1
|
Wang Y, Gao Z, Wu W, Xiong Y, Luo J, Sun Q, Mao Y, Wang ZL. TENG-Boosted Smart Sports with Energy Autonomy and Digital Intelligence. NANO-MICRO LETTERS 2025; 17:265. [PMID: 40397052 PMCID: PMC12095839 DOI: 10.1007/s40820-025-01778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/17/2025] [Indexed: 05/22/2025]
Abstract
Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports-encompassing performance analytics, training statistical evaluations and metrics-have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity.
Collapse
Affiliation(s)
- Yunlu Wang
- Physical Education Department, Northeastern University, Shenyang, 110819, People's Republic of China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
| | - Zihao Gao
- Physical Education Department, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Wei Wu
- Physical Education Department, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Yao Xiong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
| | - Jianjun Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- Shandong Zhongke Naneng Energy Technology Co., Ltd, Dongying, 257061, People's Republic of China.
| | - Yupeng Mao
- Physical Education Department, Northeastern University, Shenyang, 110819, People's Republic of China.
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, 100084, People's Republic of China.
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
| |
Collapse
|
2
|
Wang S, Lu F, Guan W, You Z, Liao B, Huang M, Li Y, Fang W, Liu Y. Energy harvesting from clothing. NANOSCALE 2025; 17:7986-7996. [PMID: 40017237 DOI: 10.1039/d4nr03719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Seeking new energy sources, especially those with less environmental impact, has been a consistent effort in the field of energy harvesting. In this work, we present an innovative energy harvesting technique for collecting energy from clothing. In this convenient but powerful method, electrical energy is generated by simply sliding a zein film assembly on the surface of clothes by constructing zein/cloth direct current (DC) triboelectric nanogenerators (TENGs). These TENGs contain only one electrode, which is connected to the zein assembly, leaving the cloth electrode free. Therefore, the clothes avoid any modification or tailoring, allowing for typical washing after separating the zein. Upon testing many ordinary clothing made with typical fabrics, the proposed zein/cloth TENGs worked efficiently with the most studied fabrics. The zein/cloth DC TENGs could generate electrical signals with an output performance of V = 23.45 V and I = 113.12 nA, making it capable of easily powering at least 10 LED lights simultaneously. Thus, our pioneer work provides a promising method for designing a portable ultra-light nano-energy generator that can harvest energy for small electrical power demands using the simple friction between clothes and the flexible zein assembly, irrespective of the location and time. This technique damages the clothing only negligibly and extricates energy harvesting from environmental constraints, such as sunlight and wind.
Collapse
Affiliation(s)
- Shuting Wang
- Department of Chemistry, Beijing Normal University, Beijing City, China
| | - Fuqi Lu
- College of Physics and Materials Science, Tianjin Normal University, 393 Binshuixi Road, Tianjin, 300387, China
| | - Wenhui Guan
- Department of Chemistry, Beijing Normal University, Beijing City, China
| | - Zhongyuan You
- Department of Chemistry, Beijing Normal University, Beijing City, China
| | - Bin Liao
- Beijing Normal Univ, Coll Nucl Sci & Technol, Key Lab Beam Technol, Minist Educ, Beijing 100875, Peoples R China
| | - Meidong Huang
- College of Physics and Materials Science, Tianjin Normal University, 393 Binshuixi Road, Tianjin, 300387, China
| | - Yunliang Li
- National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences Beijing, Haidian District (100190), China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Weihai Fang
- Department of Chemistry, Beijing Normal University, Beijing City, China
| | - Ying Liu
- Department of Chemistry, Beijing Normal University, Beijing City, China
| |
Collapse
|
3
|
Biswas M, Bhattacharya D, Mondal R, Bhunia R, Garg A, Chowdhury A. Surface Engineered MoS 2-Based Novel Vertical Triboelectric Nanogenerator (V-TENG) for Wireless Information Processing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410608. [PMID: 39888185 DOI: 10.1002/smll.202410608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/30/2024] [Indexed: 02/01/2025]
Abstract
Self-sustaining mechanical energy harvesting devices are pivotal for developing durable energy-efficient systems, providing scalable and adaptable solutions to wearable technology. Triboelectric nanogenerators (TENGs) efficaciously convert ambient mechanical energy into usable electrical power to sustainably drive modern electronics. Surface and structural engineering is an avenue to boost TENGs' energy harvesting through modulating contact interfaces and charge transfer interactions between the constituent layers. This study explores dielectric engineering incorporating an additional transition layer, such as Polyethylene Terephthalate (PET), alongside kapton to store accumulated charges. The surface of molybdenum sulfide (MoS2) is modified with different aromatic carboxylic acids to boost the vertical TENG's performance. The anchoring of aromatic carboxylic acid [4,4'-Oxybis (Benzoic acid)] modifies the work function and surface charge density of MoS2-based TENG and enhances the output performance. The output open-circuit voltage (VOC) and short-circuit current (ISC) for "PET-Kapton@4,4'-MoS2" TENG increase from 6 to 30 V and 65 to 202nA, respectively. The maximum power density obtained after inserting the transition layer and modifying the MoS2 surface is 399 mW m- 2. The "PET-Kapton@4,4'-MoS2" TENG can power up to 6 LEDs, run a calculator, and generate International Morse code. A microcontroller unit successfully decodes the Morse code and transmits it wirelessly to a smartphone via Wi-Fi.
Collapse
Affiliation(s)
- Mukul Biswas
- Department of Condensed Matter and Materials Physics, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata, 700106, India
| | - Didhiti Bhattacharya
- Technical Research Centre (TRC), S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata, 700106, India
| | - Rahul Mondal
- Technical Research Centre (TRC), S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata, 700106, India
| | - Ritamay Bhunia
- Department of Condensed Matter and Materials Physics, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata, 700106, India
| | - Ashish Garg
- Department of Sustainable Energy Engineering and Chandrakanta Kesavan Centre for Energy Policy and Climate Solutions, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Avijit Chowdhury
- Department of Condensed Matter and Materials Physics, S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata, 700106, India
- Technical Research Centre (TRC), S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata, 700106, India
| |
Collapse
|
4
|
Wang X, Lu C, Jiang Z, Shao G, Cao J, Liu XY. Meso Hybridized Silk Fibroin Watchband for Wearable Biopotential Sensing and AI Gesture Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410702. [PMID: 39660568 PMCID: PMC11792041 DOI: 10.1002/advs.202410702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/23/2024] [Indexed: 12/12/2024]
Abstract
Human biopotential signals, such as electrocardiography, are closely linked to health and chronic conditions. Electromyography, corresponds to muscle actions and is pertinent to human-machine interactions. Here, we present a type of smart and flexible watchband that includes a mini flexible electrode array based on Mo-Au filament mesh, combined with mesoscopic hybridized silk fibroin films. As the layer in contact with the skin, waterborne polyurethane and SF create a highly flexible and permeable meso-hybridized SF/WPU layer, ensuring skin-friendliness and comfortable wearing. The flexible FM electrodes are created by integrating Mo-Au FM into 2D-interconnected networks. Molybdenum filaments provide high rigidity and are coated with Aurum to enhance conductivity. The use of Mo-Au FMs in warp-knitted patterns results in high SNR (43.22 dB), high sensitivity (44.43 mV/kg), and significant motion noise reduction due to the pattern's elastic deformability and skin-gripping properties. Leveraging these unique technologies, these smart watchbands excel in prolonged sensing operation, grasping force detection, and gesture recognition. Through smart raining via deep learning, we achieved an unparalleled recognition rate (96% across 20 volunteers of different genders) among other EMG sensing devices. These results have significant implications for human-machine interaction, including applications in underwater robot control, drone operation, and autonomous vehicle control.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Marine Environmental Science (MEL)College of Ocean and Earth SciencesXiamen UniversityXiamenFujian361102P. R. China
| | - Changsheng Lu
- State Key Laboratory of Marine Environmental Science (MEL)College of Ocean and Earth SciencesXiamen UniversityXiamenFujian361102P. R. China
| | - Zerong Jiang
- State Key Laboratory of Marine Environmental Science (MEL)College of Ocean and Earth SciencesXiamen UniversityXiamenFujian361102P. R. China
| | - Guangwei Shao
- Engineering Research Center of Technical TextilesMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620P. R. China
| | - Jingzhe Cao
- College of Textile and GarmentShaoxing UniversityShaoxingZhejiang312000P. R. China
| | - Xiang Yang Liu
- State Key Laboratory of Marine Environmental Science (MEL)College of Ocean and Earth SciencesXiamen UniversityXiamenFujian361102P. R. China
| |
Collapse
|
5
|
Li G, Li Z, Hu H, Chen B, Wang Y, Mao Y, Li H, Zhang B. Recent Progress in Self-Healing Triboelectric Nanogenerators for Artificial Skins. BIOSENSORS 2025; 15:37. [PMID: 39852088 PMCID: PMC11764172 DOI: 10.3390/bios15010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance. Innovative structural configurations, such as layered and encapsulated designs, optimize triboelectric efficiency and enhance environmental adaptability. Applications span healthcare, human-machine interfaces, and wearable electronics, demonstrating the immense potential for tactile sensing and energy harvesting. Despite significant progress, challenges remain in scalability, long-term durability, and multifunctional integration. Future research should focus on advanced material development, scalable fabrication, and intelligent system integration to unlock the full potential of self-healing TENGs. This review provides a comprehensive overview of current achievements and future directions, underscoring the pivotal role of self-healing TENGs in artificial skin technology.
Collapse
Affiliation(s)
- Guoliang Li
- Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China
| | - Zongxia Li
- Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China
| | - Haojie Hu
- Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China
| | - Baojin Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Wang
- Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Haidong Li
- Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China
| | - Baosen Zhang
- Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China
| |
Collapse
|
6
|
Ming W, Zhao Y, Zhang Z, Qiu W, Xu Y, Guo X, Zhang G. Self-Powered Handwritten Letter Recognition Based on a Masked Triboelectric Nanogenerator for Intelligent Personal Protective Equipment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57936-57945. [PMID: 39383117 DOI: 10.1021/acsami.4c14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
As one of the most important ways of human-machine interfaces, the touchpad has excellent input convenience. Input devices for extreme environments require simpler structures and diverse inputs to ensure information inputs. This paper proposed a self-powered flexible input panel with single-channel output for the input recognition of all 26 letters, and a paper mask was implemented to cover the triboelectric nanogenerator (TENG) board and obtain more complicated electrical signal features. Based on the change of the triboelectric output of the mask, neural network models with different combinations of layers were designed and optimized, and the highest recognition rate of 88.7% for all letters and 100% recognition accuracy for some letters were achieved among the five testers. For letters with low recognition rates, a specific writing specification was further proposed to improve the accuracy of model recognition. These results facilitate the application of the proposed input panel as a flexible wearable device and personal protective equipment for extreme environments including chemical, biological, radiological, nuclear (CBRN) scenarios or aerospace.
Collapse
Affiliation(s)
- Wuyi Ming
- Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, P.R. China
| | - Yangjing Zhao
- Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, P.R. China
| | - Zhen Zhang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Wenzhe Qiu
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Yingjie Xu
- Guangdong Provincial Key Laboratory of Digital Manufacturing Equipment, Guangdong HUST Industrial Technology Research Institute, Dongguan 523808, P.R. China
| | - Xudong Guo
- Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, P.R. China
- Guangdong Provincial Key Laboratory of Digital Manufacturing Equipment, Guangdong HUST Industrial Technology Research Institute, Dongguan 523808, P.R. China
| | - Guojun Zhang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
7
|
Pan J, Sun W, Li X, Hao Y, Bai Y, Nan D. A noval transparent triboelectric nanogenerator as electronic skin for real-time breath monitoring. J Colloid Interface Sci 2024; 671:336-343. [PMID: 38815370 DOI: 10.1016/j.jcis.2024.05.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Against the backdrop of advancements in modern multifunctional wearable electronics, there is a growing demand for simple, sustainable, and portable electronic skin (e-skin), posing significant challenges. This study aims to delineate the development of a straightforward, transparent, highly sensitive, and high power-density electronic skin based on a triboelectric nanogenerator(S-TENG), designed for harvesting human body energy and real-time monitoring of the physiological motion status. Our e-skin incorporates thermally treated polyvinylidene fluoride (PVDF) fiber membranes as the contact layer and a film of silver nanowires as the conductive electrodes. The resulting contact-separation type e-skin exhibits an impressive transparency of 80 %, along with a nice sensitivity value, capable of detecting a light touch from a 0.13 g sponge and demonstrating good working stability and breathability. Leveraging the triboelectric effect, our e-skin generates an open-circuit voltage of 301 V and a short-circuit current of 2.7 μA under an extrinsic force of 8 N over an interaction area of 4 × 4 cm2, achieving a power density up to 306 mW/m2. With its signal processing circuitry, the integrated S-TENG showcases nice energy harvesting and signal transmission capabilities. Accordingly, we contend that S-TENG has potential applications in energy capture and real-time human motion state monitoring. This research is anticipated to blaze a novel and practical trail for self-powered wearable devices and personalized health rehabilitation training regimens.
Collapse
Affiliation(s)
- Juan Pan
- College of Chemistry and Chemical Engineering of Inner Mongolia University, Hohhot 010021, PR China; Institute of Applied Nanotechnology, Jiaxing, Zhejiang 314031, PR China
| | - Wuliang Sun
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China; Institute of Applied Nanotechnology, Jiaxing, Zhejiang 314031, PR China
| | - Xin Li
- College of Chemistry and Chemical Engineering of Inner Mongolia University, Hohhot 010021, PR China
| | - Yutao Hao
- Institute of Applied Nanotechnology, Jiaxing, Zhejiang 314031, PR China
| | - Yu Bai
- Shanghai XFH Science and Technology Development Co., Ltd., Building A7, No. 11, Lane 635, Xiaoyun Road, Baoshan District, Shanghai 200949, PR China; Shenzhen XFH Science and Technology Co., Ltd., Shenzhen 518071, PR China.
| | - Ding Nan
- College of Chemistry and Chemical Engineering of Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
8
|
Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024; 53:8790-8846. [PMID: 39087714 DOI: 10.1039/d4cs00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Theodore Hughes-Riley
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Tilak Dias
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dewen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
9
|
Wu X, Yang Z, Dong Y, Teng L, Li D, Han H, Zhu S, Sun X, Zeng Z, Zeng X, Zheng Q. A Self-Powered, Skin Adhesive, and Flexible Human-Machine Interface Based on Triboelectric Nanogenerator. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1365. [PMID: 39195403 DOI: 10.3390/nano14161365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Human-machine interactions (HMIs) have penetrated into various academic and industrial fields, such as robotics, virtual reality, and wearable electronics. However, the practical application of most human-machine interfaces faces notable obstacles due to their complex structure and materials, high power consumption, limited effective skin adhesion, and high cost. Herein, we report a self-powered, skin adhesive, and flexible human-machine interface based on a triboelectric nanogenerator (SSFHMI). Characterized by its simple structure and low cost, the SSFHMI can easily convert touch stimuli into a stable electrical signal at the trigger pressure from a finger touch, without requiring an external power supply. A skeleton spacer has been specially designed in order to increase the stability and homogeneity of the output signals of each TENG unit and prevent crosstalk between them. Moreover, we constructed a hydrogel adhesive interface with skin-adhesive properties to adapt to easy wear on complex human body surfaces. By integrating the SSFHMI with a microcontroller, a programmable touch operation platform has been constructed that is capable of multiple interactions. These include medical calling, music media playback, security unlocking, and electronic piano playing. This self-powered, cost-effective SSFHMI holds potential relevance for the next generation of highly integrated and sustainable portable smart electronic products and applications.
Collapse
Affiliation(s)
- Xujie Wu
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
| | - Ziyi Yang
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
| | - Yu Dong
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
| | - Lijing Teng
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
| | - Dan Li
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
| | - Hang Han
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
| | - Simian Zhu
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
| | - Xiaomin Sun
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
| | - Xiangyu Zeng
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
| | - Qiang Zheng
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guian New District, Guiyang 561113, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guian New District, Guiyang 561113, China
| |
Collapse
|
10
|
Hu H, Song J, Zhong Y, Cao J, Han L, Zhang Z, Cheng G, Ding J. High Sensitivity Triboelectric Based Flexible Self-Powered Tactile Sensor with Bionic Fingerprint Ring Structure. ACS Sens 2024; 9:2907-2914. [PMID: 38759108 DOI: 10.1021/acssensors.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Flexible self-powered tactile sensors, with applications spanning wearable electronics, human-machine interaction, prosthetics, and soft robotics, offer real-time feedback on tactile interactions in diverse environments. Despite advances in their structural development, challenges persist in sensitivity and robustness, particularly when additional functionalities, such as high transparency and stretchability. In this study, we present a novel approach integrating a bionic fingerprint ring structure with a PVDF-HFP/AgNWs composite fiber electrode membrane, fabricated via 3D printing technology and electrospinning, respectively, yielding a triboelectric nanogenerator (TENG)-based self-powered tactile sensor. The sensor demonstrates high sensitivity (5.84 V/kPa in the 0-10 kPa range) and rapid response time (10 ms), attributed to the microring texture on its surface, and exhibits exceptional robustness, maintaining electrical output integrity even after 24,000 cycles of loading. These findings highlight the potential of the microring structures in addressing critical challenges in flexible sensor technology.
Collapse
Affiliation(s)
- Hongwei Hu
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Jie Song
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Yan Zhong
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Jie Cao
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Lei Han
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Zhongqiang Zhang
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Guanggui Cheng
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Xing F, Gao X, Wen J, Li H, Liu H, Wang ZL, Chen B. Multistrand Twisted Triboelectric Kevlar Yarns for Harvesting High Impact Energy, Body Injury Location and Levels Evaluation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401076. [PMID: 38489669 DOI: 10.1002/advs.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/23/2024] [Indexed: 03/17/2024]
Abstract
Developing ultrahigh-strength fabric-based triboelectric nanogenerators for harvesting high-impact energy and sensing biomechanical signals is still a great challenge. Here, the constraints are addressed by design of a multistrand twisted triboelectric Kevlar (MTTK) yarn using conductive and non-conductive Kevlar fibers. Manufactured using a multistrand twisting process, the MTTK yarn offers superior tensile strength (372 MPa), compared to current triboelectric yarns. In addition, a self-powered impact sensing fabric patch (SP-ISFP) comprising signal acquisition, processing, communication circuit, and MTTK yarns is integrated. The SP-ISFP features withstanding impact (4 GPa) and a sensitivity and response time under the high impact condition (59.68 V GPa-1; 0.4 s). Furthermore, a multi-channel smart bulletproof vest is developed by the array of 36 SP-ISFPs, enabling the reconstruction of impact mapping and assessment of body injury location and levels by real-time data acquisition. Their potential to reduce body injuries, professional security, and construct a multi-point personal vital signs dynamic monitoring platform holds great promise.
Collapse
Affiliation(s)
- Fangjing Xing
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaobo Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, 010051, P. R. China
| | - Jing Wen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Liu
- Changchun University of Chinese Medicine, Jilin, 130117, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Baodong Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Li X, Liu Y, Ding Y, Zhang M, Lin Z, Hao Y, Li Y, Chang J. Capacitive Pressure Sensor Combining Dual Dielectric Layers with Integrated Composite Electrode for Wearable Healthcare Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12974-12985. [PMID: 38416692 DOI: 10.1021/acsami.4c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Foot activity can reflect numerous physiological abnormalities in the human body, making gait a valuable metric in health monitoring. Research on flexible sensors for gait monitoring has focused on high sensitivity, wide working range, fast response, and low detection limit, but challenges remain in areas such as elasticity, antibacterial activity, user-friendliness, and long-term stability. In this study, we have developed a novel capacitive pressure sensor that offers an ultralow detection limit of 1 Pa, wide detection ranges from 1 Pa to 2 MPa, a high sensitivity of 0.091 kPa-1, a fast response time of 71 ms, and exceptional stability over 6000 cycles. This sensor not only has the ability of accurately discriminating mechanical stimuli but also meets the requirements of elasticity, antibacterial activity, wearable comfort, and long-term stability for gait monitoring. The fabrication method of a dual dielectric layer and integrated composite electrode is simple, cost-effective, stable, and amenable to mass production. Thereinto, the introduction of a dual dielectric layer, based on an optimized electrospinning network and micropillar array, has significantly improved the sensitivity, detection range, elasticity, and antibacterial performance of the sensor. The integrated flexible electrodes are made by template method using composite materials of carbon nanotubes (CNTs), two-dimensional titanium carbide Ti3C2Tx (MXene), and polydimethylsiloxane (PDMS), offering synergistic advantages in terms of conductivity, stability, sensitivity, and practicality. Additionally, we designed a smart insole that integrates the as-prepared sensors with a miniature instrument as a wearable platform for gait monitoring and disease warning. The developed sensor and wearable platform offer a cutting-edge solution for monitoring human activity and detecting diseases in a noninvasive manner, paving the way for future wearable devices and personalized healthcare technologies.
Collapse
Affiliation(s)
- Xinyue Li
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Yarong Ding
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Miao Zhang
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
| | - Zhenhua Lin
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yue Hao
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yingchun Li
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
| | - Jingjing Chang
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| |
Collapse
|
13
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
14
|
Zhao Z, Quan Z, Tang H, Xu Q, Zhao H, Wang Z, Song Z, Li S, Dharmasena I, Wu C, Ding W. A Broad Range Triboelectric Stiffness Sensor for Variable Inclusions Recognition. NANO-MICRO LETTERS 2023; 15:233. [PMID: 37861802 PMCID: PMC10589179 DOI: 10.1007/s40820-023-01201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/28/2023] [Indexed: 10/21/2023]
Abstract
With the development of artificial intelligence, stiffness sensors are extensively utilized in various fields, and their integration with robots for automated palpation has gained significant attention. This study presents a broad range self-powered stiffness sensor based on the triboelectric nanogenerator (Stiff-TENG) for variable inclusions in soft objects detection. The Stiff-TENG employs a stacked structure comprising an indium tin oxide film, an elastic sponge, a fluorinated ethylene propylene film with a conductive ink electrode, and two acrylic pieces with a shielding layer. Through the decoupling method, the Stiff-TENG achieves stiffness detection of objects within 1.0 s. The output performance and characteristics of the TENG for different stiffness objects under 4 mm displacement are analyzed. The Stiff-TENG is successfully used to detect the heterogeneous stiffness structures, enabling effective recognition of variable inclusions in soft object, reaching a recognition accuracy of 99.7%. Furthermore, its adaptability makes it well-suited for the detection of pathological conditions within the human body, as pathological tissues often exhibit changes in the stiffness of internal organs. This research highlights the innovative applications of TENG and thereby showcases its immense potential in healthcare applications such as palpation which assesses pathological conditions based on organ stiffness.
Collapse
Affiliation(s)
- Ziyi Zhao
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Zhentan Quan
- Institute of Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Huaze Tang
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Qinghao Xu
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hongfa Zhao
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Zihan Wang
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Ziwu Song
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Shoujie Li
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Ishara Dharmasena
- Wolfson School of Mechanical Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - Changsheng Wu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Wenbo Ding
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- RISC-V International Open Source Laboratory, 518055, Shenzhen, People's Republic of China.
| |
Collapse
|
15
|
Meng X, Cai C, Luo B, Liu T, Shao Y, Wang S, Nie S. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics. NANO-MICRO LETTERS 2023; 15:124. [PMID: 37166487 PMCID: PMC10175533 DOI: 10.1007/s40820-023-01094-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
With the rapid development of the Internet of Things and flexible electronic technologies, there is a growing demand for wireless, sustainable, multifunctional, and independently operating self-powered wearable devices. Nevertheless, structural flexibility, long operating time, and wearing comfort have become key requirements for the widespread adoption of wearable electronics. Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing. Compared with rigid electronics, cellulosic self-powered wearable electronics have significant advantages in terms of flexibility, breathability, and functionality. In this paper, the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed. The interfacial characteristics of cellulose are introduced from the top-down, bottom-up, and interfacial characteristics of the composite material preparation process. Meanwhile, the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented. Furthermore, the design strategies of triboelectric materials such as surface functionalization, interfacial structure design, and vacuum-assisted self-assembly are systematically discussed. In particular, cellulosic self-powered wearable electronics in the fields of human energy harvesting, tactile sensing, health monitoring, human-machine interaction, and intelligent fire warning are outlined in detail. Finally, the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed.
Collapse
Affiliation(s)
- Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yuzheng Shao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
16
|
Qaseem Q, Ibrahim A. Magnetic Bistability for a Wider Bandwidth in Vibro-Impact Triboelectric Energy Harvesters. MICROMACHINES 2023; 14:mi14051008. [PMID: 37241631 DOI: 10.3390/mi14051008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Mechanical energy from vibrations is widespread in the ambient environment. It may be harvested efficiently using triboelectric generators. Nevertheless, a harvester's effectiveness is restricted because of the limited bandwidth. To this end, this paper presents a comprehensive theoretical and experimental investigation of a variable frequency energy harvester, which integrates a vibro-impact triboelectric-based harvester and magnetic nonlinearity to increase the operation bandwidth and improve the efficiency of conventional triboelectric harvesters. A cantilever beam with a tip magnet was aligned with another fixed magnet at the same polarity to induce a nonlinear magnetic repulsive force. A triboelectric harvester was integrated into the system by utilizing the lower surface of the tip magnet to serve as the top electrode of the harvester, while the bottom electrode with an attached polydimethylsiloxane insulator was placed underneath. Numerical simulations were performed to examine the impact of the potential wells formed by the magnets. The structure's static and dynamic behaviors at varying excitation levels, separation distance, and surface charge density are all discussed. In order to develop a variable frequency system with a wide bandwidth, the system's natural frequency varies by changing the distance between the two magnets to reduce or magnify the magnetic force to achieve monostable or bistable oscillations. When the system is excited by vibrations, the beams vibrate, which causes an impact between the triboelectric layers. An alternating electrical signal is generated from a periodic contact-separation motion between the harvester's electrodes. Our theoretical findings were experimentally validated. The findings of this study have the potential to pave the way for the development of an effective energy harvester that is capable of scavenging energy from ambient vibrations across a broad range of excitation frequencies. The frequency bandwidth was found to increase by 120% at threshold distance compared to the conventional energy harvester. Nonlinear impact-driven triboelectric energy harvesters can effectively broaden the operational frequency bandwidth and enhance the harvested energy.
Collapse
Affiliation(s)
- Qais Qaseem
- Department of Mechanical Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA
| | - Alwathiqbellah Ibrahim
- Department of Mechanical Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA
| |
Collapse
|
17
|
Cao Z, Xu X, He C, Peng Z. Electrospun Nanofibers Hybrid Wrinkled Micropyramidal Architectures for Elastic Self-Powered Tactile and Motion Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1181. [PMID: 37049275 PMCID: PMC10096685 DOI: 10.3390/nano13071181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Conformable, sensitive, long-lasting, external power supplies-free multifunctional electronics are highly desired for personal healthcare monitoring and artificial intelligence. Herein, we report a series of stretchable, skin-like, self-powered tactile and motion sensors based on single-electrode mode triboelectric nanogenerators. The triboelectric sensors were composed of ultraelastic polyacrylamide (PAAm)/(polyvinyl pyrrolidone) PVP/(calcium chloride) CaCl2 conductive hydrogels and surface-modified silicon rubber thin films. The significant enhancement of electrospun polyvinylidene fluoride (PVDF) nanofiber-modified hierarchically wrinkled micropyramidal architectures for the friction layer was studied. The mechanism of the enhanced output performance of the electrospun PVDF nanofibers and the single-side/double-side wrinkled micropyramidal architectures-based sensors has been discussed in detail. The as-prepared devices exhibited excellent sensitivity of a maximum of 20.1 V/N (or 8.03 V/kPa) as tactile sensors to recognize a wide range of forces from 0.1 N to 30 N at low frequencies. In addition, multiple human motion monitoring was demonstrated, such as knee, finger, wrist, and neck movement and voice recognition. This work shows great potential for skin-like epidermal electronics in long-term medical monitoring and intelligent robot applications.
Collapse
|
18
|
Zhou B, Liu J, Huang X, Qiu X, Yang X, Shao H, Tang C, Zhang X. Mechanoluminescent-Triboelectric Bimodal Sensors for Self-Powered Sensing and Intelligent Control. NANO-MICRO LETTERS 2023; 15:72. [PMID: 36964430 PMCID: PMC10039194 DOI: 10.1007/s40820-023-01054-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Self-powered flexible devices with skin-like multiple sensing ability have attracted great attentions due to their broad applications in the Internet of Things (IoT). Various methods have been proposed to enhance mechano-optic or electric performance of the flexible devices; however, it remains challenging to realize the display and accurate recognition of motion trajectories for intelligent control. Here, we present a fully self-powered mechanoluminescent-triboelectric bimodal sensor based on micro-nanostructured mechanoluminescent elastomer, which can patterned-display the force trajectories. The deformable liquid metals used as stretchable electrode make the stress transfer stable through overall device to achieve outstanding mechanoluminescence (with a gray value of 107 under a stimulus force as low as 0.3 N and more than 2000 cycles reproducibility). Moreover, a microstructured surface is constructed which endows the resulted composite with significantly improved triboelectric performances (voltage increases from 8 to 24 V). Based on the excellent bimodal sensing performances and durability of the obtained composite, a highly reliable intelligent control system by machine learning has been developed for controlling trolley, providing an approach for advanced visual interaction devices and smart wearable electronics in the future IoT era.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hong Shao
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, People's Republic of China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, People's Republic of China.
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
19
|
Appamato I, Bunriw W, Harnchana V, Siriwong C, Mongkolthanaruk W, Thongbai P, Chanthad C, Chompoosor A, Ruangchai S, Prada T, Amornkitbamrung V. Engineering Triboelectric Charge in Natural Rubber-Ag Nanocomposite for Enhancing Electrical Output of a Triboelectric Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2023; 15:973-983. [PMID: 36567465 DOI: 10.1021/acsami.2c17057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An environmentally friendly triboelectric nanogenerator (TENG) is fabricated from a natural rubber (NR)-Ag nanocomposite for harvesting mechanical energy from human motions. Ag nanoparticles (AgNPs) synthesized with two different capping agents are added to NR polymer for improving dielectric constant that contributes to the enhancement of TENG performance. Dielectric constant is modulated via interfacial polarization between AgNPs and NR matrix. The effects of AgNP concentration, particle size and dispersion in NR composite, and type of capping agents on dielectric properties and electrical output of the NR composite TENG are elucidated. It is found that, apart from AgNPs content in the NR-Ag nanocomposite, cations of CTAB capping agent play important roles not only on the dispersion of AgNPs in NR matrix but also on intensifying tribopositive charges in the NR composite. In addition, the application of the NR-Ag TENG as a shoe insole is also demonstrated to convert human footsteps into electricity to power small electronic devices. Furthermore, with the presence of Ag nanoparticles, the fabricated shoe insole also exhibits antibacterial property against Staphylococcus aureus that causes foot odor.
Collapse
Affiliation(s)
- Intuorn Appamato
- Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen40002, Thailand
| | - Weeraya Bunriw
- Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen40002, Thailand
| | - Viyada Harnchana
- Department of Physics, Khon Kaen University, Khon Kaen40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen40002, Thailand
| | - Chomsri Siriwong
- Materials Chemistry Research Center and Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen40002Thailand
| | - Wiyada Mongkolthanaruk
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen40002, Thailand
| | - Prasit Thongbai
- Department of Physics, Khon Kaen University, Khon Kaen40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen40002, Thailand
| | - Chalathorn Chanthad
- National Nanotechnology Center (NANOTEC), NSTDA, 111 Thailand Science Park, Paholyothin Road, Klong Luang, Pathum Thani12120, Thailand
| | - Apiwat Chompoosor
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok10240, Thailand
| | - Sukhum Ruangchai
- Department of Physics, Khon Kaen University, Khon Kaen40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen40002, Thailand
| | - Teerayut Prada
- Department of Physics, Khon Kaen University, Khon Kaen40002, Thailand
| | - Vittaya Amornkitbamrung
- Department of Physics, Khon Kaen University, Khon Kaen40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen40002, Thailand
| |
Collapse
|
20
|
Xiang B, Liu Q, Sun Q, Gong J, Mu P, Li J. Recent advances in eco-friendly fabrics with special wettability for oil/water separation. Chem Commun (Camb) 2022; 58:13413-13438. [PMID: 36398621 DOI: 10.1039/d2cc05780h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considering the serious damage to aquatic ecosystems and marine life caused by oil spills and oily wastewater discharge, efficient, environment-friendly and sustainable oil/water separation technology has become an inevitable trend for current development. Herein, fabrics are recognized as eco-friendly materials for water treatment due to their good degradability and low cost. Particularly, fabrics with rough structures and natural hydrophilicity/oleophilicity enable the construction of superwetting surfaces for the selective separation of oil/water mixtures and even complex emulsions. Therefore, superwetting fabrics for efficiently solving oil spills and purifying oily wastewater have received extensive attention. Especially, Janus and smart fabrics are highly anticipated to enable the on-demand and sustainable treatment of oil spills and oily wastewater due to their changeable wettability. Moreover, the fabrication of superwetting fabrics with multifunctional performances for oily wastewater purification can further promote their practical industrial applications, such as photocatalytic, self-cleaning, and self-healing characteristics. However, some potential challenges still exist, which urgently need to be systematically summarized to guide the future development of this research field. In this review, firstly, the fundamental theories of wettability and the separation mechanisms based on special wettability are discussed. Then, superwetting fabrics for efficient oil/water separation are systematically reviewed, such as superhydrophobic/superoleophilic (SHB/SOL), superhydrophilic/superoleophobic (SHL/SOB), SHL/underwater superoleophobic (SHL/UWSOB), and UWSOB/underoil superoleophobic (UWSOB/UOSHB) fabrics. Most importantly, we highlight Janus, smart, and multifunctional fabrics based on their superwetting property. Correspondingly, the advantages and disadvantages of each superwetting fabric are comprehensively analyzed. Besides, super-antiwetting fabrics with superhydrophobic/superoleophobic (SHB/SOB) property are also introduced. Finally, the challenges and future research directions are explained.
Collapse
Affiliation(s)
- Bin Xiang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Qiuqiu Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Qing Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jingling Gong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Peng Mu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
21
|
Huang T, Long Y, Dong Z, Hua Q, Niu J, Dai X, Wang J, Xiao J, Zhai J, Hu W. Ultralight, Elastic, Hybrid Aerogel for Flexible/Wearable Piezoresistive Sensor and Solid-Solid/Gas-Solid Coupled Triboelectric Nanogenerator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204519. [PMID: 36253149 PMCID: PMC9731684 DOI: 10.1002/advs.202204519] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/20/2022] [Indexed: 05/10/2023]
Abstract
Aerogels have been attracting wide attentions in flexible/wearable electronics because of their light weight, excellent flexibility, and electrical conductivity. However, multifunctional aerogel-based flexible/wearable electronics for human physiological/motion monitoring, and energy harvest/supply for mobile electronics, have been seldom reported yet. In this study, a kind of hybrid aerogel (GO/CNT HA) based on graphene oxide (GO) and carboxylated multiwalled carbon nanotubes (CMWCNTs) is prepared which can not only used as piezoresistive sensors for human motion and physiological signal detections, but also as high performance triboelectric nanogenerator (TENG) coupled with both solid-solid and gas-solid contact electrifications (CE). The repeatedly loading-unloading tests with 20 000 cycles exhibit its high and ultrastable piezoresistive sensor performances. Moreover, when the obtained aerogel is used as the electrode of a TENG, high electric output performance is produced due to the synergistic effect of solid-solid, and gas-solid interface CEs (3D electrification: solid-solid interface CE between the two solid electrification layers; gas-solid interface CE between the inner surface of GO/CNT HA and the air filled in the aerogel pores). This kind of aerogel promises good applications for human physiological/motion monitoring and energy harvest/supply in flexible/wearable electronics such as piezoresistive sensors and flexible TENG.
Collapse
Affiliation(s)
- Tianci Huang
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004China
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Yong Long
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zilong Dong
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004China
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qilin Hua
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jianan Niu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xinhuan Dai
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiangwen Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Junfeng Xiao
- School of Electronic Communication TechnologyShenzhen Institute of Information TechnologyShenzhen518172China
| | - Junyi Zhai
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004China
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Weiguo Hu
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004China
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- School of Electronic Communication TechnologyShenzhen Institute of Information TechnologyShenzhen518172China
| |
Collapse
|
22
|
Preparation and Application of High Performance PVDF/PS electrospinning film-Based Triboelectric Nanogenerator. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Shi B, Wang P, Feng J, Xue C, Yang G, Liao Q, Zhang M, Zhang X, Wen W, Wu J. Split-Ring Structured All-Inorganic Perovskite Photodetector Arrays for Masterly Internet of Things. NANO-MICRO LETTERS 2022; 15:3. [PMID: 36445558 PMCID: PMC9709000 DOI: 10.1007/s40820-022-00961-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/05/2022] [Indexed: 05/16/2023]
Abstract
Photodetectors with long detection distances and fast response are important media in constructing a non-contact human-machine interface for the Masterly Internet of Things (MIT). All-inorganic perovskites have excellent optoelectronic performance with high moisture and oxygen resistance, making them one of the promising candidates for high-performance photodetectors, but a simple, low-cost and reliable fabrication technology is urgently needed. Here, a dual-function laser etching method is developed to complete both the lyophilic split-ring structure and electrode patterning. This novel split-ring structure can capture the perovskite precursor droplet efficiently and achieve the uniform and compact deposition of CsPbBr3 films. Furthermore, our devices based on laterally conducting split-ring structured photodetectors possess outstanding performance, including the maximum responsivity of 1.44 × 105 mA W-1, a response time of 150 μs in 1.5 kHz and one-unit area < 4 × 10-2 mm2. Based on these split-ring photodetector arrays, we realized three-dimensional gesture detection with up to 100 mm distance detection and up to 600 mm s-1 speed detection, for low-cost, integrative, and non-contact human-machine interfaces. Finally, we applied this MIT to wearable and flexible digital gesture recognition watch panel, safe and comfortable central controller integrated on the car screen, and remote control of the robot, demonstrating the broad potential applications.
Collapse
Affiliation(s)
- Bori Shi
- Materials Genome Institute, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Pingyang Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jingyun Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chang Xue
- Materials Genome Institute, Shanghai University, Shanghai, 200444, People's Republic of China
- Zhejiang Laboratory, Hangzhou, 311100, People's Republic of China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, People's Republic of China
| | - Gaojie Yang
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Qingwei Liao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Mengying Zhang
- Department of Physics, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xingcai Zhang
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Weijia Wen
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, People's Republic of China
- The Advanced Material Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, People's Republic of China
| | - Jinbo Wu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, People's Republic of China.
- Zhejiang Laboratory, Hangzhou, 311100, People's Republic of China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, People's Republic of China.
| |
Collapse
|
24
|
Yang R, He Z, Lin S, Dou W, Wang ZL, Wang H, Liu J. Tunable Tribovoltaic Effect via Metal-Insulator Transition. NANO LETTERS 2022; 22:9084-9091. [PMID: 36342419 DOI: 10.1021/acs.nanolett.2c03481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tribovoltaic direct-current (DC) nanogenerator made of dynamic semiconductor heterojunction is emerging as a promising mechanical energy harvesting technology. However, fundamental understanding of the mechano-electronic carrier excitation and transport at dynamic semiconductor interfaces remains to be investigated. Here, we demonstrated for the first time, that tribovoltaic DC effect can be tuned with metal-insulator transition (MIT). In a representative MIT material (vanadium dioxide, VO2), we found that the short-circuit current (ISC) can be enhanced by >20 times when the material is transformed from insulating to metallic state upon static or dynamic heating, while the open-circuit voltage (VOC) turns out to be unaffected. Such phenomenon may be understood by the Hubbard model for Mott insulator: orders' magnitude increase in conductivity is induced when the nearest hopping changes dramatically and overcomes the Coulomb repulsion, while the Coulomb repulsion giving rise to the quasi-particle excitation energy remains relatively stable.
Collapse
Affiliation(s)
- Ruizhe Yang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Zihao He
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana47907-2045, United States
| | - Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Wenjie Dou
- School of Science, Westlake University, Hangzhou, Zhejiang310024, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang310024, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia30332-0245, United States
| | - Haiyan Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana47907-2045, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana47907-2045, United States
| | - Jun Liu
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
- RENEW (Research and Education in Energy, Environment and Water) Institute, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| |
Collapse
|
25
|
Lian M, Sun J, Jiang D, Xu M, Wu Z, Bin Xu B, Algadi H, Huang M, Guo Z. Waterwheel-inspired high-performance hybrid electromagnetic-triboelectric nanogenerators based on fluid pipeline energy harvesting for power supply systems and data monitoring. NANOTECHNOLOGY 2022; 34:025401. [PMID: 36306413 DOI: 10.1088/1361-6528/ac97f1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In this work, a self-powered system based on a triboelectric-electromagnetic hybrid pipeline energy harvesting module is demonstrated. Rabbit fur and poly tetra fluoroethylene (PTFE) are used as triboelectric electrodes to fabricate disk-type soft-contact triboelectric nanogenerators (TENGs) instead of traditional direct-contact TENGs to collect the mechanical energy of water flow and convert it into electrical energy. This design has a stable electrical output and gives an improved durability. Its simple fabrication process enables excellent potential for practical applications in industry. In addition, the hybridization of electromagnetic generator module and TENGs module to form a triboelectric-electromagnetic hybrid nanogenerator (TEHNG) can improve the electrical output performance, especially the current output. TEHNG cannot only power small electronic devices, such as lighting systems, but also collect independent fluid energy and monitor data signals simultaneously in harsh environments, such as fluid energy harvesting in industrial production pipelines and temperature and humidity in fluid environments. This work provides an efficient strategy to harvest multiple energies simultaneously, significantly increasing the yield and promoting the application of TENGs in engineering.
Collapse
Affiliation(s)
- Mengying Lian
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jiaxin Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Dawei Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Miaojun Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Zijian Wu
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Hassan Algadi
- Department of Electrical Engineering, Faculty of Engineering, Najran University, PO Box 1988, Najran 11001, Saudi Arabia
| | - Mina Huang
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Dr, Knoxville, TN, 37996, United States of America
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Dr, Knoxville, TN, 37996, United States of America
| |
Collapse
|
26
|
Chen B, Wang ZL. Toward a New Era of Sustainable Energy: Advanced Triboelectric Nanogenerator for Harvesting High Entropy Energy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107034. [PMID: 35332687 DOI: 10.1002/smll.202107034] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Widely distributed across the environment, irregular micro-nano mechanical high entropy energy (HEE) is a new promising recoverable energy, in which the development of matched harvesting technology is imperative to fit in with the requirements of booming sustainable energy in the new era. The triboelectric nanogenerator (TENG) is a very efficient technology for harvesting micro-nano HEE, especially when converting irregular, low-frequency, weak mechanical energy into electricity. Here, the latest advancements are comprehensively reviewed in using TENGs for sustainable energy, sensing, and other applications. The fundamental theory and overwhelming superiority of TENG is systematically analyzed as a sustainable energy with four representative domains: micro-nano distributed power sources, self-powered sensing systems, direct high-voltage power sources, and large-scale blue energy. The review is concluded with a discussion of the challenges of leveraging TENGs for sustainable energy engineering. The striving directions of TENG technologies are proposed with a concentration on basic research and commercialization for the new ear of 5G and Internet of Things.
Collapse
Affiliation(s)
- Baodong Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Institute of Applied Nanotechnology, Jiaxing, Zhejiang, 314031, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
27
|
Han F, Wang T, Liu G, Liu H, Xie X, Wei Z, Li J, Jiang C, He Y, Xu F. Materials with Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109055. [PMID: 35258117 DOI: 10.1002/adma.202109055] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Advances in wearable epidermal sensors have revolutionized the way that physiological signals are captured and measured for health monitoring. One major challenge is to convert physiological signals to easily readable signals in a convenient way. One possibility for wearable epidermal sensors is based on visible readouts. There are a range of materials whose optical properties can be tuned by parameters such as temperature, pH, light, and electric fields. Herein, this review covers and highlights a set of materials with tunable optical properties and their integration into wearable epidermal sensors for health monitoring. Specifically, the recent progress, fabrication, and applications of these materials for wearable epidermal sensors are summarized and discussed. Finally, the challenges and perspectives for the next generation wearable devices are proposed.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tiansong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
28
|
Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang ZL. Advances in High-Performance Autonomous Energy and Self-Powered Sensing Textiles with Novel 3D Fabric Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109355. [PMID: 35083786 DOI: 10.1002/adma.202109355] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/25/2022] [Indexed: 05/02/2023]
Abstract
The seamless integration of emerging triboelectric nanogenerator (TENG) technology with traditional wearable textile materials has given birth to the next-generation smart textiles, i.e., textile TENGs, which will play a vital role in the era of Internet of Things and artificial intelligences. However, low output power and inferior sensing ability have largely limited the development of textile TENGs. Among various approaches to improve the output and sensing performance, such as material modification, structural design, and environmental management, a 3D fabric structural scheme is a facile, efficient, controllable, and scalable strategy to increase the effective contact area for contact electrification of textile TENGs without cumbersome material processing and service area restrictions. Herein, the recent advances of the current reported textile TENGs with 3D fabric structures are comprehensively summarized and systematically analyzed in order to clarify their superiorities over 1D fiber and 2D fabric structures in terms of power output and pressure sensing. The forward-looking integration abilities of the 3D fabrics are also discussed at the end. It is believed that the overview and analysis of textile TENGs with distinctive 3D fabric structures will contribute to the development and realization of high-power output micro/nanowearable power sources and high-quality self-powered wearable sensors.
Collapse
Affiliation(s)
- Kai Dong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Peng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Renwei Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuan Ning
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yihan Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CUSTech Institute of Technology, Wenzhou, Zhejiang, 325024, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
29
|
Pham PV, Bodepudi SC, Shehzad K, Liu Y, Xu Y, Yu B, Duan X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem Rev 2022; 122:6514-6613. [PMID: 35133801 DOI: 10.1021/acs.chemrev.1c00735] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A grand family of two-dimensional (2D) materials and their heterostructures have been discovered through the extensive experimental and theoretical efforts of chemists, material scientists, physicists, and technologists. These pioneering works contribute to realizing the fundamental platforms to explore and analyze new physical/chemical properties and technological phenomena at the micro-nano-pico scales. Engineering 2D van der Waals (vdW) materials and their heterostructures via chemical and physical methods with a suitable choice of stacking order, thickness, and interlayer interactions enable exotic carrier dynamics, showing potential in high-frequency electronics, broadband optoelectronics, low-power neuromorphic computing, and ubiquitous electronics. This comprehensive review addresses recent advances in terms of representative 2D materials, the general fabrication methods, and characterization techniques and the vital role of the physical parameters affecting the quality of 2D heterostructures. The main emphasis is on 2D heterostructures and 3D-bulk (3D) hybrid systems exhibiting intrinsic quantum mechanical responses in the optical, valley, and topological states. Finally, we discuss the universality of 2D heterostructures with representative applications and trends for future electronics and optoelectronics (FEO) under the challenges and opportunities from physical, nanotechnological, and material synthesis perspectives.
Collapse
Affiliation(s)
- Phuong V Pham
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Srikrishna Chanakya Bodepudi
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Khurram Shehzad
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Hunan 410082, China
| | - Yang Xu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Bin Yu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1569, United States
| |
Collapse
|
30
|
Liu J, Du Z, Wang Q, Su B, Xia Z. Particle Flow Spinning Mass-Manufactured Stretchable Magnetic Yarn for Self-Powered Mechanical Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2113-2121. [PMID: 34968028 DOI: 10.1021/acsami.1c22267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-powered fabric electronic devices are critical for next-generation wearable technologies, biomedical applications, and human-machine interfaces. The flexible magnetoelectric strategy is an emerging self-powered approach that can adapt to diverse environments and yield efficient electric outputs. However, there is an urgent need to develop a continuous manufacturing method for fabricating self-powered sensing magnetoelectric yarns with a high magnetic powder ratio and resistance to severe surroundings. In this study, we report particle flow spinning mass-manufactured magnetoelectric yarns for self-powered mechanical sensing. It has been shown that mechanical stretching/bending forces can be sensed and recognized by magnetoelectric yarns without an additional power supply. Through a combination of parameter optimization experiments and Maxwell modeling, we reveal the mechanism behind this mechanical-to-electric conversion capability. We further show that these self-powered sensing magnetoelectric yarns can monitor human motions after being attached to texture clothing. We expect that our results will stimulate further research on fabric electronics in a self-powered manner and will substantially advance the field.
Collapse
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies & School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, Hubei, P. R. China
| | - Zhuolin Du
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Qi Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Zhigang Xia
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies & School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, Hubei, P. R. China
- State Key Laboratory of Bio-Fibers and Eco-Textile, Qingdao University, Qingdao 266000, Shandong, P. R. China
| |
Collapse
|
31
|
Yang Z, Zhu Z, Chen Z, Liu M, Zhao B, Liu Y, Cheng Z, Wang S, Yang W, Yu T. Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence. SENSORS 2021; 21:s21248422. [PMID: 34960515 PMCID: PMC8703550 DOI: 10.3390/s21248422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
The development of artificial intelligence and the Internet of things has motivated extensive research on self-powered flexible sensors. The conventional sensor must be powered by a battery device, while innovative self-powered sensors can provide power for the sensing device. Self-powered flexible sensors can have higher mobility, wider distribution, and even wireless operation, while solving the problem of the limited life of the battery so that it can be continuously operated and widely utilized. In recent years, the studies on piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs) have mainly concentrated on self-powered flexible sensors. Self-powered flexible sensors based on PENGs and TENGs have been reported as sensing devices in many application fields, such as human health monitoring, environmental monitoring, wearable devices, electronic skin, human–machine interfaces, robots, and intelligent transportation and cities. This review summarizes the development process of the sensor in terms of material design and structural optimization, as well as introduces its frontier applications in related fields. We also look forward to the development prospects and future of self-powered flexible sensors.
Collapse
Affiliation(s)
- Zetian Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Zhongtai Zhu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Zixuan Chen
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Mingjia Liu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Binbin Zhao
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Yansong Liu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Zefei Cheng
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Shuo Wang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
| | - Weidong Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
- Correspondence:
| | - Tao Yu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (Z.Y.); (Z.Z.); (Z.C.); (M.L.); (B.Z.); (Y.L.); (Z.C.); (S.W.); (T.Y.)
- The Shanghai Key Laboratory of Space Mapping and Remote Sensing for Planetary Exploration, Tongji University, Shanghai 200092, China
| |
Collapse
|
32
|
Li S, Xiao P, Zhou W, Liang Y, Kuo SW, Chen T. Bioinspired Nanostructured Superwetting Thin-Films in a Self-supported form Enabled "Miniature Umbrella" for Weather Monitoring and Water Rescue. NANO-MICRO LETTERS 2021; 14:32. [PMID: 34902086 PMCID: PMC8669048 DOI: 10.1007/s40820-021-00775-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
UNLABELLED An elastic, superhydrophobic and conductive thin film inspired by the natural self-supported superhydrophobic butterfly wings enabled by a controllable composite of assembled carbon nanotube and elastomer is fabricated. Through the adjustment of hydrophobic elastomeric coating, the surface wettability can be effectively controlled and still maintain superhydrophobic characteristics under the applied strain of 60%. The achieved film can function as a self-supported smart umbrella to sensitively monitor the day weather and perform water rescue. ABSTRACT Two-dimensional (2D) soft materials, especially in their self-supported forms, demonstrate attractive properties to realize biomimetic morphing and ultrasensitive sensing. Although extensive efforts on design of self-supported functional membranes and integrated systems have been devoted, there still remains an unexplored regime of the combination of mechanical, electrical and surface wetting properties for specific functions. Here, we report a self-supported film featured with elastic, thin, conductive and superhydrophobic characteristics. Through a well-defined surface modification strategy, the surface wettability and mechanical sensing can be effectively balanced. The resulted film can function as a smart umbrella to achieve real-time simulated raining with diverse frequencies and intensity. In addition, the integrated umbrella can even response sensitively to the sunlight and demonstrate a positively correlation of current signals with the intensity of sun illumination. Moreover, the superhydrophobic umbrella can be further employed to realize water rescue, which can take the underwater object onto water surface, load and rapidly transport the considerable weight. More importantly, the whole process of loaded objects and water flow velocity can be precisely detected. The self-supported smart umbrella can effectively monitor the weather and realize a smart water rescue, demonstrating significant potentials in multifunctional sensing and directional actuation in the presence of water. [Image: see text] SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40820-021-00775-4.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China.
| | - Wei Zhou
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Yun Liang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Shiao-Wei Kuo
- Department of Material and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan, People's Republic of China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China.
| |
Collapse
|
33
|
Hu Z, Wang J, Wang Y, Wang C, Wang Y, Zhang Z, Xu P, Zhao T, Luan Y, Liu C, Qiao L, Shu M, Mi J, Pan X, Xu M. A Robust and Wearable Triboelectric Tactile Patch as Intelligent Human-Machine Interface. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6366. [PMID: 34771892 PMCID: PMC8585222 DOI: 10.3390/ma14216366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023]
Abstract
The human-machine interface plays an important role in the diversified interactions between humans and machines, especially by swaping information exchange between human and machine operations. Considering the high wearable compatibility and self-powered capability, triboelectric-based interfaces have attracted increasing attention. Herein, this work developed a minimalist and stable interacting patch with the function of sensing and robot controlling based on triboelectric nanogenerator. This robust and wearable patch is composed of several flexible materials, namely polytetrafluoroethylene (PTFE), nylon, hydrogels electrode, and silicone rubber substrate. A signal-processing circuit was used in this patch to convert the sensor signal into a more stable signal (the deviation within 0.1 V), which provides a more effective method for sensing and robot control in a wireless way. Thus, the device can be used to control the movement of robots in real-time and exhibits a good stable performance. A specific algorithm was used in this patch to convert the 1D serial number into a 2D coordinate system, so that the click of the finger can be converted into a sliding track, so as to achieve the trajectory generation of a robot in a wireless way. It is believed that the device-based human-machine interaction with minimalist design has great potential in applications for contact perception, 2D control, robotics, and wearable electronics.
Collapse
Affiliation(s)
- Zhiyuan Hu
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (Z.H.); (J.W.); (Y.W.); (C.W.); (Y.W.); (Z.Z.); (P.X.); (Y.L.); (C.L.)
| | - Junpeng Wang
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (Z.H.); (J.W.); (Y.W.); (C.W.); (Y.W.); (Z.Z.); (P.X.); (Y.L.); (C.L.)
| | - Yan Wang
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (Z.H.); (J.W.); (Y.W.); (C.W.); (Y.W.); (Z.Z.); (P.X.); (Y.L.); (C.L.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
| | - Chuan Wang
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (Z.H.); (J.W.); (Y.W.); (C.W.); (Y.W.); (Z.Z.); (P.X.); (Y.L.); (C.L.)
| | - Yawei Wang
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (Z.H.); (J.W.); (Y.W.); (C.W.); (Y.W.); (Z.Z.); (P.X.); (Y.L.); (C.L.)
| | - Ziyi Zhang
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (Z.H.); (J.W.); (Y.W.); (C.W.); (Y.W.); (Z.Z.); (P.X.); (Y.L.); (C.L.)
| | - Peng Xu
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (Z.H.); (J.W.); (Y.W.); (C.W.); (Y.W.); (Z.Z.); (P.X.); (Y.L.); (C.L.)
| | - Tiancong Zhao
- School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China;
| | - Yu Luan
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (Z.H.); (J.W.); (Y.W.); (C.W.); (Y.W.); (Z.Z.); (P.X.); (Y.L.); (C.L.)
| | - Chang Liu
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (Z.H.); (J.W.); (Y.W.); (C.W.); (Y.W.); (Z.Z.); (P.X.); (Y.L.); (C.L.)
| | - Lin Qiao
- Navigation College, Dalian Maritime University, Dalian 116026, China;
| | - Mingrui Shu
- Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518000, China;
| | - Jianchun Mi
- College of Engineering, Peking University, Beijing 100871, China;
| | - Xinxiang Pan
- School of Electronics and Information Technology, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Minyi Xu
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-Powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (Z.H.); (J.W.); (Y.W.); (C.W.); (Y.W.); (Z.Z.); (P.X.); (Y.L.); (C.L.)
| |
Collapse
|
34
|
Jia Y, Pan Y, Wang C, Liu C, Shen C, Pan C, Guo Z, Liu X. Flexible Ag Microparticle/MXene-Based Film for Energy Harvesting. NANO-MICRO LETTERS 2021; 13:201. [PMID: 34559322 PMCID: PMC8463646 DOI: 10.1007/s40820-021-00729-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 05/10/2023]
Abstract
Ultra-thin flexible films have attracted wide attention because of their excellent ductility and potential versatility. In particular, the energy-harvesting films (EHFs) have become a research hotspot because of the indispensability of power source in various devices. However, the design and fabrication of such films that can capture or transform different types of energy from environments for multiple usages remains a challenge. Herein, the multifunctional flexible EHFs with effective electro-/photo-thermal abilities are proposed by successive spraying Ag microparticles and MXene suspension between on waterborne polyurethane films, supplemented by a hot-pressing. The optimal coherent film exhibits a high electrical conductivity (1.17×104 S m-1), excellent Joule heating performance (121.3 °C) at 2 V, and outstanding photo-thermal performance (66.2 °C within 70 s under 100 mW cm-1). In addition, the EHFs-based single-electrode triboelectric nanogenerators (TENG) give short-circuit transferred charge of 38.9 nC, open circuit voltage of 114.7 V, and short circuit current of 0.82 μA. More interestingly, the output voltage of TENG can be further increased via constructing the double triboelectrification layers. The comprehensive ability for harvesting various energies of the EHFs promises their potential to satisfy the corresponding requirements.
Collapse
Affiliation(s)
- Yunpeng Jia
- College of Materials Science and Engineering, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Yamin Pan
- College of Materials Science and Engineering, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Chunfeng Wang
- National Center for Nanoscience and Technology (NCNST), Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chuntai Liu
- College of Materials Science and Engineering, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Changyu Shen
- College of Materials Science and Engineering, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Caofeng Pan
- National Center for Nanoscience and Technology (NCNST), Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Zhanhu Guo
- Integrated Composites Laboratory, Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xianhu Liu
- College of Materials Science and Engineering, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
35
|
Sheng F, Yi J, Shen S, Cheng R, Ning C, Ma L, Peng X, Deng W, Dong K, Wang ZL. Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44868-44877. [PMID: 34506103 DOI: 10.1021/acsami.1c12378] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of elastic electronic technology has promoted the application of triboelectric nanogenerators (TENGs) in flexible wearable electronics. However, most of the flexible electronics cannot achieve the requirements of being extremely stretchable, transparent, and highly conductive at the same time. Herein, we report a TENG constructed using a double-network polymer ionic conductor sodium alginate/zinc sulfate/poly acrylic-acrylamide (SA-Zn) hydrogel, which exhibited outstanding stretchability (>10,000%), high transparency (>95%), and good conductivity (0.34 S·m-1). The SA-Zn hydrogel TENG (SH-TENG) could harvest energy from typical human movements, such as bending, stretching, and twisting, which could light up 234 green commercial LEDs easily. Additionally, the SH-TENG can be used to prepare a self-powered smart training band sensor for monitoring arm stretching motion. This work may provide an innovative platform for accessing the next generation of sustainable wearable and sports monitoring electronics.
Collapse
Affiliation(s)
- Feifan Sheng
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning 530004, P. R. China
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Jia Yi
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning 530004, P. R. China
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Shen Shen
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Renwei Cheng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuan Ning
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liyun Ma
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Xiao Peng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wen Deng
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning 530004, P. R. China
| | - Kai Dong
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CUSTech Institute, Wenzhou, Zhejiang 325024, China
- School of Material Science and Engineering, Georgia Inssstitute of Technology, Atlanta, Georgia, 30332, United States
| |
Collapse
|
36
|
Han Z, Jiao P, Zhu Z. Combination of Piezoelectric and Triboelectric Devices for Robotic Self-Powered Sensors. MICROMACHINES 2021; 12:813. [PMID: 34357223 PMCID: PMC8307917 DOI: 10.3390/mi12070813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022]
Abstract
Sensors are an important part of the organization required for robots to perceive the external environment. Self-powered sensors can be used to implement energy-saving strategies in robots and reduce their power consumption, owing to their low-power consumption characteristics. The triboelectric nanogenerator (TENG) and piezoelectric transducer (PE) are important implementations of self-powered sensors. Hybrid sensors combine the advantages of the PE and TENG to achieve higher sensitivity, wider measurement range, and better output characteristics. This paper summarizes the principles and research status of pressure sensors, displacement sensors, and three-dimensional (3D) acceleration sensors based on the self-powered TENG, PE, and hybrid sensors. Additionally, the basic working principles of the PE and TENG are introduced, and the challenges and problems in the development of PE, TENG, and hybrid sensors in the robotics field are discussed with regard to the principles of the self-powered pressure sensors, displacement sensors, and 3D acceleration sensors applied to robots.
Collapse
Affiliation(s)
- Zhicheng Han
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Hangzhou 316021, China;
- College of Electronic and Information Engineering, Southwest University, Chongqing 400700, China
| | - Pengchen Jiao
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Hangzhou 316021, China;
| | - Zhiyuan Zhu
- Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Hangzhou 316021, China;
- College of Electronic and Information Engineering, Southwest University, Chongqing 400700, China
| |
Collapse
|