1
|
Dai Z, Liu Y, Liu Y, Jiao X, Chen D, Gong N, Wang T. Microfluidic-assisted sol-gel preparation of monodisperse mesoporous silica microspheres with controlled size, surface morphology, porosity and stiffness. NANOSCALE 2025; 17:5222-5231. [PMID: 39873238 DOI: 10.1039/d4nr04698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The controllable synthesis of monodisperse mesoporous silica microspheres with unique physicochemical properties is becoming increasingly important for a variety of applications such as catalysts, chromatography, drug delivery and sensors. Here, we report a facile microfluidic-assisted sol-gel method for the preparation of silica microspheres with precisely controlled properties such as the size of the microspheres, the surface morphology, porosity and stiffness. All these properties can be manipulated by changing specific synthesis parameters, such as changing the microfluidic channels to tune the size of the microdroplets (tens to hundreds of microns), changing the contents of the precursor solution to manipulate the surface morphology (wrinkled to smooth surface) and changing the gelation/annealing conditions to tune the porosity (surface area up to 1021 m2 g-1) and stiffness of the microspheres (elastic modulus tunable from 0.9 GPa to 144.3 GPa). Further investigations indicate that rapid solvent diffusion promotes the formation of dense microspheres while gelation of silica sol induces mesoporous structures; tuning the solvent diffusion and gelation rates enables the modulation of the porous structure and surface morphology, and the surface status further determines the stiffness of the microspheres. The strategy presented here may provide new tools for the on-demand design of next generation monodisperse silica microspheres with precisely controlled properties. It may also provide new insights into the preparation of other monodisperse microspheres with desired functionalities.
Collapse
Affiliation(s)
- Zhang Dai
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Yue Liu
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Yahui Liu
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Ningji Gong
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, P. R. China.
| | - Ting Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
2
|
Zhao R, Lan D, Xia B, Dong M, Mu J, Zhao Y. PET-Based Dual-Modal Probes for In Vivo Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409713. [PMID: 39873346 DOI: 10.1002/smll.202409713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/07/2024] [Indexed: 01/30/2025]
Abstract
Molecular imaging has significantly advanced the detection and analysis of in vivo metabolic processes, while single-modal techniques remain limited. Dual-modal imaging, particularly positron emission tomography (PET)-based combinations has emerged as a powerful solution, offering enhanced capabilities through integration with magnetic resonance imaging (MRI) or near-infrared fluorescence (NIRF) imaging. This review highlights recent progress in PET-based dual-modal imaging, focusing on the development of various bimodal probes derived from antibodies, nanoparticles, and peptides, and key applications including image-guided surgery and disease assessment. PET-based dual-modal imaging holds substantial potential for advancing research and diagnostics by improving resolution and providing functional insights. By combining complementary modalities, these systems deliver a more comprehensive view of disease processes, leading to more accurate diagnoses and targeted treatments. Future research prioritizes optimizing probe design for enhanced biocompatibility and safety, facilitating clinical translation, and broadens applications beyond cancer. Through interdisciplinary collaboration, PET-based dual-modal probes are poised to play a pivotal role in improving patient outcomes, particularly in diagnosing and managing complex diseases.
Collapse
Affiliation(s)
- Runge Zhao
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Deren Lan
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Beibei Xia
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - MengJie Dong
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jing Mu
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yongsheng Zhao
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| |
Collapse
|
3
|
Yang Y, Zheng Y, Tong T, Dong J, Zhao M, Zhang G, Yu Z, Dong L, Jiang J, Yuan Y. Size-Dependent Cascade Enhancement of T 1-T 2 Dual-Modal MRI in Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414201. [PMID: 39828516 DOI: 10.1002/adma.202414201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Currently, there is no conclusive evidence indicating that in situ self-assembled Gd nanostructures of varying sizes demonstrate distinct T1 and T2 signal enhancement capabilities. Furthermore, it remains uncertain whether size adjustment can effectively achieve enhanced T1-T2 dual-modal MRI. To address these uncertainties, a two-step in situ self-assembly strategy is developed. This approach began with a small-sized nanoprobe, Gd-TCO-P, with a hydrodynamic diameter (dH) of 16 ± 3 nm. This nanoprobe underwent alkaline phosphatase (ALP) cleavage and self-assembled intracellularly into short nanofibers termed Gd-NFs (dH: 200 ± 51 nm). The subsequent introduction of tetrazine-tetrazine crosslinked these Gd-NFs, leading to the formation of larger two-stage dendritic nanofibers known as Gd-TS-NFs (dH: 4371 ± 236 nm). This process achieves size-dependent enhancement of both T1 and T2 signals, which is validated through both in vitro and in vivo experiments, enabling precise long-term imaging of ALP-overexpressing tumors. This study not only provides valuable insights into the relationship between the size of in situ formed Gd nanostructures and T1/T2 MRI contrast enhancement, but also suggests a promising strategy for clinical applications of T1-T2 dual-modal MRI.
Collapse
Affiliation(s)
- Yanyun Yang
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yifan Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Tong Tong
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiajing Dong
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Miaoxin Zhao
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guangtao Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zian Yu
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ling Dong
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China
| | - Jinhui Jiang
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yue Yuan
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
He P, Tang H, Zheng Y, Xu X, Peng X, Jiang T, Xiong Y, Zhang Y, Zhang Y, Liu G. Optical molecular imaging technology and its application in precise surgical navigation of liver cancer. Theranostics 2025; 15:1017-1034. [PMID: 39776802 PMCID: PMC11700863 DOI: 10.7150/thno.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Recent innovations in medical imaging technology have placed molecular imaging techniques at the forefront of diagnostic advancements. The current research trajectory in this field aims to integrate personalized molecular data of patients and diseases with traditional anatomical imaging data, enabling more precise, non-invasive, or minimally invasive diagnostic options for clinical medicine. This article provides an in-depth exploration of the basic principles and system components of optical molecular imaging technology. It also examines commonly used targeting mechanisms of optical probes, focusing especially on indocyanine green-the FDA-approved optical dye widely used in clinical settings-and its specific applications in diagnosing and treating liver cancer. Finally, this review highlights the advantages, limitations, and future challenges facing optical molecular imaging technology, offering a comprehensive overview of recent advances, clinical applications, and potential impacts on liver cancer treatment strategies.
Collapse
Affiliation(s)
- Pan He
- Department of Hepatobiliary and Pancreas Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Department of General Surgery, Institute of Hepatobiliary-Pancreatic-Intestinal Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Haitian Tang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Xiao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Xuqi Peng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Tao Jiang
- Department of General Surgery, Institute of Hepatobiliary-Pancreatic-Intestinal Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Yongfu Xiong
- Department of General Surgery, Institute of Hepatobiliary-Pancreatic-Intestinal Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Yu Zhang
- Department of Hepatobiliary and Pancreas Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China
| |
Collapse
|
5
|
Yang Y, Pan J, Wang A, Ma Y, Liu Y, Jiang W. A novel method for the diagnosis of atherosclerosis based on nanotechnology. J Mater Chem B 2024; 12:9144-9154. [PMID: 39177217 DOI: 10.1039/d4tb00900b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Cardiovascular disease (CVD) is a global health concern, presenting significant risks to human health. Atherosclerosis is among the most prevalent CVD, impacting the medium and large arteries in the kidneys, brain, heart, and other vital organs, as well as the lower limbs. As the disease progresses, arterial obstruction can result in heart attacks and strokes. Therefore, patients with atherosclerosis should receive accurate diagnosis and timely therapeutic intervention. With the advancements in nanomedicine, researchers have proposed new research strategies and methods for atherosclerosis imaging. This paper summarizes some current research findings on the use of nanomaterials in diagnosing atherosclerosis and offers insights for optimizing the imaging applications of nanomaterials in the future.
Collapse
Affiliation(s)
- Ying Yang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Jiangpeng Pan
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Aifeng Wang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Yongcheng Ma
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Ying Liu
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
7
|
Warjurkar K, Panda S, Sharma V. Red emissive carbon dots: a promising next-generation material with intracellular applicability. J Mater Chem B 2023; 11:8848-8865. [PMID: 37650569 DOI: 10.1039/d3tb01378b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The accidental discovery of carbon dots (CDs) back in 2004 has led to their widespread use in the biomedical field. CDs have demonstrated their effectiveness in reporting 3D structures of biological specimens, identifying normal and cancer cells, and even detecting analytes within cells. However, the limitations of blue-green emitting CDs, such as their shallow penetration, photodamage, and auto-fluorescence, have hindered their practical applications. To overcome these limitations, red emissive CDs (RCDs) have been developed, which have deep tissue penetration, minimal photo-damage, low auto-fluorescence, and high imaging contrast. In this article, we present a thorough review on the use of RCDs in biomedical applications, including in vivo and in vitro bioimaging, photoacoustic imaging, monitoring temperature and polarity changes in living cells, tumour therapy, and drug delivery. With the rapid progress being made in the development of RCDs for intracellular applications, their clinical application is expected to become a reality in the near future.
Collapse
Affiliation(s)
- Khushboo Warjurkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jagti, Jammu-180012, India.
| | - Satyajit Panda
- Department of Materials Engineering, National Institute of Technology Rourkela, Odisha-769008, India
| | - Vinay Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jagti, Jammu-180012, India.
| |
Collapse
|
8
|
Tan Y, Yu D, Feng J, You H, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Toxicity evaluation of silica nanoparticles for delivery applications. Drug Deliv Transl Res 2023:10.1007/s13346-023-01312-z. [PMID: 37024610 DOI: 10.1007/s13346-023-01312-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2023] [Indexed: 04/08/2023]
Abstract
Silica nanoparticles (SiNPs) are being explored as nanocarriers for therapeutics delivery, which can address a number of intrinsic drawbacks of therapeutics. To translate laboratory innovation into clinical application, their potential toxicity has been of great concern. This review attempts to comprehensively summarize the existing literature on the toxicity assessment of SiNPs. The current data suggest that the composition of SiNPs, their physicochemical properties, their administration route, their frequency and duration of administration, and the sex of animal models are related to their tissue and blood toxicity, immunotoxicity, and genotoxicity. However, the correlation between in vitro and in vivo toxicity has not been well established, mainly because both the in vitro and the in vivo-dosed quantities are unrealistic. This article also discusses important factors to consider in the toxicology of SiNPs and current approaches to reducing their toxicity. The aim is to give readers a better understanding of the toxicology of silica nanoparticles and to help identify key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Li Q, Huo H, Wu Y, Chen L, Su L, Zhang X, Song J, Yang H. Design and Synthesis of SERS Materials for In Vivo Molecular Imaging and Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202051. [PMID: 36683237 PMCID: PMC10015885 DOI: 10.1002/advs.202202051] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a feasible and ultra-sensitive method for biomedical imaging and disease diagnosis. SERS is widely applied to in vivo imaging due to the development of functional nanoparticles encoded by Raman active molecules (SERS nanoprobes) and improvements in instruments. Herein, the recent developments in SERS active materials and their in vivo imaging and biosensing applications are overviewed. Various SERS substrates that have been successfully used for in vivo imaging are described. Then, the applications of SERS imaging in cancer detection and in vivo intraoperative guidance are summarized. The role of highly sensitive SERS biosensors in guiding the detection and prevention of diseases is discussed in detail. Moreover, its role in the identification and resection of microtumors and as a diagnostic and therapeutic platform is also reviewed. Finally, the progress and challenges associated with SERS active materials, equipment, and clinical translation are described. The present evidence suggests that SERS could be applied in clinical practice in the future.
Collapse
Affiliation(s)
- Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Hongqi Huo
- Department of Nuclear MedicineHan Dan Central HospitalHandanHebei056001P. R. China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| |
Collapse
|
10
|
Florensa M, Llenas M, Medina-Gutiérrez E, Sandoval S, Tobías-Rossell G. Key Parameters for the Rational Design, Synthesis, and Functionalization of Biocompatible Mesoporous Silica Nanoparticles. Pharmaceutics 2022; 14:2703. [PMID: 36559195 PMCID: PMC9788600 DOI: 10.3390/pharmaceutics14122703] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last few years, research on silica nanoparticles has rapidly increased. Particularly on mesoporous silica nanoparticles (MSNs), as nanocarriers for the treatment of various diseases because of their physicochemical properties and biocompatibility. The use of MSNs combined with therapeutic agents can provide better encapsulation and effective delivery. MSNs as nanocarriers might also be a promising tool to lower the therapeutic dosage levels and thereby to reduce undesired side effects. Researchers have explored several routes to conjugate both imaging and therapeutic agents onto MSNs, thus expanding their potential as theranostic platforms, in order to allow for the early diagnosis and treatment of diseases. This review introduces a general overview of recent advances in the field of silica nanoparticles. In particular, the review tackles the fundamental aspects of silicate materials, including a historical presentation to new silicates and then focusing on the key parameters that govern the tailored synthesis of functional MSNs. Finally, the biomedical applications of MSNs are briefly revised, along with their biocompatibility, biodistribution and degradation. This review aims to provide the reader with the tools for a rational design of biocompatible MSNs for their application in the biomedical field. Particular attention is paid to the role that the synthesis conditions have on the physicochemical properties of the resulting MSNs, which, in turn, will determine their pharmacological behavior. Several recent examples are highlighted to stress the potential that MSNs hold as drug delivery systems, for biomedical imaging, as vaccine adjuvants and as theragnostic agents.
Collapse
Affiliation(s)
| | | | | | - Stefania Sandoval
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Barcelona, Spain
| | - Gerard Tobías-Rossell
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Wheeler TT, Cao P, Ghouri MD, Ji T, Nie G, Zhao Y. Nanotechnological strategies for prostate cancer imaging and diagnosis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Functionalization of Nanoparticulate Drug Delivery Systems and Its Influence in Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14051113. [PMID: 35631699 PMCID: PMC9145684 DOI: 10.3390/pharmaceutics14051113] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Research into the application of nanocarriers in the delivery of cancer-fighting drugs has been a promising research area for decades. On the other hand, their cytotoxic effects on cells, low uptake efficiency, and therapeutic resistance have limited their therapeutic use. However, the urgency of pressing healthcare needs has resulted in the functionalization of nanoparticles' (NPs) physicochemical properties to improve clinical outcomes of new, old, and repurposed drugs. This article reviews recent research on methods for targeting functionalized nanoparticles to the tumor microenvironment (TME). Additionally, the use of relevant engineering techniques for surface functionalization of nanocarriers (liposomes, dendrimers, and mesoporous silica) and their critical roles in overcoming the current limitations in cancer therapy-targeting ligands used for targeted delivery, stimuli strategies, and multifunctional nanoparticles-were all reviewed. The limitations and future perspectives of functionalized nanoparticles were also finally discussed. Using relevant keywords, published scientific literature from all credible sources was retrieved. A quick search of the literature yielded almost 400 publications. The subject matter of this review was addressed adequately using an inclusion/exclusion criterion. The content of this review provides a reasonable basis for further studies to fully exploit the potential of these nanoparticles in cancer therapy.
Collapse
|
13
|
Dual-Labelling Strategies for Nuclear and Fluorescence Molecular Imaging: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040432. [PMID: 35455430 PMCID: PMC9028399 DOI: 10.3390/ph15040432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging offers the possibility to investigate biological and biochemical processes non-invasively and to obtain information on both anatomy and dysfunctions. Based on the data obtained, a fundamental understanding of various disease processes can be derived and treatment strategies can be planned. In this context, methods that combine several modalities in one probe are increasingly being used. Due to the comparably high sensitivity and provided complementary information, the combination of nuclear and optical probes has taken on a special significance. In this review article, dual-labelled systems for bimodal nuclear and optical imaging based on both modular ligands and nanomaterials are discussed. Particular attention is paid to radiometal-labelled molecules for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) and metal complexes combined with fluorescent dyes for optical imaging. The clinical potential of such probes, especially for fluorescence-guided surgery, is assessed.
Collapse
|
14
|
Zhang D, You Y, Xu Y, Cheng Q, Xiao Z, Chen T, Shi C, Luo L. Facile synthesis of near-infrared responsive on-demand oxygen releasing nanoplatform for precise MRI-guided theranostics of hypoxia-induced tumor chemoresistance and metastasis in triple negative breast cancer. J Nanobiotechnology 2022; 20:104. [PMID: 35246149 PMCID: PMC8896283 DOI: 10.1186/s12951-022-01294-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hypoxia is an important factor that contributes to chemoresistance and metastasis in triple negative breast cancer (TNBC), and alleviating hypoxia microenvironment can enhance the anti-tumor efficacy and also inhibit tumor invasion. METHODS A near-infrared (NIR) responsive on-demand oxygen releasing nanoplatform (O2-PPSiI) was successfully synthesized by a two-stage self-assembly process to overcome the hypoxia-induced tumor chemoresistance and metastasis. We embedded drug-loaded poly (lactic-co-glycolic acid) cores into an ultrathin silica shell attached with paramagnetic Gd-DTPA to develop a Magnetic Resonance Imaging (MRI)-guided NIR-responsive on-demand drug releasing nanosystem, where indocyanine green was used as a photothermal converter to trigger the oxygen and drug release under NIR irradiation. RESULTS The near-infrared responsive on-demand oxygen releasing nanoplatform O2-PPSiI was chemically synthesized in this study by a two-stage self-assembly process, which could deliver oxygen and release it under NIR irradiation to relieve hypoxia, improving the therapeutic effect of chemotherapy and suppressed tumor metastasis. This smart design achieves the following advantages: (i) the O2 in this nanosystem can be precisely released by an NIR-responsive silica shell rupture; (ii) the dynamic biodistribution process of O2-PPSiI was monitored in real-time and quantitatively analyzed via sensitive MR imaging of the tumor; (iii) O2-PPSiI could alleviate tumor hypoxia by releasing O2 within the tumor upon NIR laser excitation; (iv) The migration and invasion abilities of the TNBC tumor were weakened by inhibiting the process of EMT as a result of the synergistic therapy of NIR-triggered O2-PPSiI. CONCLUSIONS Our work proposes a smart tactic guided by MRI and presents a valid approach for the reasonable design of NIR-responsive on-demand drug-releasing nanomedicine systems for precise theranostics in TNBC.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- The Shunde Affiliated Hospital, Jinan University, Foshan, 528300, China
| | - Yuanyuan You
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Yuan Xu
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Qingqing Cheng
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Tianfeng Chen
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Changzheng Shi
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
15
|
Zhu L, Zhong Y, Wu S, Yan M, Cao Y, Mou N, Wang G, Sun D, Wu W. Cell membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics. Mater Today Bio 2022; 14:100228. [PMID: 35265826 PMCID: PMC8898969 DOI: 10.1016/j.mtbio.2022.100228] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Nanoparticles (NPs) modified by cell membranes represent an emerging biomimetic platform that can mimic the innate biological functions resulting from the various cell membranes in biological systems. researchers focus on constructing the cell membrane camouflaged NPs using a wide variety of cells, such as red blood cell membranes (RBC), macrophages and cancer cells. Cell membrane camouflaged NPs (CMNPs) inherit the composition of cell membranes, including specific receptors, antigens, proteins, for target delivering to the tumor, escaping immune from clearance, and prolonging the blood circulation time, etc. Combining cell membrane-derived biological functions and the NP cores acted cargo carriers to encapsulate the imaging agents, CMNPs are widely developed to apply in tumor imaging techniques, including computed tomography (CT), magnetic resonance imaging (MRI), fluorescence imaging (FL) and photoacoustic imaging (PA). Herein, in this review, we systematically summarize the superior functions of various CMNPs in tumor imaging, especially highlighting the advanced applications in different imaging techniques, which is to provide the theoretical supports for the development of precise guided imaging and tumor treatment.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yu Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
16
|
Wei X, Zhao H, Huang G, Liu J, He W, Huang Q. ES-MION-Based Dual-Modality PET/MRI Probes for Acidic Tumor Microenvironment Imaging. ACS OMEGA 2022; 7:3442-3451. [PMID: 35128253 PMCID: PMC8811892 DOI: 10.1021/acsomega.1c05815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Among all characteristics of the tumor microenvironment (TME), which are caused by abnormal proliferation of solid tumors, extracellular acidity is an important indicator for malignancy grading. pH-low insertion peptides (pHLIPs) are adopted to discern the acidic TME. To date, different imaging agents including fluorescent, positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance (MR) contrast agents with pHLIPs to target the acidic TME have been used to image various tumor models successfully. In this article, a PET/MRI dual-modality probe, based on extremely small magnetic iron oxide nanoparticles (ES-MIONs) with pHLIPs as a targeting unit, was proposed for the first time. In the phantom study, the probe showed relatively high r 1 relaxivity (r 1 = 1.03 mM-1 s-1), indicating that it could be used as a T1-weighted MR contrast agent. The 68Ga-radiolabeled probe was further studied in vitro and in vivo to evaluate pHLIP targeting efficacy and feasibility for PET/MRI. PET with intratumoral injection and T1-weighted MRI with intravenous injection both showed pHLIP-specific delivery of the probe. Therefore, we successfully designed and developed a radiolabeled ES-MION-based dual-modality PET/MRI agent to target the acidic tumor microenvironment. Although the accumulation of the probe in tumors with intravenous injection was not high enough to exhibit signals in the PET imaging study, our study still provides further insights into the ES-MION-based PET/MRI strategy.
Collapse
Affiliation(s)
- Xiuyan Wei
- Medical
Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haitao Zhao
- Department
of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai 200127, China
| | - Gang Huang
- Shanghai
Key Laboratory of Molecular Imaging, Shanghai
University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianhua Liu
- Medical
Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weina He
- Medical
Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingqing Huang
- Shanghai
Key Laboratory of Molecular Imaging, Shanghai
University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
17
|
Ariztia J, Solmont K, Moïse NP, Specklin S, Heck MP, Lamandé-Langle S, Kuhnast B. PET/Fluorescence Imaging: An Overview of the Chemical Strategies to Build Dual Imaging Tools. Bioconjug Chem 2022; 33:24-52. [PMID: 34994545 DOI: 10.1021/acs.bioconjchem.1c00503] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging is a biomedical research discipline that has quickly emerged to afford the observation, characterization, monitoring, and quantification of biomarkers and biological processes in living organism. It covers a large array of imaging techniques, each of which provides anatomical, functional, or metabolic information. Multimodality, as the combination of two or more of these techniques, has proven to be one of the best options to boost their individual properties, hence offering unprecedented tools for human health. In this review, we will focus on the combination of positron emission tomography and fluorescence imaging from the specific perspective of the chemical synthesis of dual imaging agents. Based on a detailed analysis of the literature, this review aims at giving a comprehensive overview of the chemical strategies implemented to build adequate imaging tools considering radiohalogens and radiometals as positron emitters, fluorescent dyes mostly emitting in the NIR window and all types of targeting vectors.
Collapse
Affiliation(s)
- Julen Ariztia
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Kathleen Solmont
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | | | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Marie Pierre Heck
- Université Paris-Saclay, INRAE, Département Médicaments et Technologies pour la santé (DMTS), SCBM, 91191, Gif-sur-Yvette cedex, France
| | | | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| |
Collapse
|
18
|
ROS responsive mesoporous silica nanoparticles for smart drug delivery: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Živojević K, Mladenović M, Djisalov M, Mundzic M, Ruiz-Hernandez E, Gadjanski I, Knežević NŽ. Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications. J Control Release 2021; 337:193-211. [PMID: 34293320 DOI: 10.1016/j.jconrel.2021.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment.
Collapse
Affiliation(s)
- Kristina Živojević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Minja Mladenović
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Mila Djisalov
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Mirjana Mundzic
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | | | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Nikola Ž Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia.
| |
Collapse
|
20
|
Kundu P, Singh D, Singh A, Sahoo SK. Cancer Nanotheranostics: A Nanomedicinal Approach for Cancer Therapy and Diagnosis. Anticancer Agents Med Chem 2021; 20:1288-1299. [PMID: 31429694 DOI: 10.2174/1871520619666190820145930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/27/2022]
Abstract
The panorama of cancer treatment has taken a considerable leap over the last decade with the advancement in the upcoming novel therapies combined with modern diagnostics. Nanotheranostics is an emerging science that holds tremendous potential as a contrivance by integrating therapy and imaging in a single probe for cancer diagnosis and treatment thus offering the advantage like tumor-specific drug delivery and at the same time reduced side effects to normal tissues. The recent surge in nanomedicine research has also paved the way for multimodal theranostic nanoprobe towards personalized therapy through interaction with a specific biological system. This review presents an overview of the nano theranostics approach in cancer management and a series of different nanomaterials used in theranostics and the possible challenges with future directions.
Collapse
Affiliation(s)
- Paromita Kundu
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Deepika Singh
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Abhalaxmi Singh
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Sanjeeb K Sahoo
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| |
Collapse
|
21
|
Sier VQ, van der Vorst JR, Quax PHA, de Vries MR, Zonoobi E, Vahrmeijer AL, Dekkers IA, de Geus-Oei LF, Smits AM, Cai W, Sier CFM, Goumans MJTH, Hawinkels LJAC. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. Int J Mol Sci 2021; 22:4804. [PMID: 33946583 PMCID: PMC8124553 DOI: 10.3390/ijms22094804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging of pathologic lesions can improve efficient detection of cancer and cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-β (TGF-β) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction, and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects and their respective synonyms or relevant subterms: "Endoglin", "Imaging/Image-guided surgery". In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro models and one ex vivo study in human organs. In addition to exact data extraction of imaging modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the evidence remains scarce but promising.
Collapse
Affiliation(s)
- Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Elham Zonoobi
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Edinburgh Molecular Imaging Ltd. (EMI), Edinburgh EH16 4UX, UK
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Ilona A. Dekkers
- Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Anke M. Smits
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Marie José T. H. Goumans
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| |
Collapse
|
22
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
23
|
Chakravarty S, Hix JML, Wiewiora KA, Volk MC, Kenyon E, Shuboni-Mulligan DD, Blanco-Fernandez B, Kiupel M, Thomas J, Sempere LF, Shapiro EM. Tantalum oxide nanoparticles as versatile contrast agents for X-ray computed tomography. NANOSCALE 2020; 12:7720-7734. [PMID: 32211669 PMCID: PMC7185737 DOI: 10.1039/d0nr01234c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Here, we describe the synthesis, characterization and in vitro and in vivo performance of a series of tantalum oxide (TaOx) based nanoparticles (NPs) for computed tomography (CT). Five distinct versions of 9-12 nm diameter silane coated TaOx nanocrystals (NCs) were fabricated by a sol-gel method with varying degrees of hydrophilicity and with or without fluorescence, with the highest reported Ta content to date (78%). Highly hydrophilic NCs were left bare and were evaluated in vivo in mice for micro-CT of full body vasculature, where following intravenous injection, TaOx NCs demonstrate high vascular CT contrast, circulation in blood for ∼3 h, and eventual accumulation in RES organs; and following injection locally in the mammary gland, where the full ductal tree structure can be clearly delineated. Partially hydrophilic NCs were encapsulated within mesoporous silica nanoparticles (MSNPs; TaOx@MSNPs) and hydrophobic NCs were encapsulated within poly(lactic-co-glycolic acid) (PLGA; TaOx@PLGA) NPs, serving as potential CT-imagable drug delivery vehicles. Bolus intramuscular injections of TaOx@PLGA NPs and TaOx@MSNPs to mimic the accumulation of NPs at a tumor site produce high signal enhancement in mice. In vitro studies on bare NCs and formulated NPs demonstrate high cytocompatibility and low dissolution of TaOx. This work solidifies that TaOx-based NPs are versatile contrast agents for CT.
Collapse
Affiliation(s)
- Shatadru Chakravarty
- Department of Radiology, Michigan State University, East Lansing, MI 48823, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li T, Geng Y, Zhang H, Wang J, Feng Y, Chen Z, Xie X, Qin X, Li S, Wu C, Liu Y, Yang H. A versatile nanoplatform for synergistic chemo-photothermal therapy and multimodal imaging against breast cancer. Expert Opin Drug Deliv 2020; 17:725-733. [DOI: 10.1080/17425247.2020.1736033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu Sichuan, P.R. China
| | - Yue Geng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Hanxi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Jing Wang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Yi Feng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Zhongyuan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Xiaoxue Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu Sichuan, P.R. China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu Sichuan, P.R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu Sichuan, P.R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Cancer Research, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu Sichuan, P.R. China
| |
Collapse
|
25
|
Liu Y, Luo J, Chen X, Liu W, Chen T. Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications. NANO-MICRO LETTERS 2019; 11:100. [PMID: 34138027 PMCID: PMC7770915 DOI: 10.1007/s40820-019-0330-9] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/14/2019] [Indexed: 05/02/2023]
Abstract
Cell membrane coating technology is an approach to the biomimetic replication of cell membrane properties, and is an active area of ongoing research readily applicable to nanoscale biomedicine. Nanoparticles (NPs) coated with cell membranes offer an opportunity to unite natural cell membrane properties with those of the artificial inner core material. The coated NPs not only increase their biocompatibility but also achieve effective and extended circulation in vivo, allowing for the execution of targeted functions. Although cell membrane-coated NPs offer clear advantages, much work remains before they can be applied in clinical practice. In this review, we first provide a comprehensive overview of the theory of cell membrane coating technology, followed by a summary of the existing preparation and characterization techniques. Next, we focus on the functions and applications of various cell membrane types. In addition, we collate model drugs used in cell membrane coating technology, and review the patent applications related to this technology from the past 10 years. Finally, we survey future challenges and trends pertaining to this technology in an effort to provide a comprehensive overview of the future development of cell membrane coating technology.
Collapse
Affiliation(s)
- Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
26
|
Chen X, Zhu X, Ma L, Lin A, Gong Y, Yuan G, Liu J. A core-shell structure QRu-PLGA-RES-DS NP nanocomposite with photothermal response-induced M2 macrophage polarization for rheumatoid arthritis therapy. NANOSCALE 2019; 11:18209-18223. [PMID: 31560010 DOI: 10.1039/c9nr05922a] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rheumatoid arthritis (RA) is a degenerative joint disease caused by autoimmunity; for the effective treatment of RA while avoiding the side effects of conventional drugs, we have proposed a new therapeutic strategy to eliminate the inflammatory response in RA by regulating the immune system that promotes the transformation of M1-type macrophages to M2-type macrophages. Herein, we designed and synthesized a core-shell nanocomposite (QRu-PLGA-RES-DS NPs), which showed an effective therapeutic effect on RA by accurately inducing the polarization of M2 macrophages. In this system, the quadrilateral ruthenium nanoparticles (QRuNPs) with a photothermal effect were utilized as a core and the thermosensitive molecular poly (lactic-co-glycolic acid) (PLGA) modified with the targeted molecule dextran sulfate (DS) was employed as a shell. Then, the nanocarrier QRu-PLGA-DS NPs effectively improved the water solubility and targeting of resveratrol (RES) through self-assembly. Therefore, the QRu-PLGA-RES-DS NPs significantly enhanced the ability of RES to reverse the M1 type macrophages to the M2 type macrophages through an accurate release. In vivo experiments further demonstrated that the QRu-PLGA-RES-DS NPs could effectively accumulate in the lesion area with an exogenous stimulus, and this significantly enhanced the transformation of the M2 type macrophages and decreased the recruitment of the M1 type macrophages. Furthermore, the QRu-PLGA-RES-DS NPs effectively treated RA by eliminating the inflammatory response; in addition, photoacoustic imaging (PA) of the QRu NPs provided image guidance for the distribution and analysis of nanomedicine in inflammatory tissues. Hence, this therapeutic strategy promotes the biological applications of Ru-based nanoparticles in disease treatment.
Collapse
Affiliation(s)
- Xu Chen
- College of Chemistry and Materials Science, Jinan University, 510632, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang J, Fang L, Li P, Ma L, Na W, Cheng C, Gu Y, Deng D. Inorganic Nanozyme with Combined Self-Oxygenation/Degradable Capabilities for Sensitized Cancer Immunochemotherapy. NANO-MICRO LETTERS 2019; 11:74. [PMID: 34138044 PMCID: PMC7770972 DOI: 10.1007/s40820-019-0305-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/18/2019] [Indexed: 05/22/2023]
Abstract
Recently emerged cancer immunochemotherapy has provided enormous new possibilities to replace traditional chemotherapy in fighting tumor. However, the treatment efficacy is hampered by tumor hypoxia-induced immunosuppression in tumor microenvironment (TME). Herein, we fabricated a self-oxygenation/degradable inorganic nanozyme with a core-shell structure to relieve tumor hypoxia in cancer immunochemotherapy. By integrating the biocompatible CaO2 as the oxygen-storing component, this strategy is more effective than the earlier designed nanocarriers for delivering oxygen or H2O2, and thus provides remarkable oxygenation and long-term capability in relieving hypoxia throughout the tumor tissue. Consequently, in vivo tests validate that the delivery system can successfully relieve hypoxia and reverse the immunosuppressive TME to favor antitumor immune responses, leading to enhanced chemoimmunotherapy with cytotoxic T lymphocyte-associated antigen 4 blockade. Overall, a facile, robust and effective strategy is proposed to improve tumor oxygenation by using self-decomposable and biocompatible inorganic nanozyme reactor, which will not only provide an innovative pathway to relieve intratumoral hypoxia, but also present potential applications in other oxygen-favored cancer therapies or oxygen deficiency-originated diseases.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Lan Fang
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ping Li
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Lang Ma
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Weidan Na
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yueqing Gu
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Dawei Deng
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
28
|
Barkat A, Beg S, Panda SK, S Alharbi K, Rahman M, Ahmed FJ. Functionalized mesoporous silica nanoparticles in anticancer therapeutics. Semin Cancer Biol 2019; 69:365-375. [PMID: 31442571 DOI: 10.1016/j.semcancer.2019.08.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 11/26/2022]
Abstract
The application of nanomedicines in tumor targeting and attaining meaningful therapeutic benefits for the treatment of cancers has been going on for almost two decades. Beyond the lipidic and polymeric nanomedicines-based passive and active targeting, the quest for inventing the new generation of carriers has no end. This has lead to the evolution of some of the unique carrier systems with supramolecular assembly structures. Mesoporous nanoparticulate systems (MSNPs) are the recently explored substances with favorable potential for drug delivery and drug targeting applications especially in cancer chemotherapeutics. Notwithstanding their physical properties that makes them a suitable carrier for cancer treatment, but their outstanding ability towards chemical functionalization helps in delivering the imaging agents for diagnostic applications. MSNPs can improve the dissolution rate and systemic availability of the poorly water soluble drugs due to their mesoporous structures. Besides, guest molecules including targeting ligands, biomimetic agents, fluorescent dyes, and biocompatible polymers can be efficiently encapsulated in their tunable porous structure for targeting purpose. Some special features of the MSNPs which make them one of the highly effective nanocarrier systems include their ability to encapsulate non-crystalline drugs in their mesopores, high dispersion ability as a function of large surface area and wetting properties. For anticancer drug delivery, MSNPs are worthful to provide excellent drug loading capacity and endocytotic behavior. Moreover, the external surface of MSNPs can be precisely modified for tumor-recognition and developing sensitivity of the antitumor agents towards the cancer cells. Owing to the innumerable applications of MSNPs till now in cancer treatment, the present article particularly focuses to provide an overview account with complete details on the topic to make the readers abreast with details on physiochemical and material properties of MSNPs, their applications and current innovations for the purpose.
Collapse
Affiliation(s)
- Abul Barkat
- Department of Pharmaceutics, School of Medical & Allied Sciences, KR Mangalam University, Gurgaon, Sohna, Haryana, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard (Hamdard University), New Delhi, India.
| | - Sunil K Panda
- Research Director, Menovo Pharmaceuticals Research Lab, Ningbo, People's Republic of China
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Kingdom of Saudi Arabia
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, SIHAS, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, UP, India.
| | - Farhan J Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard (Hamdard University), New Delhi, India.
| |
Collapse
|
29
|
Xu J, Xie S, Zhang X, Tao W, Yang J, Zhao Z, Weng F, Huang Q, Yi F, Peng Q. A preclinical PET detector constructed with a monolithic scintillator ring. Phys Med Biol 2019; 64:155009. [PMID: 31239424 PMCID: PMC6692080 DOI: 10.1088/1361-6560/ab2ca4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This paper presents a unique preclinical positron emission tomography (PET) detector constructed with a monolithic scintillator ring (MSR) and two rings of silicon photomultipliers (SiPM). The inner diameter, outer diameter and length of the MSR were 48.5 mm, 58.5 mm, and 25.1 mm, respectively. The two SiPM rings, constructed with 46 SiPMs, were air-coupled to the two ends of the MSR detector. The center of gravity (COG) and artificial neural network (ANN) methods were adapted to decode the positions of the gamma interactions in the circumferential (θ) and axial (Z) directions, respectively. Collimating systems, consisting of a tungsten collimator and a high-precision displacement and rotating platform, were constructed to assess the decoding accuracies of the MSR detector in both θ and Z directions. The average intrinsic full-width half maximums (FWHMs) and mean absolute errors (MAEs) of the decoding accuracies were 0.94 mm and 0.33 mm in the circumferential direction, 2.45 mm and 1.08 mm in the axial direction. An energy resolution of 10.7% was measured at 511 keV. The scintillating photons generated by a pair of coincidence gamma photons overlap with each other, and cause circumferential parallax errors in the lines of response (LOR). The experimental results show that the average FWHM errors in the θ direction increased slightly from 0.94 mm to 1.14 mm when Δθ of the two single events was larger than 70°. The imaging performance of the MSR detector was also initially assessed with a Derenzo phantom filled with 18F-FDG. The rods with a diameter larger than 1.2 mm can be resolved. The energy resolutions were 12.3% at 511 keV (single events), and 11.4% at 1022 keV (coincidence events). We concluded that it is feasible to construct the high-performance preclinical PET scanners using one or multiple MSR detectors.
Collapse
Affiliation(s)
- Jianfeng Xu
- State Key Lab of Digital Manufacturing Equipment & Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Siwei Xie
- State Key Lab of Digital Manufacturing Equipment & Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xi Zhang
- State Key Lab of Digital Manufacturing Equipment & Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Tao
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200025, China
| | - Jingwu Yang
- State Key Lab of Digital Manufacturing Equipment & Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiang Zhao
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200025, China
| | - Fenghua Weng
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200025, China
| | - Qiu Huang
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200025, China
| | - Fei Yi
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiyu Peng
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Li T, Shi S, Goel S, Shen X, Xie X, Chen Z, Zhang H, Li S, Qin X, Yang H, Wu C, Liu Y. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater 2019; 89:1-13. [PMID: 30797106 DOI: 10.1016/j.actbio.2019.02.031] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/25/2023]
Abstract
Recently, drug delivery systems based on nanotechnology have received great attention in cancer therapeutics and diagnostics since they can not only improve the treatment efficacy but also reduce the side effects. Among them, mesoporous silica nanoparticles (MSNs) with large surface area, high pore volume, tunable pore size, abundant surface chemistry, and acceptable biocompatibility exhibit unique advantages and are considered as promising candidates for cancer diagnosis and therapy. In this review, we update the recent progress on MSN-based systems for cancer treatment purposes. We also discuss the drug loading mechanism of MSNs, stimuli-responsive drug release, and surface modification strategies for improving biocompatibility, and targeting functionalities. STATEMENT OF SIGNIFICANCE: The development of MSN-based delivery systems that can be used in both diagnosis and treatment of cancer has attracted tremendous interest in the past decade. MSN-based delivery systems can improve therapeutic efficacy and reduce cytotoxicity to normal tissue. To further improve the in vivo properties of MSNs and potential translation to the clinics, it is critical to design MSNs with appropriate surface engineering and desirable cancer targeting. This review is intended to provide the readers a comprehensive background of the vast literature till date on silica-based drug delivery systems, and to inspire further innovations in silica nanomedicine in the future.
Collapse
Affiliation(s)
- Tingting Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Sixiang Shi
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Shreya Goel
- Department of Materials Science & Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xue Shen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Xiaoxue Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Zhongyuan Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Hanxi Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Shun Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Xiang Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Hong Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Chunhui Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China.
| |
Collapse
|