1
|
Shahmohammadi A, Dalvand S, Molaei A, Mousavi-Khoshdel SM, Yazdanfar N, Hasanzadeh M. Transition metal phosphide/ molybdenum disulfide heterostructures towards advanced electrochemical energy storage: recent progress and challenges. RSC Adv 2025; 15:13397-13430. [PMID: 40297000 PMCID: PMC12035537 DOI: 10.1039/d5ra01184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Transition metal phosphide @ molybdenum disulfide (TMP@MoS2) heterostructures, consisting of TMP as the core main catalytic body and MoS2 as the outer shell, can solve the three major problems in the field of renewable energy storage and catalysis, such as lack of resources, cost factors, and low cycling stability. The heterostructures synergistically combine the excellent conductivity and electrochemical performance of transition metal phosphides with the structural robustness and catalytic activity of molybdenum disulfide, which holds great promise for clean energy. This review addresses the advantages of TMP@MoS2 materials and their synthesis methods-e.g., hydrothermal routes and chemical vapor deposition regarding scalability and cost. Their electrochemical energy storage and catalytic functions e.g., hydrogen and oxygen evolution reactions (HER and OER) are also extensively explored. Their potential within battery and supercapacitor technologies is also assessed against leading performance metrics. Challenges toward industry-scale scalability, longevity, and environmental sustainability are also addressed, as are optimization and large-scale deployment strategies.
Collapse
Affiliation(s)
- Ali Shahmohammadi
- Faculty of Chemistry, Kharazmi University 43 South Mofatteh Avenue Tehran Iran
| | - Samad Dalvand
- Iranian Research & Development Center for Chemical Industries (IRDCI), Academic Center for Education, Culture and Research (ACECR) Karaj Iran
| | - Amirhossein Molaei
- Faculty of Petroleum and Natural Gas Engineering, Sahand University of Technology Tabriz Iran
| | | | - Najmeh Yazdanfar
- Iranian Research & Development Center for Chemical Industries (IRDCI), Academic Center for Education, Culture and Research (ACECR) Karaj Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
2
|
Lee JY, Jun SE, Shim JH, Kang HS, Kim C, Kim K, An JY, Choi S, Yun J, Kang J, Lee SW, Park S, Lee H, Yi Y, Jang HW, Lee C. Wafer-Scale Semitransparent MoS 2/WS 2 Heterojunction Catalyst on a Silicon Photocathode for Efficient Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407650. [PMID: 39479736 PMCID: PMC11707582 DOI: 10.1002/smll.202407650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Indexed: 01/11/2025]
Abstract
The development of catalysts that are optically transparent, electrically charge-transferable, and capable of protecting underlying photoactive semiconductors is crucial for efficient photoelectrochemical (PEC) hydrogen production. However, meeting all these requirements simultaneously poses significant challenges. In this study, the fabrication of a wafer-scale transparent bilayer MoS2/WS2 catalyst is presented with a staggered heterojunction, optimized for photon absorption, extraction of photogenerated charge carriers, and surface passivation of p-Si photocathode. The MoS2 and WS2 monolayers are grown via metal-organic chemical vapor deposition, followed by sequential transfer and stacking onto the p-Si photocathode. The resulting type-II heterojunction film establishes a strong built-in electric field for rapid charge carrier transport and effectively protects the Si surface from oxidation and corrosion. The fabricated MoS2/WS2/p-Si photocathode demonstrates outstanding PEC performance, achieving a high photocurrent density of -25 mA cm-2 at 0 V versus reversible hydrogen electrode, along with enhanced stability compared to monolayer MoS2/p-Si. This work provides promising strategies for developing optically transparent, electrically active, and protective catalysts for practical PEC energy conversion systems.
Collapse
Affiliation(s)
- Jae Yoon Lee
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Sang Eon Jun
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Jae Hyung Shim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hee Seong Kang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Changyeon Kim
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Kitae Kim
- Institute of Physics and Applied PhysicsYonsei UniversitySeoul03722Republic of Korea
- Van der Waals Materials Research CenterYonsei UniversitySeoul03722Republic of Korea
- Advanced Analysis CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jin Yong An
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Seokhoon Choi
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Jeonghun Yun
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Junghoon Kang
- Department of Electrical and Computer EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Seok Woo Lee
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Soohyung Park
- Advanced Analysis CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Hyunbok Lee
- Department of PhysicsKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Accelerator ScienceKangwon National UniversityChuncheon24341Republic of Korea
| | - Yeonjin Yi
- Institute of Physics and Applied PhysicsYonsei UniversitySeoul03722Republic of Korea
- Van der Waals Materials Research CenterYonsei UniversitySeoul03722Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Advanced Institute of Convergence TechnologySeoul National UniversitySuwon16229Republic of Korea
| | - Chul‐Ho Lee
- Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
- Department of Electrical and Computer EngineeringSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
3
|
Yang L, Li F, Xiang Q. Advances and challenges in the modification of photoelectrode materials for photoelectrocatalytic water splitting. MATERIALS HORIZONS 2024; 11:1638-1657. [PMID: 38324371 DOI: 10.1039/d4mh00020j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
With the increasing consumption of fossil fuels, the development of clean and renewable alternative fuels has become a top priority. Hydrogen (H2) is an ideal primary clean energy source for its extremely high gravimetric energy density, carbon-free combustion, and abundant natural resources. Photoelectrocatalytic (PEC) water splitting is among the most promising approaches for converting sunlight and water into H2. However, the cost-effectiveness and the overall solar to hydrogen conversion efficiency of PEC water splitting are still big challenges. In the past few decades, several studies have been devoted to this technology, and it is essential to develop economical photoelectrocatalysts with high conversion efficiency. Therefore, there is an urgent need for a comprehensive and updated review of recent advances in the design, manufacture, and modification of efficient PEC water splitting systems. This review first starts with the basic mechanism of photoelectrochemical water splitting. Then the problems in PEC water splitting are discussed, and the methods of photoelectrode modulation such as nanostructure fabrication, doping engineering, surface modification, and heterojunction construction are introduced. Finally, the critical challenges and future trends/perspectives in the PEC water splitting are discussed.
Collapse
Affiliation(s)
- Longyue Yang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China.
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Fang Li
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China.
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Quanjun Xiang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China.
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
4
|
Hou S, Gao X, Lv X, Zhao Y, Yin X, Liu Y, Fang J, Yu X, Ma X, Ma T, Su D. Decade Milestone Advancement of Defect-Engineered g-C 3N 4 for Solar Catalytic Applications. NANO-MICRO LETTERS 2024; 16:70. [PMID: 38175329 PMCID: PMC10766942 DOI: 10.1007/s40820-023-01297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Over the past decade, graphitic carbon nitride (g-C3N4) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C3N4 is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the "all-in-one" defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultra-active coordinated environment (M-Nx, M-C2N2, M-O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra (fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C3N4 "customization", motivating more profound thinking and flourishing research outputs on g-C3N4-based photocatalysis.
Collapse
Affiliation(s)
- Shaoqi Hou
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia
| | - Xiaochun Gao
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China.
| | - Xingyue Lv
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Yilin Zhao
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Xitao Yin
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Ying Liu
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Juan Fang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xingxing Yu
- Department of Chemistry, The University of Tokyo, 7-3-1 Hogo, Bunkyo, Tokyo, Japan
| | - Xiaoguang Ma
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China.
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Dawei Su
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia.
| |
Collapse
|
5
|
Zhao Y, Niu Z, Zhao J, Xue L, Fu X, Long J. Recent Advancements in Photoelectrochemical Water Splitting for Hydrogen Production. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Liang R, Fan J, Lei F, Li P, Fu C, Lu Z, Hao W. Fabrication of ultra-stable and high-efficient CoP-based electrode toward seawater splitting at industrial-grade current density. J Colloid Interface Sci 2023; 645:227-240. [PMID: 37149997 DOI: 10.1016/j.jcis.2023.04.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
The mild and rapid construction of economical, efficient and ultrastable electrodes for hydrogen production via water splitting at industrial-grade current density remains extremely challenging. Herein, a one-step mild electroless plating method is proposed to deposit cobalt phosphorus (CoP)-based species on robust nickel net (NN, denoted as Co-P@NN). The tight interfacial contact, corrosion-proof self-supporting substrate and synergistic effect of Co-P@Co-O contribute greatly to the rapid electron transport, high intrinsic activity and long-term durability in the alkaline simulated seawater (1.0 M KOH + 0.5 M NaCl). Attractively, Co-P@Co-O also achieves ultrastable catalysis for over 2880 h with negligible activity attenuation under various alkaline extreme conditions (simulated seawater, high-salt environment, domestic sewage and so on). Furthermore, this work successfully constructs a series of ternary elemental doped (Ni, S, B, Fe and so on) CoP-based catalytic electrodes for highly efficient overall seawater splitting (OSWS). This work demonstrates not only an ideal platform for the versatile strategy of mildly obtaining CoP-based electrocatalysts but also the pioneering philosophy of large-scale hydrogen production.
Collapse
Affiliation(s)
- Rikai Liang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jinli Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Fengjing Lei
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Peng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Chengyu Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zikang Lu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
7
|
Lee G, Jun SE, Kim Y, Park IH, Jang HW, Park SH, Kwon KC. Multicomponent Metal Oxide- and Metal Hydroxide-Based Electrocatalysts for Alkaline Water Splitting. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3280. [PMID: 37110115 PMCID: PMC10145119 DOI: 10.3390/ma16083280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Developing cost-effective, highly catalytic active, and stable electrocatalysts in alkaline electrolytes is important for the development of highly efficient anion-exchange membrane water electrolysis (AEMWE). To this end, metal oxides/hydroxides have attracted wide research interest for efficient electrocatalysts in water splitting owing to their abundance and tunable electronic properties. It is very challenging to achieve an efficient overall catalytic performance based on single metal oxide/hydroxide-based electrocatalysts due to low charge mobilities and limited stability. This review is mainly focused on the advanced strategies to synthesize the multicomponent metal oxide/hydroxide-based materials that include nanostructure engineering, heterointerface engineering, single-atom catalysts, and chemical modification. The state of the art of metal oxide/hydroxide-based heterostructures with various architectures is extensively discussed. Finally, this review provides the fundamental challenges and perspectives regarding the potential future direction of multicomponent metal oxide/hydroxide-based electrocatalysts.
Collapse
Affiliation(s)
- Goeun Lee
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sang Eon Jun
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Yujin Kim
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hwa Park
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Ki Chang Kwon
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| |
Collapse
|
8
|
Lin F, Tian R, Dong P, Jiang G, He F, Wang S, Fu R, Zhao C, Gu YY, Wang S. Defect-rich MoS2/NiS2 nanosheets loaded on SiNWs for efficient and stable photoelectrochemical hydrogen production. J Colloid Interface Sci 2022; 631:133-142. [DOI: 10.1016/j.jcis.2022.10.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
|
9
|
Graphdiyne Reinforced Multifunctional Cu/Ni Bimetallic Phosphides-Graphdiyne Hybrid nanostructure as High Performance Electrocatalyst for Water Splitting. J Colloid Interface Sci 2022; 628:508-518. [DOI: 10.1016/j.jcis.2022.07.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
|
10
|
Abstract
Densely aligned CoS2 nanowires (NWs) on chemically durable stainless steel fibers felt (SSF) substates were synthesized by thermal sulfuring Co3O4 NWs, which were oxidized from hydrothermal synthesized Co(OH)y(CO3)(1−0.5y)·nH2O NWs precursors. The effect of sulfuration temperature on the composition, morphology, and HER performance of the products was studied in detail. The results show that the high purity together with the enlarged density of active sites given by the twisted morphology of the CoS2 NWs sulfured at 500 °C guarantee its superior hydrogen evolution reaction (HER) performance compared with other samples sulfured at lower temperatures.
Collapse
|
11
|
Jun SE, Hong SP, Choi S, Kim C, Ji SG, Park IJ, Lee SA, Yang JW, Lee TH, Sohn W, Kim JY, Jang HW. Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO 2 Nanorods Decorated by Edge-Rich MoS 2 Nanoplates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103457. [PMID: 34453489 DOI: 10.1002/smll.202103457] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Indexed: 06/13/2023]
Abstract
To construct a highly efficient photoelectrochemical tandem device with silicon photocathode operating in alkaline conditions, it is desirable to develop stable and active catalysts which enable the photocathode to reliably perform under an alkaline environment. With nanostructured passivation layer and edge-exposed transition metal disulfides, silicon photocathode provides new opportunities for achieving unbiased alkaline solar water splitting. Here, the TiO2 nanorod arrays decorated by edge-rich MoS2 nanoplates are elaborately synthesized and deposited on p-Si. The vertically aligned TiO2 nanorods fully stabilize the Si surface and improve anti-reflectance. Moreover, MoS2 nanoplates with exposed edge sites provide catalytically active regions resulting in the kinetically favored hydrogen evolution under an alkaline environment. Interfacial energy band bending between p-Si and catalyst layers facilitates the transport of photogenerated electrons under steady-state illumination. Consequently, the MoS2 nanoplates/TiO2 nanorods/p-Si photocathode exhibits significantly improved photoelectrochemical-hydrogen evolution reaction (PEC-HER) performance in alkaline media with a high photocurrent density of 10 mA cm-2 at 0 V versus RHE and high stability. By integrating rationally designed photocathode with earth-abundant Fe60 (NiCo)30 Cr10 anode and perovskite/Si tandem photovoltaic cell, an unassisted alkaline solar water splitting is accomplished with a current density of 5.4 mA cm-2 corresponding to 6.6% solar-to-hydrogen efficiency, which is the highest among p-Si photocathodes.
Collapse
Affiliation(s)
- Sang Eon Jun
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Pyo Hong
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhoon Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changyeon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Su Geun Ji
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ik Jae Park
- Department of Applied Physics, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Sol A Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Wook Yang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woonbae Sohn
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Young Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|