1
|
Song YY, Jiang N, Li SZ, Wang LN, Bai L, Yang J, Yang W. Ultra-high thermally conductive graphite microplatelet/aramid nanofiber composites with reduced interfacial thermal resistances by engineered interface π-π interactions. MATERIALS HORIZONS 2025. [PMID: 40123516 DOI: 10.1039/d5mh00070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Polymer-based thermally conductive composites with ultrahigh in-plane thermal conductivity are ideal candidates for heat dissipation applications in electronics. However, the complex interfaces between the functional filler and polymer matrix limit the significant increase in thermal conductivity of the polymer composites. In this study, we developed a one-pot strategy to prepare highly thermally conductive composite films of freeze-expansion large-size graphite microplatelets (F-GMPs) and aramid nanofibers (ANFs) with π-π interactions. The obtained F-GMP/ANF nanocomposite films present salient in-plane thermal conductivity, considerable flexibility, and outstanding long-term stability. The π-π interactions between the F-GMPs and ANFs promote the freeze-expansion exfoliation of graphite, yielding stable F-GMP/ANF precursor pastes with high-quality graphite platelets. Moreover, the π-π interactions improve the filler-matrix interfacial compatibility and reduce the interfacial thermal resistance, while the large-size F-GMP particles are directly lapped to construct a thermal transfer pathway with a reduction in the filler-filler interfacial thermal resistance. Consequently, the F-GMP/ANF composite films with 30 wt% F-GMPs exhibit unprecedentedly high in-plane thermal conductivity (56.89 W m-1 K-1) and corresponding thermal conductivity enhancement efficiency, presenting great application potential for the effective thermal management of highly integrated electronics.
Collapse
Affiliation(s)
- Yu-Yang Song
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Niu Jiang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Shuang-Zhu Li
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Lu-Ning Wang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Lu Bai
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Jie Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| |
Collapse
|
2
|
Zong B, Wu S, Yang Y, Li Q, Tao T, Mao S. Smart Gas Sensors: Recent Developments and Future Prospective. NANO-MICRO LETTERS 2024; 17:54. [PMID: 39489808 PMCID: PMC11532330 DOI: 10.1007/s40820-024-01543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Gas sensor is an indispensable part of modern society with wide applications in environmental monitoring, healthcare, food industry, public safety, etc. With the development of sensor technology, wireless communication, smart monitoring terminal, cloud storage/computing technology, and artificial intelligence, smart gas sensors represent the future of gas sensing due to their merits of real-time multifunctional monitoring, early warning function, and intelligent and automated feature. Various electronic and optoelectronic gas sensors have been developed for high-performance smart gas analysis. With the development of smart terminals and the maturity of integrated technology, flexible and wearable gas sensors play an increasing role in gas analysis. This review highlights recent advances of smart gas sensors in diverse applications. The structural components and fundamental principles of electronic and optoelectronic gas sensors are described, and flexible and wearable gas sensor devices are highlighted. Moreover, sensor array with artificial intelligence algorithms and smart gas sensors in "Internet of Things" paradigm are introduced. Finally, the challenges and perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.
Collapse
Affiliation(s)
- Boyang Zong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Shufang Wu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Yuehong Yang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Tian Tao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
3
|
Yong X, Nagaraja T, Krishnamoorthy R, Guanes A, Das S, Martsinovich N. Theoretical and Experimental Studies of Molecular Interactions between Engineered Graphene and Phosphate Ions for Graphene-Based Phosphate Sensing. ACS APPLIED NANO MATERIALS 2024; 7:18386-18397. [PMID: 39206347 PMCID: PMC11348312 DOI: 10.1021/acsanm.3c04147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 09/04/2024]
Abstract
Fundamental understanding of the interactions of nanoscale materials with molecules of interest is essential for the development of electronic devices, such as sensors. In particular, structures and molecular interaction properties of engineered graphenes are still largely unexplored, despite these materials' great potential to be used as molecular sensors. As an example of end user application, the detection of phosphorus in the form of phosphate in a soil environment is important for soil fertility and plant growth. However, due to the lack of an affordable technology, it is currently hard to measure the amount of phosphate directly in the soil; therefore, suitable sensor technologies need to be developed for phosphate sensors. In this work, pristine graphene and several modified graphene materials (oxygenated graphene, graphene with vacancies, and curved graphene) were studied as candidates for phosphate sensor materials using density functional theory (DFT) calculations. Our calculations showed that both pristine graphene and functionalized graphene were able to adsorb phosphate species strongly. In addition, these graphene nanomaterials showed selectivity of adsorption of phosphate with respect to nitrate, with stronger adsorption energies for phosphate. Furthermore, our calculations showed significant changes in electrical conductivities of pristine graphene and functionalized graphenes after phosphate species adsorption, in particular, on graphene with oxygen (hydroxyl and epoxide) functional groups. Experimental measurements of electrical resistivity of graphene before and after adsorption of dihydrogen phosphate showed an increase in resistivity upon adsorption of phosphate, consistent with the theoretical predictions. Our results recommend graphene and functionalized graphene-based nanomaterials as good candidates for the development of phosphate sensors.
Collapse
Affiliation(s)
- Xue Yong
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Thiba Nagaraja
- Department
of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Rajavel Krishnamoorthy
- Department
of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ana Guanes
- Department
of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Suprem
R. Das
- Department
of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, United States
- Department
of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Natalia Martsinovich
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| |
Collapse
|
4
|
Zhou K, Ding R, Ma X, Lin Y. Printable and flexible integrated sensing systems for wireless healthcare. NANOSCALE 2024; 16:7264-7286. [PMID: 38470428 DOI: 10.1039/d3nr06099c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The rapid development of wearable sensing devices and artificial intelligence has enabled portable and wireless tracking of human health, fulfilling the promise of digitalized healthcare applications. To achieve versatile design and integration of multi-functional modules including sensors and data transmission units onto various flexible platforms, printable technologies emerged as some of the most promising strategies. This review first introduces the commonly utilized printing technologies, followed by discussion of the printable ink formulations and flexible substrates to ensure reliable device fabrication and system integration. The advances of printable sensors for body status monitoring are then discussed. Moreover, the integration of wireless data transmission via printable approaches is also presented. Finally, the challenges in achieving printable sensing devices and wireless integrated systems with competitive performances are considered, so as to realize their practical applications for personalized healthcare.
Collapse
Affiliation(s)
- Kemeng Zhou
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ruochen Ding
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiaohao Ma
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Bi S, Hai W, Wang L, Xu K, Chen Q, Chen C, Yu Q, Chen C, Li M, Shao H, Shao G, Jiang J, Chen N. Green One-Step Strategy of Conductive Ink for Active Health Monitoring in Rehabilitation and Early Care. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38047560 DOI: 10.1021/acsami.3c12851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Conductive ink deposited on flexible substrates through simple methods such as dyeing or printing is one of the most promising approaches for scalable fabrication of wearable electronics. However, excessive chemical additives or a complex preparation process has limited the practical applications of conductive inks. Herein, a highly stable and antibacterial AgNPs/CNT/rGO (SACR) conductive ink with the only assistance of sustainable silk sericin (SS) is developed through a green one-step strategy. SS functions as not only the reductant of silver ions and GO by donating electrons but also the dispersant and stabilizer of CNTs through strong noncovalent interactions. The universality of SACR ink is demonstrated by depositing on various flexible substrates through handwriting, screen-printing, and dyeing techniques; meanwhile, the mechanical reliability between SACR ink and substrates is validated by peeling, bending, and twisting measurements. In addition, the synergistic effects of the multilevel hierarchical 0D/1D/2D structure and abundant interfacial interactions in SACR ink are advantageous to enhancing sensing performance. An SACR ink-based strain sensor and hydrogen peroxide (H2O2) sensor are fabricated to detect physical and biochemical indicators, demonstrating the enormous potential of SACR ink in intelligent wearables for active health monitoring in early care.
Collapse
Affiliation(s)
- Siyi Bi
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Wenqing Hai
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | | | - Ke Xu
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Qian Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Chunhui Chen
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Qinghua Yu
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Chao Chen
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Minghao Li
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Huiqi Shao
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Guangwei Shao
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jinhua Jiang
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Nanliang Chen
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Wang P, Liu H, Zhou S, Chen L, Yu S, Wei J. A Review of the Carbon-Based Solid Transducing Layer for Ion-Selective Electrodes. Molecules 2023; 28:5503. [PMID: 37513374 PMCID: PMC10384130 DOI: 10.3390/molecules28145503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
As one of the key components of solid-contact ion-selective electrodes (SC-ISEs), the SC layer plays a crucial role in electrode performance. Carbon materials, known for their efficient ion-electron signal conversion, chemical stability, and low cost, are considered ideal materials for solid-state transducing layers. In this review, the application of different types of carbon materials in SC-ISEs (from 2007 to 2023) has been comprehensively summarized and discussed. Representative carbon-based materials for the fabrication of SC-ISEs have been systematically outlined, and the influence of the structural characteristics of carbon materials on achieving excellent performance has been emphasized. Finally, the persistent challenges and potential opportunities are also highlighted and discussed, aiming to inspire the design and fabrication of next-generation SC-ISEs with multifunctional composite carbon materials in the future.
Collapse
Affiliation(s)
- Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lina Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
7
|
Wang D, Zhang W, Wang J, Li X, Liu Y. A high-performance, all-solid-state Na + selective sensor printed with eco-friendly conductive ink. RSC Adv 2023; 13:16610-16618. [PMID: 37287809 PMCID: PMC10242244 DOI: 10.1039/d3ra01410j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023] Open
Abstract
In recent years, the integration of flexible printed electronics and electrochemical sensors has emerged as a new approach for developing wearable biochemical detecting devices. Among the materials utilized in flexible printed electronics, carbon-based conductive inks are considered to be crucial. In this study, we propose a cost-effective, highly conductive, and environmentally friendly ink formulation utilizing graphite and carbon black (CB) as conductive fillers, resulting in a very low sheet resistance of 15.99 Ω sq-1 (conductivity of 2.5 × 103 S m-1) and a printed film thickness of 25 μm. The unique "sandwich" structure of the working electrode (WE) printed with this ink enhances its electrical conductivity, leading to high sensitivity, selectivity, and stability, with almost no water film generated between the WE and the ion-selective membrane (ISM), strong ion selectivity, long-term stability, and anti-interference. The lower detection limit of the sensor for Na+ is 0.16 mM with a slope of 75.72 mV per decade. To validate the sensor's usability, we analyzed three sweat samples collected during physical activity, with Na+ concentrations within the typical range for human sweat (51 ± 4 mM, 39 ± 5 mM, and 46 ± 2 mM).
Collapse
Affiliation(s)
- Dengke Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology Taiyuan Shanxi 030024 China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Wanggang Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Jian Wang
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Xiaohong Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology Taiyuan Shanxi 030024 China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Yiming Liu
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan Shanxi 030024 China
- Shanxi Academy of Analytical Sciences Taiyuan 030006 Shanxi China
| |
Collapse
|
8
|
Huang X, Liu Y, Park W, Li J, Ma J, Yiu CK, Zhang Q, Li J, Wu P, Zhou J, Zeng Y, He X, Li J, Wong TH, Yao K, Zhao L, Gao Y, Shi R, Li H, Li M, Li D, Zhao Z, Li Y, Li H, Yu X. Intelligent Soft Sweat Sensors for the Simultaneous Healthcare Monitoring and Safety Warning. Adv Healthc Mater 2023:e2202846. [PMID: 36773301 DOI: 10.1002/adhm.202202846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/03/2023] [Indexed: 02/12/2023]
Abstract
Intelligent monitoring human physiological information in real time raises the demand for skin-integrated electronics, as which is a flexible format and can be mounted onto the curved human skin for noninvasive healthcare monitoring. The biofluid such as sweat from skin contains abundant biomarkers reflecting body health conditions. Here, a skin-integrated sweat monitor with six biosensors embedded for the detection of NH4 + , Na+ , glucose, pH, skin impedance, and surface temperature is described, which could decode the information in the fresh sweat generated during exercising. Furthermore, the system also includes an innovative safety warning mechanism, which is based on a miniaturized actuator to provide mechanical stimuli, and coupled with six changeable colors light emitting diodes corresponding to the six biosensors for providing simultaneous safety alarming to users. The self-developed microfluidics system with a hydrophilic surface allows to enhance the sweat collection rate. Meanwhile, microfluidic filters can reduce the interruption of skin debris during biosignal monitoring. These state-of-art biosensors can real-time monitor health related signals with excellent linearity and specificity. The skin-integrated sweat monitor system exhibits a great potential in human healthcare monitoring and medical treatment.
Collapse
Affiliation(s)
- Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Wooyoung Park
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China.,Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, P. R. China
| | - Jie Ma
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China.,Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, P. R. China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China.,Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, P. R. China
| | - Pengcheng Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China.,Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, P. R. China
| | - Yuyang Zeng
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Xinxin He
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Jialin Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Tsz Hung Wong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Ling Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China.,Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, P. R. China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Meixi Li
- Leshan Hospital of Traditional Chinese Medicine, Leshan, Sichuan Province, 614000, P. R. China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China.,Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, P. R. China
| | - Zhao Zhao
- China Special Equipment Inspection and Research Institute, Beijing, 100029, China.,Institute of Solid Mechanics, Beihang University, Beijing, 100191, P. R. China
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University, Beijing, 100191, P. R. China.,Aircraft and Propulsion Laboratory, Ningbo Institute of Technology Beihang University (BUAA), Ningbo, 315100, P. R. China
| | - Heng Li
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Kowloong Tong, Hong Kong, 999077, P. R. China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloong Tong, Hong Kong, 999077, P. R. China.,Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
9
|
Ng KL, Maciejewska BM, Qin L, Johnston C, Barrio J, Titirici MM, Tzanakis I, Eskin DG, Porfyrakis K, Mi J, Grobert N. Direct Evidence of the Exfoliation Efficiency and Graphene Dispersibility of Green Solvents toward Sustainable Graphene Production. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:58-66. [PMID: 36643002 PMCID: PMC9832534 DOI: 10.1021/acssuschemeng.2c03594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/22/2022] [Indexed: 05/12/2023]
Abstract
Achieving a sustainable production of pristine high-quality graphene and other layered materials at a low cost is one of the bottlenecks that needs to be overcome for reaching 2D material applications at a large scale. Liquid phase exfoliation in conjunction with N-methyl-2-pyrrolidone (NMP) is recognized as the most efficient method for both the exfoliation and dispersion of graphene. Unfortunately, NMP is neither sustainable nor suitable for up-scaling production due to its adverse impact on the environment. Here, we show the real potential of green solvents by revealing the independent contributions of their exfoliation efficiency and graphene dispersibility to the graphene yield. By experimentally separating these two factors, we demonstrate that the exfoliation efficiency of a given solvent is independent of its dispersibility. Our studies revealed that isopropanol can be used to exfoliate graphite as efficiently as NMP. Our finding is corroborated by the matching ratio between the polar and dispersive energies of graphite and that of the solvent surface tension. This direct evidence of exfoliation efficiency and dispersibility of solvents paves the way to developing a deeper understanding of the real potential of sustainable graphene manufacturing at a large scale.
Collapse
Affiliation(s)
- Kai Ling Ng
- Department
of Materials, University of Oxford, Parks Road, OxfordOX1 3 PH, U.K.
| | | | - Ling Qin
- Department
of Engineering, University of Hull, Cottingham Road, HullHU6 7RX, U.K.
| | - Colin Johnston
- Department
of Materials, University of Oxford, Parks Road, OxfordOX1 3 PH, U.K.
| | - Jesus Barrio
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, LondonSW7 2AZ, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, LondonSW7 2AZ, U.K.
| | - Iakovos Tzanakis
- School
of Engineering, Computing and Mathematics, Oxford Brookes University, College Cl, Wheatley, OxfordOX33 1HX, U.K.
| | - Dmitry G Eskin
- Brunel
Centre for Advanced Solidification Technology, Brunel University London, Kingston Lane, UxbridgeUB8 3PH, U.K.
| | - Kyriakos Porfyrakis
- Faculty of
Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, KentME4 4TB, U.K.
| | - Jiawei Mi
- Department
of Engineering, University of Hull, Cottingham Road, HullHU6 7RX, U.K.
| | - Nicole Grobert
- Department
of Materials, University of Oxford, Parks Road, OxfordOX1 3 PH, U.K.
- Williams
Advanced Engineering, Grove, OxfordshireOX12
0DQ, U.K.
| |
Collapse
|
10
|
Kil MS, Kim SJ, Park HJ, Yoon JH, Jeong JM, Choi BG. Highly Stretchable Sensor Based on Fluid Dynamics-Assisted Graphene Inks for Real-Time Monitoring of Sweat. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48072-48080. [PMID: 36222414 DOI: 10.1021/acsami.2c10638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Graphene inks have recently attracted attention for the development of printed wearable and flexible electronics and sensors not only because of their high conductivity and low cost but also because they are suitable for high-speed printing. Although reliable and scalable printing technologies are well established, further improvement in graphene inks in terms of electrical conductivity, stretchability/flexibility, and mass production is necessary for sensors for real-time monitoring. Herein, highly stretchable and conductive graphene inks were prepared by an efficient and scalable fluid dynamics-assisted exfoliation of graphite and a mixing process with elastomeric Ecoflex. After printing inks onto textile substrates, the serpentine-patterned conductors exhibited high conductivity and stable resistance even under a mechanically stretched state (a strain of 150%). Electrochemical sensors that detect sodium ions were fabricated on this conducting platform. These sensors indicated high potentiometric sensing ability under different mechanical deformations. To demonstrate the on-body performance of the developed sensors, real-time monitoring of sodium-ion concentration in the sweat of a human subject was carried out during an indoor stationary cycling exercise.
Collapse
Affiliation(s)
- Min Sik Kil
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Seo Jin Kim
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Hong Jun Park
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Jo Hee Yoon
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Jae-Min Jeong
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| |
Collapse
|
11
|
Qiao L, Du K. Scalable production of high-quality carbon nanotube dispersion in aqueous solution using cellulose as dispersant by a freezing/thawing process. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Chen H, Chen M, Hu X, Mao Z, Liu Y, Chen X, Cai H, Bai Y. Engineering Interlaced Architecture of Pristine Graphene Anchored with 2-Amino-8-Naphthol 6-Sulfonic Acids for Printed Hybrid Micro-Supercapacitors with High Electrochemical Capability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41348-41360. [PMID: 36059205 DOI: 10.1021/acsami.2c10926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
All-printed flexible micro-supercapacitors (MSCs) based on two-dimensional (2D) nanomaterials with in-plane interdigital configurations are regarded as promising miniaturized power source units, but they chronically suffer from self-aggregation and inadequate matching of electrode materials, thus resulting in inefficient electrolyte ions intercalation. Herein, an innovative multicomponent interlaced architecture essentially consisting of 2-amino-8-naphthol 6-sulfonic acid (ANS)-anchored pristine graphene and highly conductive multiwalled carbon nanotubes is reported. The assembled and optimized Gr@ANS electrodes offer sufficient absorption/desorption and redox-active sites, delivering a high areal capacitance of 33.7 mF/cm2 for screen-printed MSCs. Particularly, the well-modified Gr@ANS/CNTs-interlaced complex structure effectively prevents the usual restacking of the delaminated Gr@ANS nanosheets and maximizes ion accessibility in electrodes. Ascribed to the optimized electron-transferring kinetics, the achieved Gr@ANS/CNTs MSCs exhibit excellent capacitance (40.2 mF/cm2 and 18.8 F/cm3), simultaneously significantly increasing the rate capability of Gr@ANS MSCs (from 3.9 to 60.0%). Arising from the multicomponent synergism, the all-solid-state MSCs exhibit outstanding bending stability and cycling performance (73.8% after 10 000 charge/discharge cycles). The new charge reservoir engineering evidenced in graphene-based micro-supercapacitors would serve as a stepping stone toward the scalable manufacture of hybrid energy storage micro-devices.
Collapse
Affiliation(s)
- Huqiang Chen
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Manjiao Chen
- School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Xinjun Hu
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
- School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zhe Mao
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Yongchao Liu
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xiangping Chen
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Huizhuo Cai
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Yongxiao Bai
- Graphene Institute of Lanzhou University-Fangda Carbon, MOE Key Laboratory for Magnetism and Magnetic Materials, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Huang L, Xiao G, Wang Y, Li H, Zhou Y, Jiang L, Wang J. Self-Exfoliation of Flake Graphite for Bioinspired Compositing with Aramid Nanofiber toward Integration of Mechanical and Thermoconductive Properties. NANO-MICRO LETTERS 2022; 14:168. [PMID: 35987964 PMCID: PMC9392675 DOI: 10.1007/s40820-022-00919-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 06/01/2023]
Abstract
A self-grinding exfoliation strategy that depends on mutual shear friction between flake graphite particles is successfully developed to prepare pristine graphene with largely enhanced yield and productivity. Bioinspired assembly of pristine graphene nanosheets to an interconnected aramid nanofiber network is achieved by a continuous sol-gel-film transformation strategy and generates a flexible yet highly thermoconductive film. Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices. Herein, we report a bioinspired nanostructured film with the integration of large ductility and high thermal conductivity based on self-exfoliated pristine graphene and three-dimensional aramid nanofiber network. A self-grinding strategy to directly exfoliate flake graphite into few-layer and few-defect pristine graphene is successfully developed through mutual shear friction between graphite particles, generating largely enhanced yield and productivity in comparison to normal liquid-based exfoliation strategies, such as ultrasonication, high-shear mixing and ball milling. Inspired by nacre, a new bioinspired layered structural design model containing three-dimensional nanofiber network is proposed and implemented with an interconnected aramid nanofiber network and high-loading graphene nanosheets by a developed continuous assembly strategy of sol-gel-film transformation. It is revealed that the bioinspired film not only exhibits nacre-like ductile deformation behavior by releasing the hidden length of curved aramid nanofibers, but also possesses good thermal transport ability by directionally conducting heat along pristine graphene nanosheets.
Collapse
Affiliation(s)
- Limei Huang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Guang Xiao
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yunjing Wang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Hao Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry Chinese, Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Lei Jiang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry Chinese, Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Jianfeng Wang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
14
|
Gao C, Yu W, Du M, Zhu B, Wu W, Liang Y, Wu D, Wang B, Wang M, Zhang J. Facile Synthesis of Ag/Carbon Quantum Dots/Graphene Composites for Highly Conductive Water-Based Inks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33694-33702. [PMID: 35819868 DOI: 10.1021/acsami.2c06298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of graphene conductive inks with a high conductivity and dispersion stability in water poses considerable challenges. Herein, a highly conductive Ag/carbon quantum dots (CQDs)/graphene (G) composite with good dispersity and stability in water was prepared for the first time through the in situ photoreduction of AgNO3 and deposition of Ag onto graphene nanosheets obtained via CQD-assisted liquid-phase exfoliation. Ag nanoparticles with an average size of ∼1.88 nm were uniformly dispersed on graphene nanosheets. The Ag/CQDs/G composite exhibited good dispersity and stability in water for 30 days. The formation mechanism of the Ag/CQDs/G composites was also discussed. CQDs played a vital role in coordinating with Ag+ and reducing it under visible light conditions. The addition of only 1.58 wt % of Ag NPs to the CQDs/G film resulted in a significant decrease in the electrical resistivity by approximately 89.5%, reaching a value of 0.054 Ω cm for a 40 μm thick Ag/CQDs/G film. A low resistivity of 2.15 × 10-3 Ω cm for the Ag/CQDs/G film was achieved after rolling compression with a compression ratio of 78%. The Ag/CQDs/G film exhibited good conductivity and durability when bent, rolled, or twisted. Moreover, the resistivity of the film displayed a slight deviation after 5000 bending cycles, indicating its outstanding stability. This study provides an efficient strategy for preparing graphene-based conductive composites with good dispersibility and stability in water as well as novel high-performance conductive inks for application in flexible printed electronics.
Collapse
Affiliation(s)
- Chaochao Gao
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Wen Yu
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Minghao Du
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Bingxuan Zhu
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Wanbao Wu
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Yihong Liang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Dong Wu
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Baoyu Wang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Mi Wang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Jiaheng Zhang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| |
Collapse
|
15
|
Tafoya RR, Gallegos MA, Downing JR, Gamba L, Kaehr B, Coker EN, Hersam MC, Secor EB. Morphology and electrical properties of high-speed flexography-printed graphene. Mikrochim Acta 2022; 189:123. [DOI: 10.1007/s00604-022-05232-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
16
|
Choi SH, Lee JS, Choi WJ, Seo JW, Choi SJ. Nanomaterials for IoT Sensing Platforms and Point-of-Care Applications in South Korea. SENSORS (BASEL, SWITZERLAND) 2022; 22:610. [PMID: 35062576 PMCID: PMC8781063 DOI: 10.3390/s22020610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 05/03/2023]
Abstract
Herein, state-of-the-art research advances in South Korea regarding the development of chemical sensing materials and fully integrated Internet of Things (IoT) sensing platforms were comprehensively reviewed for verifying the applicability of such sensing systems in point-of-care testing (POCT). Various organic/inorganic nanomaterials were synthesized and characterized to understand their fundamental chemical sensing mechanisms upon exposure to target analytes. Moreover, the applicability of nanomaterials integrated with IoT-based signal transducers for the real-time and on-site analysis of chemical species was verified. In this review, we focused on the development of noble nanostructures and signal transduction techniques for use in IoT sensing platforms, and based on their applications, such systems were classified into gas sensors, ion sensors, and biosensors. A future perspective for the development of chemical sensors was discussed for application to next-generation POCT systems that facilitate rapid and multiplexed screening of various analytes.
Collapse
Affiliation(s)
- Seung-Ho Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (S.-H.C.); (J.-S.L.); (W.-J.C.); (J.-W.S.)
| | - Joon-Seok Lee
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (S.-H.C.); (J.-S.L.); (W.-J.C.); (J.-W.S.)
| | - Won-Jun Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (S.-H.C.); (J.-S.L.); (W.-J.C.); (J.-W.S.)
| | - Jae-Woo Seo
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (S.-H.C.); (J.-S.L.); (W.-J.C.); (J.-W.S.)
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (S.-H.C.); (J.-S.L.); (W.-J.C.); (J.-W.S.)
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
17
|
Chlanda A, Kowiorski K, Małek M, Kijeńska-Gawrońska E, Bil M, Djas M, Strachowski T, Swieszkowski W, Lipińska L. Morphology and Chemical Purity of Water Suspension of Graphene Oxide FLAKES Aged for 14 Months in Ambient Conditions. A Preliminary Study. MATERIALS 2021; 14:ma14154108. [PMID: 34361306 PMCID: PMC8347880 DOI: 10.3390/ma14154108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Graphene and its derivatives have attracted scientists’ interest due to their exceptional properties, making them alluring candidates for multiple applications. However, still little is known about the properties of as-obtained graphene derivatives during long-term storage. The aim of this study was to check whether or not 14 months of storage time impacts graphene oxide flakes’ suspension purity. Complementary micro and nanoscale characterization techniques (SEM, AFM, EDS, FTIR, Raman spectroscopy, and elemental combustion analysis) were implemented for a detailed description of the topography and chemical properties of graphene oxide flakes. The final step was pH evaluation of as-obtained and aged samples. Our findings show that purified flakes sustained their purity over 14 months of storage.
Collapse
Affiliation(s)
- Adrian Chlanda
- Research Group of Graphene and Composites, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland; (M.D.); (T.S.); (L.L.)
- Correspondence:
| | - Krystian Kowiorski
- Research Group of Functional Materials, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland;
| | - Marcin Małek
- Faculty of Civil Engineering and Geodesy, Military University of Technology, Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Ewa Kijeńska-Gawrońska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland; (E.K.-G.); (M.B.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Biomaterials Group, Wołoska 141, 02-507 Warsaw, Poland;
| | - Monika Bil
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland; (E.K.-G.); (M.B.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Biomaterials Group, Wołoska 141, 02-507 Warsaw, Poland;
| | - Małgorzata Djas
- Research Group of Graphene and Composites, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland; (M.D.); (T.S.); (L.L.)
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Strachowski
- Research Group of Graphene and Composites, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland; (M.D.); (T.S.); (L.L.)
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Biomaterials Group, Wołoska 141, 02-507 Warsaw, Poland;
| | - Ludwika Lipińska
- Research Group of Graphene and Composites, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland; (M.D.); (T.S.); (L.L.)
| |
Collapse
|