1
|
Fa D, Wu H, Feng G, Lei S, Hu W. Modulating the Oxygen Evolution Reaction Activity of Bimetallic 2D Polymers by Substituent Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500317. [PMID: 40302237 DOI: 10.1002/smll.202500317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/24/2025] [Indexed: 05/02/2025]
Abstract
An understanding of the structure-activity relationship is crucial for the design and synthesis of high-performance oxygen evolution reaction (OER) catalysts. In this study, the substituent effect of Co─Ni two-dimensional polymer (2DP) on OER is investigated. A series of monolayer bimetallic Co─Ni─MF─R─2DP (─R = ─H, ─CF3, ─COOCH3, ─OCH3, ─N(CH3)2) catalysts with accurately defined structures and different electron-donating or electron-withdrawing substituents is selected as the research object. This selection provides an ideal model platform to isolate their intrinsic activity from factors affecting apparent activity, such as electrical conductivity and loading property. It allows for an accurate exploration of the substituent effect on OER in bimetallic materials. The results indicate that the OER activity follows the order CoTAPP─Ni─MF─N(CH3)2─2DP > CoTAPP─Ni─MF─OCH3─2DP > CoTAPP─Ni─MF─H─2DP > CoTAPP─Ni─MF─COOCH3─2DP > CoTAPP─Ni─MF─CF3─2DP, which suggests that the catalyst activity is positively correlated with the electron-donating property of the substituents. This work provides an insight into the design of high-performance OER catalysts by the substituent effect.
Collapse
Affiliation(s)
- Dejuan Fa
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong, 276000, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Haonan Wu
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong, 276000, P. R. China
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
2
|
Yu X, Li Y, Pei C, Zhao Z, Lu Y, Zhou W, Guo D, Li W, Kim JK, Park HS, Pang H. Interfacial Regulation of Rice-Grain-like Iron-Nickel Phosphide Nanorods on Phosphorus-Doped Graphene Architectures as Bifunctional Electrocatalysts for Water Splitting. Inorg Chem 2024; 63:18945-18954. [PMID: 39321124 DOI: 10.1021/acs.inorgchem.4c03303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The design of bimetallic metal-organic frameworks (MOFs) with a hierarchical structure is important to improve the electrocatalytic performance of catalysts due to their synergistic effect on different metal ions. In this work, the catalyst comprises bimetallic iron-nickel MOF-derived FeNi phosphides, intricately integrated with phosphorus-doped reduced graphene oxide architectures (FeNi2P-C/P-rGA) through the hydrothermal and phosphating treatments. The hierarchical architecture of the catalyst is beneficial for exposing active sites and facilitating electron transfer. The FeNi2P-C/P-rGA catalyst exhibits excellent performance in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline electrolytes. Notably, FeNi2P-C/P-rGA requires only the overpotential of 93 and 210 mV to achieve a current density of 10 mA cm-2 for the HER and OER with small values of Tafel slope and charge transfer resistance, respectively. Furthermore, the catalyst exhibits boosted activity for overall water splitting with a low potential of 1.56 V. This work can be considered to extend the design of multilevel catalysts in the application of water splitting.
Collapse
Affiliation(s)
- Xu Yu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yong Li
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Chengang Pei
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Suwon 16419, Republic of Korea
| | - Zhixin Zhao
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yanhui Lu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wenfeng Zhou
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Donglei Guo
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Wenqiang Li
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Suwon 16419, Republic of Korea
| | - Ho Seok Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-Ro, Suwon 16419, Republic of Korea
| | - Huan Pang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
3
|
Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H. Recent Progress on Nickel- and Iron-Based Metallic Organic Frameworks for Oxygen Evolution Reaction: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2465-2486. [PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaomin Liu
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Wu Y, Yu Y, Shen W, Jiang Y, He R, Li M. Anion-induced electronic localization and polarized cobalt clusters for highly efficient water splitting. MATERIALS HORIZONS 2023; 10:5633-5642. [PMID: 37753534 DOI: 10.1039/d3mh01130e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
It is a promising pathway to use anions to regulate electronic structures, reasonably design and construct highly efficient catalysts for water splitting. Herein, a N-regulated Co cluster catalyst confined in carbon nanotubes, N-Co NCNTs, was constructed successfully. Nitrogen anions played a crucial role in optimizing the electronic structures of Co clusters and enhancing localization of electrons, resulting in polarized cobalt clusters. The N-induced electronic localization and the resulting polarized Co clusters are responsible for the improvement of catalytic activity. N-Co NCNTs exhibited ultra-low overpotentials of 178 mV and 92 mV for the OER and HER to achieve 10 mA cm-2 in an alkaline electrolyte, respectively. Its long-term catalytic durability is mainly attributed to the obstacle to the surface oxidation of Co clusters caused by N-regulation. N-Co NCNTs maintained a stable current density for 160 h at 10 mA cm-2. DFT computations confirmed the decisive role played by nitrogen anions in regulating the electronic structure. This work provides a pathway for understanding and designing highly efficient anion-regulated catalysts.
Collapse
Affiliation(s)
- Yucheng Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yanli Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
5
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Ding L, Xie Z, Yu S, Wang W, Terekhov AY, Canfield BK, Capuano CB, Keane A, Ayers K, Cullen DA, Zhang FY. Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:144. [PMID: 37269447 PMCID: PMC10239421 DOI: 10.1007/s40820-023-01117-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/05/2023]
Abstract
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm-2 demonstrates superior cell performance to the commercial CCM (3.0 mgPt cm-2), achieving 99.5% catalyst savings and more than 237-fold higher catalyst utilization. The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction. Overall, this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Alexander Y Terekhov
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Brian K Canfield
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | - David A Cullen
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA.
| |
Collapse
|
7
|
Li X, Li J, Kurbanjan D, Yu T, Du H. Synergistic effect of Trimetallic Doping and π-π Conjugation in NiZnCo-ZIF@HHTP for Efficient Oxygen Evolution Reaction. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Fa D, Yuan J, Feng G, Lei S, Hu W. Regulating the Synergistic Effect in Bimetallic Two-Dimensional Polymer Oxygen Evolution Reaction Catalysts by Adjusting the Coupling Strength Between Metal Centers. Angew Chem Int Ed Engl 2023; 62:e202300532. [PMID: 36737406 DOI: 10.1002/anie.202300532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Bimetallic electrocatalysts with its superior performance has a broad application prospect in oxygen evolution reaction (OER), but the fundamental understanding of the mechanism of synergistic effect is still limited since there lacks a practical way to decouple the influence factors on the intrinsic activity of active sites from others. Herein, a series of bimetallic Co-Ni two-dimensional polymer (2DP) model OER catalysts with well-defined architecture, monolayer characteristic, were designed and synthesized to explore the influence of the coupling strength between metal centers on OER performance. The coupling strength was regulated by adjusting the spacing between metal centers or the conjugation degree of bridge skeleton. Among the examined 2DPs, CoTAPP-Ni-MF-2DP, which has the strongest coupling strength between metal centers exhibited the best OER performance. These model systems can help to explore the precise structure-performance relationships, which is important for the rational catalyst design at the atomic/molecular levels.
Collapse
Affiliation(s)
- Dejuan Fa
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Jiangyan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
9
|
FACILE SYNTHESIS OF NI DOPED BIOBR NANOSHEETS AS EFFICIENT PHOTO-ASSISTED CHARGING SUPERCAPACITORS. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Li J, He Q, Lin Y, Han L, Tao K. MOF-Derived Iron–Cobalt Bimetallic Selenides for Water Electrolysis with High-Efficiency Oxygen Evolution Reaction. Inorg Chem 2022; 61:19031-19038. [DOI: 10.1021/acs.inorgchem.2c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jiangning Li
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Qianyun He
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
11
|
Nano-assembly hierarchical Fe–Ni–Se/Cu(OH)2 with induced interface engineering as highly efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zhou YN, Zhao HY, Wang HY, Nan J, Dong B, Wang FG, Dong YW, Liu B, Chai YM. Active Microstructure Transformation and Enhanced Stability of Iron Foam Derived from Industrial Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17229-17239. [PMID: 35385258 DOI: 10.1021/acsami.2c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tracking microstructure transformation under industrial conditions is significant and urgent for the development of oxygen evolution reaction (OER) catalysts. Herein, employing iron foam (IF) as an object, we closely monitor related morphologies and composition evolution under 300 mA cm-2 at 40 °C (IF-40-t)/80 °C (IF-80-t) in 6 M KOH and find that the OER activity first increases and then decreases with the continuous generation of FeOOH. Moreover, the reasons for different tendencies of Tafel slope, double-layer capacitance, and impedance for IF-40-t/IF-80-t have been investigated thoroughly. In detail, the OER activity of IF-40-t is governed by electron and mass transport, while for IF-80-t, the dominating factor is electron transfer. Further, to improve the stability, guided by the above results, two versatile methods that do not sacrifice electron and mass transport have been proposed: surface coating and dynamic interface construction. The synchronous improvements of stability and activity are deeply revealed, which may provide inspiration for catalyst design for industrial applications.
Collapse
Affiliation(s)
- Ya-Nan Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hui-Ying Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hui-Ying Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jun Nan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
- CNOOC Tianjin Chemical Research and Design Institute Co., Ltd., Tianjin 300131, P. R. China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Feng-Ge Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yi-Wen Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Bin Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
13
|
Dinh VC, Hou CH, Dao TN. O, N-doped porous biochar by air oxidation for enhancing heavy metal removal: The role of O, N functional groups. CHEMOSPHERE 2022; 293:133622. [PMID: 35033519 DOI: 10.1016/j.chemosphere.2022.133622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Oxygen- and nitrogen-doped porous oxidized biochar (O,N-doped OBC) was fabricated in this study. Biochar (BC) can be enriched in surface functional groups (O and N) and the porosity can be improved by a simple, convenient and green procedure. BC was oxidized at 200 °C in an air atmosphere with quality control via oxidation time changes. As the oxidation time increased, the O and N contents and porosity of the materials improved. After 1.5 h of oxidation, the O and N contents of O,N-doped OBC-1.5 were 54.4% and 3.9%, higher than those of BC, which were 33.4% and 1.8%, respectively. The specific surface area and pore volume of O,N-doped OBC-1.5 were 88.5 m2 g-1 and 0.07 cm3 g-1, respectively, which were greater than those of BC. The improved surface functionality and porosity resulted in an increased heavy metal removal efficiency. As a result, the maximum adsorption capacity of Cu(II) by O,N-doped OBC was 23.32 mg L-1, which was twofold higher than that of pristine BC. Additionally, for a multiple ion solution, O,N-doped OBC-1.5 showed a greater adsorption behavior toward Cu(II) than Zn(II) and Ni(II). In a batch experiment, the concentration of Cu(II) decreased 92.3% after 90 min. In a filtration experiment, the O,N-doped OBC-based filter achieved a Cu(II) removal capacity of 12.90 mg g-1 and breakthrough time after 250 min. Importantly, the chemical mechanism was mainly governed by monolayer adsorption of Cu(II) onto a homogeneous surface of O,N-doped OBC-1.5. Surface complexation and electrostatic attraction were considered to be the chemical mechanisms governing the adsorption process.
Collapse
Affiliation(s)
- Viet Cuong Dinh
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong, Hai Ba Trung, Hanoi, 100000, Viet Nam.
| | - Chia-Hung Hou
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd, Taipei, 10617, Taiwan; Research Center for Future Earth, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd, Taipei, 10617, Taiwan
| | - Thuy Ninh Dao
- Faculty of Economics and Construction Management, Hanoi University of Civil Engineering, 55 Giai Phong, Hai Ba Trung, Hanoi, 100000, Viet Nam
| |
Collapse
|
14
|
Jadhav HS, Bandal HA, Ramakrishna S, Kim H. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107072. [PMID: 34846082 DOI: 10.1002/adma.202107072] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Design and construction of low-cost electrocatalysts with high catalytic activity and long-term stability is a challenging task in the field of catalysis. Metal-organic frameworks (MOF) are promising candidates as precursor materials in the development of highly efficient electrocatalysts for energy conversion and storage applications. This review starts with a summary of basic concepts and key evaluation parameters involved in the electrochemical water-splitting reaction. Then, different synthesis approaches reported for the cobalt-based Zeolitic imidazolate framework (ZIF-67) and its derivatives are critically reviewed. Additionally, several strategies employed to enhance the electrocatalytic activity and stability of ZIF-67-based electrocatalysts are discussed in detail. The present review provides a succinct insight into the ZIF-67 and its derivatives (oxides, hydroxides, sulfides, selenides, phosphide, nitrides, telluride, heteroatom/metal-doped carbon, noble metal-supported ZIF-67 derivatives) reported for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting applications. Finally, this review concludes with the associated challenges and the perspectives on developing the best economic, durable electrocatalytic materials.
Collapse
Affiliation(s)
- Harsharaj S Jadhav
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Harshad A Bandal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
15
|
Yu H, Xie Y, Deng L, Huang H, Song J, Yu D, Li L, Peng S. In situ construction of FeNi2Se4-FeNi LDH heterointerfaces with electron redistribution for enhanced overall water splitting. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01185e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The abundant heterogeneous interfaces between the FeNi2Se4 and FeNi LDH can provide enriched active sites and accelerate reaction kinetics, which improves the overall water splitting performance.
Collapse
Affiliation(s)
- Hanzhi Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yaoyi Xie
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hongjiao Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Junnan Song
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Deshuang Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
16
|
Yang B, Huang Z, Wu H, Hu H, Lin H, Nie M, Li Q. Sea Urchin-like CoSe2 Nanoparticles Modified Graphene Oxide as an Efficient and Stable Hydrogen Evolution Catalyst. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Qian G, Chen J, Yu T, Liu J, Luo L, Yin S. Three-Phase Heterojunction NiMo-Based Nano-Needle for Water Splitting at Industrial Alkaline Condition. NANO-MICRO LETTERS 2021; 14:20. [PMID: 34882293 PMCID: PMC8660933 DOI: 10.1007/s40820-021-00744-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/08/2021] [Indexed: 05/29/2023]
Abstract
Constructing heterojunction is an effective strategy to develop high-performance non-precious-metal-based catalysts for electrochemical water splitting (WS). Herein, we design and prepare an N-doped-carbon-encapsulated Ni/MoO2 nano-needle with three-phase heterojunction (Ni/MoO2@CN) for accelerating the WS under industrial alkaline condition. Density functional theory calculations reveal that the electrons are redistributed at the three-phase heterojunction interface, which optimizes the adsorption energy of H- and O-containing intermediates to obtain the best ΔGH* for hydrogen evolution reaction (HER) and decrease the ΔG value of rate-determining step for oxygen evolution reaction (OER), thus enhancing the HER/OER catalytic activity. Electrochemical results confirm that Ni/MoO2@CN exhibits good activity for HER (ƞ-10 = 33 mV, ƞ-1000 = 267 mV) and OER (ƞ10 = 250 mV, ƞ1000 = 420 mV). It shows a low potential of 1.86 V at 1000 mA cm-2 for WS in 6.0 M KOH solution at 60 °C and can steadily operate for 330 h. This good HER/OER performance can be attributed to the three-phase heterojunction with high intrinsic activity and the self-supporting nano-needle with more active sites, faster mass diffusion, and bubbles release. This work provides a unique idea for designing high efficiency catalytic materials for WS.
Collapse
Affiliation(s)
- Guangfu Qian
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Jinli Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Tianqi Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Jiacheng Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China.
| |
Collapse
|
18
|
Carbon-Based Composites as Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. MATERIALS 2021; 14:ma14174984. [PMID: 34501072 PMCID: PMC8434594 DOI: 10.3390/ma14174984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
This review paper presents the most recent research progress on carbon-based composite electrocatalysts for the oxygen evolution reaction (OER), which are of interest for application in low temperature water electrolyzers for hydrogen production. The reviewed materials are primarily investigated as active and stable replacements aimed at lowering the cost of the metal electrocatalysts in liquid alkaline electrolyzers as well as potential electrocatalysts for an emerging technology like alkaline exchange membrane (AEM) electrolyzers. Low temperature electrolyzer technologies are first briefly introduced and the challenges thereof are presented. The non-carbon electrocatalysts are briefly overviewed, with an emphasis on the modes of action of different active phases. The main part of the review focuses on the role of carbon–metal compound active phase interfaces with an emphasis on the synergistic and additive effects. The procedures of carbon oxidative pretreatment and an overview of metal-free carbon catalysts for OER are presented. Then, the successful synthesis protocols of composite materials are presented with a discussion on the specific catalytic activity of carbon composites with metal hydroxides/oxyhydroxides/oxides, chalcogenides, nitrides and phosphides. Finally, a summary and outlook on carbon-based composites for low temperature water electrolysis are presented.
Collapse
|
19
|
Core/shell colloidal nanoparticles based multifunctional and robust photonic paper via drop-casting self-assembly for reversible mechanochromic and writing. J Colloid Interface Sci 2021; 603:834-843. [PMID: 34237601 DOI: 10.1016/j.jcis.2021.06.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/21/2022]
Abstract
Photonic crystals film that possesses periodic dielectric structure have shown great prospect in developing environmentally friendly paper alternatives due to the unique properties of dye free and non-photobleaching, but their practical application is limited by the weak interaction between colloidal particles. Although some progress has been obtained, it is still a challenge to develop photonic paper with the desired mechanical and optical properties. Herein, multifunctional hard core/soft shell nanoparticles with controlled size are fabricated by semi-continuous seed emulsion polymerization method. Compared with convention colloidal particles, these core/shell nanoparticles can facile self-assemble into large-scale dense ordered structure film via dried at room temperature due to the relatively low glass transition temperature (Tg) of the shell layers. The facile fabrication route enables the continuous high-through put production of the photonic papers. The as-formed papers not only possess the capacity to solvent (water/ethanol) rewritable and multicolor painting, but also can rapidly reversible mechanochromic. Moreover, due to the good compatibility of core/shell interface, these photonic films possess excellent mechanical properties, demonstrating that this multifunctional film makes the fabrication of novel robust rewritable papers possible and enables visual monitoring of deformation degree.
Collapse
|
20
|
Qian G, Chen J, Yu T, Luo L, Yin S. N-Doped Graphene-Decorated NiCo Alloy Coupled with Mesoporous NiCoMoO Nano-sheet Heterojunction for Enhanced Water Electrolysis Activity at High Current Density. NANO-MICRO LETTERS 2021; 13:77. [PMID: 34138320 PMCID: PMC8187493 DOI: 10.1007/s40820-021-00607-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 05/05/2023]
Abstract
Developing highly effective and stable non-noble metal-based bifunctional catalyst working at high current density is an urgent issue for water electrolysis (WE). Herein, we prepare the N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet grown on 3D nickel foam (NiCo@C-NiCoMoO/NF) for water splitting. NiCo@C-NiCoMoO/NF exhibits outstanding activity with low overpotentials for hydrogen and oxygen evolution reaction (HER: 39/266 mV; OER: 260/390 mV) at ± 10 and ± 1000 mA cm-2. More importantly, in 6.0 M KOH solution at 60 °C for WE, it only requires 1.90 V to reach 1000 mA cm-2 and shows excellent stability for 43 h, exhibiting the potential for actual application. The good performance can be assigned to N-doped graphene-decorated NiCo alloy and mesoporous NiCoMoO nano-sheet, which not only increase the intrinsic activity and expose abundant catalytic activity sites, but also enhance its chemical and mechanical stability. This work thus could provide a promising material for industrial hydrogen production.
Collapse
Affiliation(s)
- Guangfu Qian
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, P. R. China
| | - Jinli Chen
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, P. R. China
| | - Tianqi Yu
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, P. R. China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, P. R. China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, P. R. China.
| |
Collapse
|
21
|
Shi X, Zhu H, Du J, Cao L, Wang X, Liang HP. Directed assembly of ultrasmall nitrogen coordinated Ir nanoparticles for enhanced electrocatalysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Li J, Gadipelli S. Synthesis and Optimization of Zeolitic Imidazolate Frameworks for the Oxygen Evolution Reaction. Chemistry 2020; 26:14167-14172. [PMID: 32846009 DOI: 10.1002/chem.202002702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 02/05/2023]
Abstract
Metal-organic frameworks/zeolitic imidazolate frameworks (MOFs/ZIFs) and their post-synthesis modified nanostructures, such as oxides, hydroxides, and carbons have generated significant interest for electrocatalytic reactions. In this work, a high and durable oxygen evolution reaction (OER) performance directly from bimetallic Zn100-x Cox -ZIF samples is reported, without carrying out high-temperature calcination and/or carbonization. ZIFs can be reproducibly and readily synthesized in large scale at ambient conditions. The bimetallic ZIFs show a systematic and gradually improved OER activity with increasing cobalt concentration. A further increase in OER activity is evidenced in ZIF-67 polyhedrons with controlled particle size of <200 nm among samples of different sizes between 50 nm and 2 μm. Building on this, a significantly enhanced, >50 %, OER activity is obtained with ZIF-67/carbon black, which shows a low overpotential of approximately 320 mV in 1.0 m KOH electrolyte. Such activity is comparable to or better than numerous MOF/ZIF-derived electrocatalysts. The optimized ZIF-67 sample also exhibits increased activity and durability over 24 h, which is attributed to an in situ developed active cobalt oxide/oxyhydroxide related nanophase.
Collapse
Affiliation(s)
- Juntao Li
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Srinivas Gadipelli
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.,College of Physics, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
23
|
Huang Z, Xu B, Li Z, Ren J, Mei H, Liu Z, Xie D, Zhang H, Dai F, Wang R, Sun D. Accurately Regulating the Electronic Structure of Ni x Se y @NC Core-Shell Nanohybrids through Controllable Selenization of a Ni-MOF for pH-Universal Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004231. [PMID: 33048466 DOI: 10.1002/smll.202004231] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/21/2020] [Indexed: 06/11/2023]
Abstract
N-doped carbon-encapsulated transition metal selenides (TMSs) have garnered increasing attention as promising electrocatalysts for hydrogen evolution reaction (HER). Accurately regulating the electronic structure of these nanohybrids to reveal the underlying mechanism for enhanced HER performances is still challenging and thus requires deep excavation. Herein, a series of pomegranate-like Nix Sey @NC core-shell nanohybrids (including Ni0.85 Se @ NC, NiSe2 @NC, and NiSe@NC) through controllable selenization of a Ni-MOF precursor is reported. The component of the nanohybrids can be fine-tuned by tailoring the selenization temperature and feed ratio, through which the electronic structure can be synchronously regulated. Among these nanohybrids, the Ni0.85 Se @ NC exhibits the optimum pH-universal HER performance with overpotentials of 131, 135, and 183 mV in 0.5 m H2 SO4 , 1.0 m KOH, and 1.0 m PBS, respectively, at 10 mA cm-2 , which are attributed to the increased partial density of state at the Fermi level and effective van der Waals interactions between Ni0.85 Se and NC matrix explained by density functional theory calculations.
Collapse
Affiliation(s)
- Zhaodi Huang
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Ben Xu
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
- Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zongge Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Jianwei Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Hao Mei
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Zhanning Liu
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Donggang Xie
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Haobing Zhang
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Fangna Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Rongming Wang
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Daofeng Sun
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
24
|
Heterogeneous CoSe2–CoO nanoparticles immobilized into N-doped carbon fibers for efficient overall water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Li Z, Xue KH, Wang J, Li JG, Ao X, Sun H, Song X, Lei W, Cao Y, Wang C. Cation and Anion Co-doped Perovskite Nanofibers for Highly Efficient Electrocatalytic Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41259-41268. [PMID: 32841005 DOI: 10.1021/acsami.0c10045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Perovskite oxides have been recognized as one of the most attractive oxygen evolution reaction (OER) catalysts because of their low cost, earth abundance, and robust nature. Herein, one-dimensional porous LaFe1-xNixO3 (LFNO) perovskite oxide nanofibers (LFNO NFs) are fabricated with a feasible electrospinning route and its further post-calcination treatment. By tailoring the atomic percent of Fe and Ni in the perovskite oxide, we determined that LaFe0.25Ni0.75O3 (LFNO-III) NFs afford the best OER activity among all the prepared perovskite oxides. Especially remarkable is that the further selenide-doped LaFe0.25Ni0.75O3 (LFNOSe-III) NFs exhibit outstanding OER activity with a low overpotential of 287 mV at 10 mA cm-2 and a small Tafel slope of 87 mV dec-1 in 1 M KOH solution, markedly exceeding that of the parent perovskite oxide and the commercial RuO2. It also delivers decent durability with no significant degradation after 22 h of stability test. In the meanwhile, density functional theory calculations are also conducted to justify the optimized adsorption features of *OH, *O, and *OOH intermediates and unveil that the electrocatalytic active sites are the Ni atoms adjacent to Fe in the Ni- and Se codoped perovskite. This work provides an effective method for the development of highly efficient perovskite oxide catalysts.
Collapse
Affiliation(s)
- Zhishan Li
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kan-Hao Xue
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jinsong Wang
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Jian-Gang Li
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiang Ao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Huachuan Sun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaoqiang Song
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wen Lei
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yulin Cao
- Physics Laboratory, Industrial Training Center, Shenzhen Polytechnic, Shenzhen 518055, P.R. China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- College of Life Science, Tarim University, Alaer 843300, P. R. China
| |
Collapse
|
26
|
Zhang S, Wang W, Hu F, Mi Y, Wang S, Liu Y, Ai X, Fang J, Li H, Zhai T. 2D CoOOH Sheet-Encapsulated Ni 2P into Tubular Arrays Realizing 1000 mA cm -2-Level-Current-Density Hydrogen Evolution Over 100 h in Neutral Water. NANO-MICRO LETTERS 2020; 12:140. [PMID: 34138122 PMCID: PMC7770877 DOI: 10.1007/s40820-020-00476-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 05/15/2023]
Abstract
Water electrolysis at high current density (1000 mA cm-2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm-2-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.
Collapse
Affiliation(s)
- Shucong Zhang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530008, Guangxi, People's Republic of China
| | - Wenbin Wang
- State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Feilong Hu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530008, Guangxi, People's Republic of China
| | - Yan Mi
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530008, Guangxi, People's Republic of China.
- State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China.
| | - Shuzhe Wang
- State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Youwen Liu
- State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China.
| | - Xiaomeng Ai
- State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Jiakun Fang
- State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die and Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China.
| |
Collapse
|
27
|
Sun Y, Deng Z, Song XM, Li H, Huang Z, Zhao Q, Feng D, Zhang W, Liu Z, Ma T. Bismuth-Based Free-Standing Electrodes for Ambient-Condition Ammonia Production in Neutral Media. NANO-MICRO LETTERS 2020; 12:133. [PMID: 34138093 PMCID: PMC7770657 DOI: 10.1007/s40820-020-00444-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/10/2020] [Indexed: 05/03/2023]
Abstract
Electrocatalytic nitrogen reduction reaction is a carbon-free and energy-saving strategy for efficient synthesis of ammonia under ambient conditions. Here, we report the synthesis of nanosized Bi2O3 particles grown on functionalized exfoliated graphene (Bi2O3/FEG) via a facile electrochemical deposition method. The obtained free-standing Bi2O3/FEG achieves a high Faradaic efficiency of 11.2% and a large NH3 yield of 4.21 ± 0.14 [Formula: see text] h-1 cm-2 at - 0.5 V versus reversible hydrogen electrode in 0.1 M Na2SO4, better than that in the strong acidic and basic media. Benefiting from its strong interaction of Bi 6p band with the N 2p orbitals, binder-free characteristic, and facile electron transfer, Bi2O3/FEG achieves superior catalytic performance and excellent long-term stability as compared with most of the previous reported catalysts. This study is significant to design low-cost, high-efficient Bi-based electrocatalysts for electrochemical ammonia synthesis.
Collapse
Affiliation(s)
- Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zizhao Deng
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Xi-Ming Song
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Hui Li
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Zihang Huang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Qin Zhao
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Daming Feng
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Wei Zhang
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Zhaoqing Liu
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Tianyi Ma
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
28
|
Saad A, Shen H, Cheng Z, Arbi R, Guo B, Hui LS, Liang K, Liu S, Attfield JP, Turak A, Wang J, Yang M. Mesoporous Ternary Nitrides of Earth-Abundant Metals as Oxygen Evolution Electrocatalyst. NANO-MICRO LETTERS 2020; 12:79. [PMID: 34138285 PMCID: PMC7770804 DOI: 10.1007/s40820-020-0412-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/20/2020] [Indexed: 05/06/2023]
Abstract
As sustainable energy becomes a major concern for modern society, renewable and clean energy systems need highly active, stable, and low-cost catalysts for the oxygen evolution reaction (OER). Mesoporous materials offer an attractive route for generating efficient electrocatalysts with high mass transport capabilities. Herein, we report an efficient hard templating pathway to design and synthesize three-dimensional (3-D) mesoporous ternary nickel iron nitride (Ni3FeN). The as-synthesized electrocatalyst shows good OER performance in an alkaline solution with low overpotential (259 mV) and a small Tafel slope (54 mV dec-1), giving superior performance to IrO2 and RuO2 catalysts. The highly active contact area, the hierarchical porosity, and the synergistic effect of bimetal atoms contributed to the improved electrocatalytic performance toward OER. In a practical rechargeable Zn-air battery, mesoporous Ni3FeN is also shown to deliver a lower charging voltage and longer lifetime than RuO2. This work opens up a new promising approach to synthesize active OER electrocatalysts for energy-related devices.
Collapse
Affiliation(s)
- Ali Saad
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang Province, People's Republic of China
| | - Hangjia Shen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang Province, People's Republic of China
| | - Zhixing Cheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang Province, People's Republic of China
| | - Ramis Arbi
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Beibei Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | - Lok Shu Hui
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Kunyu Liang
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Siqi Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang Province, People's Republic of China
| | - John Paul Attfield
- Centre for Science at Extreme Conditions and EaStCHEM School of Chemistry, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK
| | - Ayse Turak
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada.
| | - Jiacheng Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang Province, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
29
|
Qi Y, Wu J, Xu J, Gao H, Du Z, Liu B, Liu L, Xiong D. One-step fabrication of a self-supported Co@CoTe2 electrocatalyst for efficient and durable oxygen evolution reactions. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00372g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optimal hydrothermal synthesis of a Co@CoTe2-240 electrode needs an overpotential of 286 mV to achieve a current density of 10 mA cm−2 and is able to sustain galvanostatic OER electrolysis for 16 hours with little degradation of less than 20 mV.
Collapse
Affiliation(s)
- Yu Qi
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Jie Wu
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Junyuan Xu
- International Iberian Nanotechnology Laboratory (INL)
- 4715-330 Braga
- Portugal
| | - Han Gao
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Zijuan Du
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Baoshun Liu
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Lifeng Liu
- International Iberian Nanotechnology Laboratory (INL)
- 4715-330 Braga
- Portugal
| | - Dehua Xiong
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- Wuhan National Laboratory for Optoelectronics
| |
Collapse
|
30
|
Bucci A, Mondal SS, Martin-Diaconescu V, Shafir A, Lloret-Fillol J. Cobalt Amide Imidate Imidazolate Frameworks as Highly Active Oxygen Evolution Model Materials. ACS APPLIED ENERGY MATERIALS 2019; 2:8930-8938. [PMID: 31894205 PMCID: PMC6931241 DOI: 10.1021/acsaem.9b01977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Two imidazolate-based Co-MOFs, IFP-5 and IFP-8 (imidazolate framework Potsdam), with a different peripheral group -R (-Me and -OMe, respectively) have been synthesized by a solvothermal method and tested toward the oxygen evolution reaction (OER). Remarkably, IFP-8 presents much lower overpotentials (319 mV at 10 mA/cm2 and 490 mV at 500 mA/cm2) than IFP-5 toward OER, as confirmed by online gas chromatography measurements (Faradaic yield of O2 > 99%). Moreover, the system is extraordinarily stable during 120 h, even when used as a catalyst toward the overall water splitting reaction without any sign of fatigue. An integrated ex situ spectroscopic study, based on powder X-ray diffraction, extended X-ray absorption fine structure, and attenuated total reflection, allows the identification of the active species and the factors that determine the catalytic activity. Indeed, it was found that the performances are highly affected by the nature of the -R group, because this small change strongly influences the conversion of the initial metal organic framework to the active species. As a consequence, the remarkable activity of IFP-8 can be ascribed to the formation of Co(O)OH phase with a particle size of a few nanometers (3-10 nm) during the electrocatalytic oxygen evolution.
Collapse
Affiliation(s)
- Alberto Bucci
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Suvendu Sekhar Mondal
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Vlad Martin-Diaconescu
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Alexandr Shafir
- Institute
of Advanced Chemistry of Catalonia IQAC−CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Julio Lloret-Fillol
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Avinguda Països Catalans, 16, 43007 Tarragona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Lluïs Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|