, Luo Y, Dingli D, Traulsen A. The invasion of de-differentiating cancer cells into hierarchical tissues. PLoS Comput Biol 2019; 15:e1007167. [PMID: 31260442 PMCID: PMC6625723 DOI: 10.1371/journal.pcbi.1007167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/12/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
Many fast renewing tissues are characterized by a hierarchical cellular architecture, with tissue specific stem cells at the root of the cellular hierarchy, differentiating into a whole range of specialized cells. There is increasing evidence that tumors are structured in a very similar way, mirroring the hierarchical structure of the host tissue. In some tissues, differentiated cells can also revert to the stem cell phenotype, which increases the risk that mutant cells lead to long lasting clones in the tissue. However, it is unclear under which circumstances de-differentiating cells will invade a tissue. To address this, we developed mathematical models to investigate how de-differentiation is selected as an adaptive mechanism in the context of cellular hierarchies. We derive thresholds for which de-differentiation is expected to emerge, and it is shown that the selection of de-differentiation is a result of the combination of the properties of cellular hierarchy and de-differentiation patterns. Our results suggest that de-differentiation is most likely to be favored provided stem cells having the largest effective self-renewal rate. Moreover, jumpwise de-differentiation provides a wider range of favorable conditions than stepwise de-differentiation. Finally, the effect of de-differentiation on the redistribution of self-renewal and differentiation probabilities also greatly influences the selection for de-differentiation. How can a tissue such as the blood system or the skin, which constantly produces a huge number of cells, avoids that errors accumulate in the cells over time? Such tissues are typically organized in cellular hierarchies, which induce a directional relation between different stages of cellular differentiation, minimizing the risk of retention of mutations. However, recent evidence also shows that some differentiated cells can de-differentiate into the stem cell phenotype. Why does de-differentiation arise in some tumors, but not in others? We developed a mathematical model to study the growth competition between de-differentiating mutant cell populations and non de-differentiating resident cell population. Our results suggest that the invasion of de-differentiation is jointly influenced by the cellular hierarchy (e.g. number of cell compartments, inherent cell division pattern) and the de-differentiation pattern, i.e. how exactly cells acquire their stem-cell like properties.
Collapse
Affiliation(s)
- Da Zhou
- School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen University, Xiamen, People’s Republic of China
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail: (DZ); (AT)
| | - Yue Luo
- School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen University, Xiamen, People’s Republic of China
| | - David Dingli
- Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail: (DZ); (AT)
| |
Collapse
|