1
|
Chen M, Liu T, Wang X, Gao L, Cheng Y, Jiang J, Zhang J. Comprehensive wound healing using ETN@Fe 7S 8 complex by positively regulating multiple programmed phases. J Nanobiotechnology 2025; 23:342. [PMID: 40355866 PMCID: PMC12070563 DOI: 10.1186/s12951-025-03396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Wound healing requires coordinated progression through multiple programmed phases including hemostasis, infection control, inflammatory resolution, proliferation, and tissue remodeling. Many nanomaterials have shown great potential to promote wound healing, however, most of them only address partial aspects of these processes, making a recovery hard with adequate effects. In this study, we prepared a complex of nano-iron sulfide integrated with erythrocyte-templated nanozyme (ETN) (ETN@Fe7S8) for comprehensive treatment of wounds. Firstly, ETN served as a mediator to confine iron sulfide to form Fe7S8 nanocomposite in a solvothermal reaction. Secondly, the ETN@Fe7S8 demonstrated bactericidal effects against methicillin-resistant Staphylococcus aureus (MRSA) by releasing ferrous iron and polysulfide to induce ferroptosis-like cell death. Thirdly, ferrous iron along with polysulfide exerted anti-inflammatory effects by inhibiting the activation of the NF-κB signaling pathway, while the polysulfide also contributed to angiogenesis by promoting the activation of vascular endothelial growth factor A (VEGFA), initiated phosphorylation-mediated activation of the PI3K/AKT signaling pathway, a master regulatory cascade governing endothelial cell survival, migration, and angiogenesis. When employed for wound, ETN@Fe7S8 showed the ability to prevent infection, reduce inflammation, promote angiogenesis, enhance cell proliferation, and remodel keratinocytes. Along with the hemostatic effect, ETN@Fe7S8 thus performed comprehensive effects for wound healing in the whole recovery stages. Therefore, our findings provide a multifunctional candidate of ETN and nano-iron sulfide complex which is capable of regulating and promoting wound healing.
Collapse
Affiliation(s)
- Mengxia Chen
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
- School of Life Sciences, Jilin Normal University, Jilin, 136000, China
| | - Ting Liu
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
- School of Life Science and Technology, Jinan University, Guangdong, 510632, China
| | - Xiaonan Wang
- Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Engineering Laboratory for Nanozyme, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Lizeng Gao
- Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Engineering Laboratory for Nanozyme, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yunqing Cheng
- School of Life Sciences, Jilin Normal University, Jilin, 136000, China.
| | - Jing Jiang
- Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Engineering Laboratory for Nanozyme, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
2
|
Zhong N, Zu Z, Lu Y, Sha X, Li Y, Liu Y, Lu S, Luo X, Zhou Y, Tao J, Wu F, Teng Z, Tang Y, Wang S. Mitochondria-targeted manganese-based mesoporous silica nanoplatforms trigger cGAS-STING activation and sensitize anti PD-L1 therapy in triple-negative breast cancer. Acta Biomater 2025:S1742-7061(25)00293-4. [PMID: 40294811 DOI: 10.1016/j.actbio.2025.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway could effectively initiate antitumor immunity in triple-negative breast cancer. However, current nuclear DNA-mediated activation of STING pathway remains constrained by the tight protection of nuclear membrane and histones, highlighting the need for new strategies to enhance its efficacy. Mitochondrial DNA (mtDNA), in contrast, is more vulnerable to damage. Herein, our nanoplatforms exploited the high glutathione (GSH) environment characteristic of tumors to release abundant Mnb+, which induced mitochondrial dysfunction and the release of endogenous mtDNA. The released mtDNA, in conjunction with Mnb+ itself functioning as a strong cGAS agonist, effectively activated cGAS-STING pathway. Consequently, the cGAS-STING-dependent secretion of type I interferon successively enhanced the maturation of dendritic cells and cross-priming of CD8+ T cells. In a poorly immunogenic 4T1 tumor model, TPP-MMONs efficiently primed systemic antitumor immunity and significantly enhanced the therapeutic efficacy of αPD-L1 therapy, suppressing tumor growth in both localized and metastatic tumor models. These findings provided an innovative and straightforward strategy to enhance TNBC immunogenicity by targeting mitochondrial damage to induce mtDNA-mediated cGAS-STING activation, thereby sensitizing tumors to immune checkpoint inhibitor therapy. STATEMENT OF SIGNIFICANCE: The cGAS-STING pathway is a promising target for overcoming immunoresistance in TNBC. However, current nuclear DNA-based activation strategies are limited by the tight protection of nuclear membrane and histones. Herein, we reported novel manganese-rich, mitochondria-targeting nanoplatforms (TPP-MMONs), which can release abundant Mn²⁺ and significantly induce mitochondrial dysfunction, leading to the release of mtDNA. As a result, the nanoplatforms can effectively stimulate the cGAS-STING pathway, thereby enhancing immune responses and improving the therapeutic efficacy of αPD-L1 therapy, offering new insights into TNBC treatments.
Collapse
Affiliation(s)
- Nan Zhong
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ziyue Zu
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yishi Lu
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xuan Sha
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yang Li
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Shangyu Lu
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xi Luo
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yan Zhou
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Feiyun Wu
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yuxia Tang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Shouju Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Gu C, Fang S, Liu L, Chen B, Xu L, Shao M, Sun J, Qian H, Wang W. Local Release of Copper Manganese Oxide Using HA Microneedle for Improving the Efficacy of Drug-Resistant Wound Inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406377. [PMID: 39370574 DOI: 10.1002/smll.202406377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The production of bacterial toxins and excessive accumulation of reactive oxygen species (ROS) can induce localized oxidative stress, triggering an exaggerated immune response that impedes wound healing and culminates in chronic wounds. To address this issue, a microneedle (MN) system loaded with copper-manganese oxide (CMO) is developed to modulate the hyperimmune response in wounds. CMO@MN exhibits excellent antimicrobial and anti-inflammatory properties by effectively killing bacteria, scavenging ROS, and modulating macrophage polarization through their multiple enzymatic activities and photothermal properties. RNA sequencing revealed that CMO@MN improved the therapeutic effect on the infected skin of mice by balancing the ratio of M1/M2 macrophages and promoting cell migration and angiogenesis through the regulation of relevant pathways. Overall, this CMO@MN patch skillfully balances the complex issues between the immune response and wound healing and has potential applications in the treatment of other serious bacterial infections.
Collapse
Affiliation(s)
- Cheng Gu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Shu Fang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Lin Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Benjin Chen
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jianan Sun
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| |
Collapse
|
4
|
Xu J, Xu X, Zhang H, Wu J, Pan R, Zhang B. Tumor-associated inflammation: The role and research progress in tumor therapy. J Drug Deliv Sci Technol 2024; 102:106376. [DOI: 10.1016/j.jddst.2024.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Qian K, Gao S, Jiang Z, Ding Q, Cheng Z. Recent advances in mitochondria-targeting theranostic agents. EXPLORATION (BEIJING, CHINA) 2024; 4:20230063. [PMID: 39175881 PMCID: PMC11335472 DOI: 10.1002/exp.20230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
For its vital role in maintaining cellular activity and survival, mitochondrion is highly involved in various diseases, and several strategies to target mitochondria have been developed for specific imaging and treatment. Among these approaches, theranostic may realize both diagnosis and therapy with one integrated material, benefiting the simplification of treatment process and candidate drug evaluation. A variety of mitochondria-targeting theranostic agents have been designed based on the differential structure and composition of mitochondria, which enable more precise localization within cellular mitochondria at disease sites, facilitating the unveiling of pathological information while concurrently performing therapeutic interventions. Here, progress of mitochondria-targeting theranostic materials reported in recent years along with background information on mitochondria-targeting and therapy have been briefly summarized, determining to deliver updated status and design ideas in this field to readers.
Collapse
Affiliation(s)
- Kun Qian
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Shu Gao
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhaoning Jiang
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Qihang Ding
- Department of ChemistryKorea UniversitySeoulRepublic of Korea
| | - Zhen Cheng
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
6
|
Zhu X, Feng T, Chen Y, Xiao Y, Wen W, Wang S, Wang D, Zhang X, Liang J, Xiong H. Reactive Oxygen-Correlated Photothermal Imaging of Smart COF Nanoreactors for Monitoring Chemodynamic Sterilization and Promoting Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310247. [PMID: 38368267 DOI: 10.1002/smll.202310247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Indexed: 02/19/2024]
Abstract
Chemodynamic therapy (CDT) has emerged as a promising approach for treating infected diabetic wounds, while reliable imaging technology for simultaneous monitoring of ROS and therapeutic processes is still a formidable challenge. Herein, smart covalent organic framework (COF) nanoreactors (COF NRs) are constructed by hyaluronic acid (HA) packaged glucose oxidase (GOx) covalently linked Fe-COF for diabetic wound healing. Upon the breakdown of the HA protective layer, GOx consumes glucose to produce gluconic acid and hydrogen peroxide (H2O2), resulting in decreased local pH and H2O2 supplementation. Density functional theory (DFT) calculations show that Fe-COF has high catalytic activity towards H2O2, leading to in situ generation of hydroxyl radicals (·OH) for sterilization, and the localized downregulation of glucose effectively improved the microenvironment of diabetic wounds. Meanwhile, based on the near-infrared photothermal imaging of oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB), the authors showed that TMB can be applied for the point-of-care testing of ·OH and glucose, and assessing the sterilization progress in vivo. More significantly, the facile photothermal signaling strategy can be extended to monitor various ROS-mediated therapeutic systems, enabling accurate prediction of treatment outcomes.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Tiantian Feng
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Yidan Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yan Xiao
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Wei Wen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Dong Wang
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jichao Liang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Huayu Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
7
|
Sufian A, Parihar N, Badirujjaman M, Barman P, Kesarwani R, Pemmaraju DB, Bhabak KP. Inflammatory-stimuli-responsive turn-on NIR fluorogenic theranostic prodrug: adjuvant delivery of diclofenac and hydrogen sulfide attenuates acute inflammatory disorders. J Mater Chem B 2024; 12:4248-4261. [PMID: 38602387 DOI: 10.1039/d3tb02552g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Prolonged use of very commonly prescribed non-steroidal anti-inflammatory drugs (NSAIDs) is often associated with undesired side effects, including gastrointestinal ulcers due to the non-selective inhibition of cyclooxygenases. We describe the development of an inflammatory-stimuli-responsive turn-on fluorogenic theranostic prodrug DCF-HS for adjuvant drug delivery. Upon activation by reactive oxygen species (ROS), the prodrug releases diclofenac DCF (active drug) and the NIR fluorophore DCI-NH2 along with carbonyl sulfide (COS). The second activation of COS by the enzyme carbonic anhydrase (CA) generates hydrogen sulfide (H2S). The prodrug was conveniently synthesized using multi-step organic synthesis. The UV-Vis and fluorescence studies revealed the selective reactivity of DCF-HS towards ROS such as H2O2 in the aqueous phase and the desired uncaging of the drug DCF with turn-on NIR fluorescent reporter under physiological conditions. Furthermore, the release of fluorophore DCI-NH2 and drug DCF was confirmed using the reverse phase HPLC method. Compatibility of prodrug activation was studied next in the cellular medium. The prodrug DCF-HS was non-toxic in a representative cancer cell line (HeLa) and a macrophage cell line (RAW 264.7) up to 100 μM concentration, indicating its biocompatibility. The intracellular ROS-mediated activation of the prodrug with the release of NIR dye DCI-NH2 and H2S was investigated in HeLa cells using the H2S-selective probe WSP2. The anti-inflammatory activity of the active drug DCF from the prodrug DCF-HS was studied in the lipopolysaccharide (LPS)-induced macrophage cell line and compared to that of the parent drug DCF using western blot analysis and it was found that the active drug resulted in pronounced inhibition of COX-2 in a dose-dependent manner. Finally, the anti-inflammatory potential of the prodrug and the turn-on fluorescence were validated in the inflammation-induced Wister rat models.
Collapse
Affiliation(s)
- Abu Sufian
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Nidhi Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Guwahati 781101, Assam, India.
| | - Md Badirujjaman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Rahul Kesarwani
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Deepak B Pemmaraju
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Guwahati 781101, Assam, India.
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
8
|
Liu Y, Lin Z, Wang Y, Chen L, Wang Y, Luo C. Nanotechnology in inflammation: cutting-edge advances in diagnostics, therapeutics and theranostics. Theranostics 2024; 14:2490-2525. [PMID: 38646646 PMCID: PMC11024862 DOI: 10.7150/thno.91394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 04/23/2024] Open
Abstract
Inflammatory dysregulation is intimately associated with the occurrence and progression of many life-threatening diseases. Accurate detection and timely therapeutic intervention on inflammatory dysregulation are crucial for the effective therapy of inflammation-associated diseases. However, the clinical outcomes of inflammation-involved disorders are still unsatisfactory. Therefore, there is an urgent need to develop innovative anti-inflammatory strategies by integrating emerging technological innovations with traditional therapeutics. Biomedical nanotechnology is one of the promising fields that can potentially transform the diagnosis and treatment of inflammation. In this review, we outline recent advances in biomedical nanotechnology for the diagnosis and treatment of inflammation, with special attention paid to nanosensors and nanoprobes for precise diagnosis of inflammation-related diseases, emerging anti-inflammatory nanotherapeutics, as well as nanotheranostics and combined anti-inflammatory applications. Moreover, the prospects and challenges for clinical translation of nanoprobes and anti-inflammatory nanomedicines are highlighted.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ziqi Lin
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuting Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Liuhui Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
9
|
Zhou X, Zhou Q, He Z, Xiao Y, Liu Y, Huang Z, Sun Y, Wang J, Zhao Z, Liu X, Zhou B, Ren L, Sun Y, Chen Z, Zhang X. ROS Balance Autoregulating Core-Shell CeO 2@ZIF-8/Au Nanoplatform for Wound Repair. NANO-MICRO LETTERS 2024; 16:156. [PMID: 38512388 PMCID: PMC10957853 DOI: 10.1007/s40820-024-01353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024]
Abstract
Reactive oxygen species (ROS) plays important roles in living organisms. While ROS is a double-edged sword, which can eliminate drug-resistant bacteria, but excessive levels can cause oxidative damage to cells. A core-shell nanozyme, CeO2@ZIF-8/Au, has been crafted, spontaneously activating both ROS generating and scavenging functions, achieving the multi-faceted functions of eliminating bacteria, reducing inflammation, and promoting wound healing. The Au Nanoparticles (NPs) on the shell exhibit high-efficiency peroxidase-like activity, producing ROS to kill bacteria. Meanwhile, the encapsulation of CeO2 core within ZIF-8 provides a seal for temporarily limiting the superoxide dismutase and catalase-like activities of CeO2 nanoparticles. Subsequently, as the ZIF-8 structure decomposes in the acidic microenvironment, the CeO2 core is gradually released, exerting its ROS scavenging activity to eliminate excess ROS produced by the Au NPs. These two functions automatically and continuously regulate the balance of ROS levels, ultimately achieving the function of killing bacteria, reducing inflammation, and promoting wound healing. Such innovative ROS spontaneous regulators hold immense potential for revolutionizing the field of antibacterial agents and therapies.
Collapse
Affiliation(s)
- Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Quan Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhaozhi He
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yi Xiao
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yan Liu
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Zhuohang Huang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yaoji Sun
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jiawei Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Bin Zhou
- NO.1 Middle School Affiliated to Central China Normal University, Wuhan, 430223, People's Republic of China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Zhiwei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
10
|
Yang J, Chu Z, Jiang Y, Zheng W, Sun J, Xu L, Ma Y, Wang W, Shao M, Qian H. Multifunctional Hyaluronic Acid Microneedle Patch Embedded by Cerium/Zinc-Based Composites for Accelerating Diabetes Wound Healing. Adv Healthc Mater 2023; 12:e2300725. [PMID: 37086396 DOI: 10.1002/adhm.202300725] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Chronic nonhealing diabetic wounds are becoming increasingly severe, with high rates of mortality and disability, owing to the difficulty in wound healing caused by hyperglycemia, blocked angiogenesis, biofilm infection, and excessive oxidative stress. A multicomponent enzyme-responsive natural polymer, a hyaluronic acid (HA) microneedle, embedded in a cerium/zinc-based nanomaterial (ZCO) for the treatment of diabetic wounds is reported. ZCO-HA can destroy the oxidation balance of bacteria, kill bacteria, and scavenge reactive oxygen species (ROS) to alleviate oxidative stress via the adjustable release of Zn2+ and Ce3+ /4+ . Additionally, ZCO-HA exhibits good anti-inflammatory activity through the nuclear factor kappa-B (NF-κB) pathway, which reduces the inflammatory state of macrophages and promotes cell proliferation, migration, and angiogenesis. In vitro experiments shows that ZCO-HA accompanies mouse fibroblast migration, promoting human umbilical vein endothelial cell tube formation. In vivo studies in mice with streptozotocin-induced (STZ)-induced diabetes reveal that this microneedle accelerates wound healing without systemic toxicity. RNA transcriptome sequencing illustrates that the multicomponent HA microneedle accelerates wound healing in diabetes through cell migration and inhibits inflammatory reactions and oxidative damage in mice via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Juan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, P. R. China
| | - Zhaoyou Chu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yechun Jiang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jiangwei Sun
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, P. R. China
| |
Collapse
|
11
|
Zhu H, Kong B, Che J, Zhao Y, Sun L. Bioinspired nanogels as cell-free DNA trapping and scavenging organelles for rheumatoid arthritis treatment. Proc Natl Acad Sci U S A 2023; 120:e2303385120. [PMID: 37549284 PMCID: PMC10438393 DOI: 10.1073/pnas.2303385120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023] Open
Abstract
Excessive cell-free DNA (cfDNA) in the serum and synovium is considered a causative factor of rheumatoid arthritis (RA). Thus, cfDNA scavenging by using cationic polymers has been an effective therapeutic avenue, while these stratagems still suffer from systemic toxicity and unstable capture of cfDNA. Here, inspired by the biological charge-trapping effects and active degradation function of enzyme-containing organelles in vivo, we proposed a cationic peptide dendrimer nanogel with deoxyribonuclease I (DNase I) conjugation for the treatment of RA. Benefitting from their naturally derived peptide components, the resultant nanogels were highly biocompatible. More attractively, by tailoring them with a larger size and higher surface charge density, these cationic nanogels could achieve the fastest targeting capability, highest accumulation amounts, longer persistence time, and superior DNA scavenging capacity in inflamed joints. Based on these features, we have demonstrated that the organelle mimicking cationic nanogels could significantly down-regulate toll-like receptor (TLR)-9 signaling pathways and attenuate RA symptoms in collagen-induced arthritis mice. These results make the bioinspired DNase I conjugated cationic nanogels an ideal candidate for treating RA and other immune dysregulation diseases.
Collapse
Affiliation(s)
- Haofang Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei230022, China
| | - Bin Kong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
| | - Junyi Che
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei230022, China
| |
Collapse
|
12
|
Wu M, Yi J, Yin C, Sun Q, Gao L, Niu N, Chen L. An upconversion nanosensor with phenolic-like functionality for accurate identification of chlorpyrifos in grapes. Food Chem 2023; 416:135859. [PMID: 36898337 DOI: 10.1016/j.foodchem.2023.135859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The inappropriate use of the organophosphorus pesticide chlorpyrifos (CPF) in agricultural production could be harmful to the environment and non-target organisms. Here, we prepared a nano-fluorescent probe with phenolic function based on covalently coupled rhodamine derivatives (RDP) of upconverted nano-particles (UCNPs) for trace detection of chlorpyrifos. Due to the fluorescence resonance energy transfer (FRET) effect in the system, the fluorescence of UCNPs is quenched by RDP. The phenolic-functional RDP is converted to the spironolactone form when it captures chlorpyrifos. This structural shift prevents the FRET effect in the system and allows the fluorescence of UCNPs to be restored. In addition, the 980 nm excitement conditions of UCNPs will also avoid interference from non-target fluorescent backgrounds. This work has obvious advantages in terms of selectivity and sensitivity, which can be widely applied to the rapid analysis of chlorpyrifos residues in food samples.
Collapse
Affiliation(s)
- Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Jiaqi Yi
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Chenhui Yin
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Qijun Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Lei Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China; Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China.
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
13
|
Luo X, Xiong H, Jiang Y, Fan Y, Zuo C, Chen D, Chen L, Lin H, Gao J. Macrophage Reprogramming via Targeted ROS Scavenging and COX-2 Downregulation for Alleviating Inflammation. Bioconjug Chem 2023. [PMID: 37330989 DOI: 10.1021/acs.bioconjchem.3c00239] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Inflammation-related diseases affect large populations of people in the world and cause substantial healthcare burdens, which results in significant costs in time, material, and labor. Preventing or relieving uncontrolled inflammation is critical for the treatment of these diseases. Herein, we report a new strategy for alleviating inflammation by macrophage reprogramming via targeted reactive oxygen species (ROS) scavenging and cyclooxygenase-2 (COX-2) downregulation. As a proof of concept, we synthesize a multifunctional compound named MCI containing a mannose-based macrophage targeting moiety, an indomethacin (IMC)-based segment for inhibiting COX-2, and a caffeic acid (CAF)-based section for ROS clearance. As revealed by a series of in vitro experiments, MCI could significantly attenuate the expression of COX-2 and the level of ROS, leading to M1 to M2 macrophage reprogramming, as evidenced by the reduction and the elevation in the levels of pro-inflammatory M1 markers and anti-inflammatory M2 markers, respectively. Furthermore, in vivo experiments show MCI's promising therapeutic effects on rheumatoid arthritis (RA). Our work illustrates the success of targeted macrophage reprogramming for inflammation alleviation, which sheds light on the development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiangjie Luo
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Xiong
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuhang Jiang
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Fan
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cuicui Zuo
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxia Chen
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Chen
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Wang B, Li Y, Zhou M, Han Y, Zhang M, Gao Z, Liu Z, Chen P, Du W, Zhang X, Feng X, Liu BF. Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence. Nat Commun 2023; 14:1341. [PMID: 36906581 PMCID: PMC10007670 DOI: 10.1038/s41467-023-36017-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/10/2023] [Indexed: 03/13/2023] Open
Abstract
The frequent outbreak of global infectious diseases has prompted the development of rapid and effective diagnostic tools for the early screening of potential patients in point-of-care testing scenarios. With advances in mobile computing power and microfluidic technology, the smartphone-based mobile health platform has drawn significant attention from researchers developing point-of-care testing devices that integrate microfluidic optical detection with artificial intelligence analysis. In this article, we summarize recent progress in these mobile health platforms, including the aspects of microfluidic chips, imaging modalities, supporting components, and the development of software algorithms. We document the application of mobile health platforms in terms of the detection objects, including molecules, viruses, cells, and parasites. Finally, we discuss the prospects for future development of mobile health platforms.
Collapse
Affiliation(s)
- Bangfeng Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengfan Zhou
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yulong Han
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Mingyu Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhaolong Gao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zetai Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
15
|
Roy B, Shieh M, Ramush G, Xian M. Organelle-Targeted Fluorescent Probes for Sulfane Sulfur Species. Antioxidants (Basel) 2023; 12:590. [PMID: 36978838 PMCID: PMC10045342 DOI: 10.3390/antiox12030590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Sulfane sulfurs, which include hydropersulfides (RSSH), hydrogen polysulfides (H2Sn, n > 1), and polysulfides (RSnR, n > 2), play important roles in cellular redox biology and are closely linked to hydrogen sulfide (H2S) signaling. While most studies on sulfane sulfur detection have focused on sulfane sulfurs in the whole cell, increasing the recognition of the effects of reactive sulfur species on the functions of various subcellular organelles has emerged. This has driven a need for organelle-targeted detection methods. However, the detection of sulfane sulfurs, particularly of RSSH and H2Sn, in biological systems is still a challenge due to their low endogenous concentrations and instabilities. In this review, we summarize the development and design of organelle-targeted fluorescent sulfane sulfur probes, examine their organelle-targeting strategies and choices of fluorophores (e.g., ratiometric, near-infrared, etc.), and discuss their mechanisms and ability to detect endogenous and exogenous sulfane sulfur species. We also present the advantages and limitations of the probes and propose directions for future work on this topic.
Collapse
Affiliation(s)
| | | | | | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
16
|
Liu Z, Han Z, Jin X, An J, Kim J, Chen W, Kim JS, Zheng J, Deng J. Regulating the microenvironment with nanomaterials: Potential strategies to ameliorate COVID-19. Acta Pharm Sin B 2023; 13:S2211-3835(23)00054-0. [PMID: 36846153 PMCID: PMC9941074 DOI: 10.1016/j.apsb.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, has resulted in serious economic and health burdens. Current treatments remain inadequate to extinguish the epidemic, and efficient therapeutic approaches for COVID-19 are urgently being sought. Interestingly, accumulating evidence suggests that microenvironmental disorder plays an important role in the progression of COVID-19 in patients. In addition, recent advances in nanomaterial technologies provide promising opportunities for alleviating the altered homeostasis induced by a viral infection, providing new insight into COVID-19 treatment. Most literature reviews focus only on certain aspects of microenvironment alterations and fail to provide a comprehensive overview of the changes in homeostasis in COVID-19 patients. To fill this gap, this review systematically discusses alterations of homeostasis in COVID-19 patients and potential mechanisms. Next, advances in nanotechnology-based strategies for promoting homeostasis restoration are summarized. Finally, we discuss the challenges and prospects of using nanomaterials for COVID-19 management. This review provides a new strategy and insights into treating COVID-19 and other diseases associated with microenvironment disorders.
Collapse
Affiliation(s)
- Zhicheng Liu
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xin Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jusung An
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Wenting Chen
- Department of Rheumatology and Clinical Immunology, Army Medical Center, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Ji Zheng
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
17
|
Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Li X, Zhao Y, Peng H, Gu D, Liu C, Ren S, Miao L. Robust intervention for oxidative stress-induced injury in periodontitis via controllably released nanoparticles that regulate the ROS-PINK1-Parkin pathway. Front Bioeng Biotechnol 2022; 10:1081977. [PMID: 36588945 PMCID: PMC9798290 DOI: 10.3389/fbioe.2022.1081977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress in periodontitis has emerged as one of the greatest barriers to periodontal tissue restoration. In this study, we synthesized controlled drug release nanoparticles (MitoQ@PssL NPs) by encasing mitoquinone (MitoQ; an autophagy enhancer) into tailor-made reactive oxygen species (ROS)-cleavable amphiphilic polymer nanoparticles (PssL NPs) to regulate the periodontitis microenvironment. Once exposed to reactive oxygen species, which were substantially overproduced under oxidative stress conditions, the ROS-cleavable PssL was disintegrated, promoting the release of the encapsulated MitoQ. The released mitoquinone efficiently induced mitophagy through the PINK1-Parkin pathway and successfully reduced oxidative stress by decreasing the amount of reactive oxygen species. With the gradual decrease in the reactive oxygen species level, which was insufficient to disintegrate PssL, the release of mitoquinone was reduced and eventually eliminated, which contributed to a redox homeostasis condition and facilitated the regeneration of periodontal tissue. MitoQ@PssL NPs have great potential in the treatment of periodontitis via microenvironment-controlled drug release, which will provide a new avenue for periodontal regeneration and diseases related to imbalanced redox metabolism.
Collapse
Affiliation(s)
- Xincong Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yue Zhao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Haoran Peng
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Deao Gu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China,*Correspondence: Chao Liu, ; Shuangshuang Ren, ; Leiying Miao,
| | - Shuangshuang Ren
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China,*Correspondence: Chao Liu, ; Shuangshuang Ren, ; Leiying Miao,
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China,*Correspondence: Chao Liu, ; Shuangshuang Ren, ; Leiying Miao,
| |
Collapse
|
19
|
Wang M, Zhou X, Li Y, Dong Y, Meng J, Zhang S, Xia L, He Z, Ren L, Chen Z, Zhang X. Triple-synergistic MOF-nanozyme for efficient antibacterial treatment. Bioact Mater 2022; 17:289-299. [PMID: 35386462 PMCID: PMC8965166 DOI: 10.1016/j.bioactmat.2022.01.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
Abstract
The abuse of antibiotics makes bacterial infection an increasingly serious global health threat. Reactive oxygen species (ROS) are the ideal alternative antibacterial approach for quick and effective sterilization. Although various antibacterial strategies based on ROS have been developed, many of them are still limited by insufficient antibacterial efficiency. Here, we have developed an acid-enhanced dual-modal antibacterial strategy based on zeolitic imidazolate frameworks-8 (ZIF8) -derived nanozyme. ZIF8, which can release Zn2+, is chosen as the carrier to integrate glucose oxidase (GOx) and gold nanoparticles (Au NPs) which can produce ROS via a cascade catalytic reaction. Thus, the bactericidal capability of ROS and Zn2+ have been integrated. More importantly, gluconic acid, a "by-product" of the catalytic reaction, can generate an acidic environment to promote both the ROS-producing and Zn2+-releasing, enhancing the overall antibacterial performance further. This triple-synergistic strategy exhibits extraordinary bactericidal ability at a low dosage of 4 μg/mL (for S. aureus) and 8 μg/mL (for E. coli), which shows a great potential of MOF-derived nanozyme for efficient bacterial eradication and diverse biomedical applications.
Collapse
Affiliation(s)
- Muxue Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yunhong Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yuqing Dong
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shuai Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Linbo Xia
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhaozhi He
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhiwei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
20
|
Jin L, Guo X, Gao D, Liu Y, Ni J, Zhang Z, Huang Y, Xu G, Yang Z, Zhang X, Jiang X. An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing. Bioact Mater 2022; 16:162-172. [PMID: 35415283 PMCID: PMC8965777 DOI: 10.1016/j.bioactmat.2022.03.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Moderately regulating vascularization and immune microenvironment of wound site is necessary to achieve scarless wound healing of the skin. Herein, we have prepared an angiogenesis-promoting and scar-preventing band-aid with a core-shell structure, that consists of MXene-loaded nanofibers (MNFs) as the core and dopamine-hyaluronic acid hydrogel (H) as the shell (MNFs@V-H@DA) to encapsulate a growth factor (vascular endothelial growth factor, VEGF, abbreviated as V) and H2S donor (diallyl trisulfide, DATS, abbreviated as DA). The continuous release of DA from this system produced H2S, which would successfully induce macrophages to polarize into M2-lile phenotype, regulating the immune microenvironment and inhibiting an excessive inflammatory response at the wound sites. It is conducive to the proliferation of skin cells, facilitating the wound healing. In addition, an appropriate amount of VEGF can be released from the MXene nanofibrous skeleton by adjusting the time of near-infrared (NIR) light exposure, preventing excessive neovascularization and extracellular matrix deposition at the wound sites. Collectively, this NIR photothermal-responsive band-aid achieved scarless wound healing through gradient-controlled vascularization and a related immune sequential reaction of damaged skin tissue.
Collapse
Affiliation(s)
- Lin Jin
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, PR China
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, PR China
| | - Xiaoqing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yan Liu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Jiahua Ni
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Zhiming Zhang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Yiqiao Huang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Guibin Xu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
- Research Institute of Xi'an Jiaotong University, Hangzhou, Zhejiang, 311200, PR China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xianhan Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, PR China
| |
Collapse
|
21
|
A synchronized dual drug delivery molecule targeting cancer stem cells in tumor heterogeneity and metastasis. Biomaterials 2022; 289:121781. [PMID: 36113331 DOI: 10.1016/j.biomaterials.2022.121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022]
Abstract
Cancer stem-like cells (CSCs) represent a key barrier to successful therapy for triple-negative breast cancer (TNBC). CSCs promote the emergence of chemoresistance, triggering relapse and resulting in a poor prognosis. We herein present CDF-TM, a new small molecule-based binary prodrug conjugated with SN-38 and 3,4-difluorobenzylidene curcumin (CDF) that is specifically activated in hypoxic conditions. CDF-TM treatment significantly induced apoptosis in TNBC-derived 3D spheroids, accompanied with caspase-3 activation as well as the attenuation of tumor stemness with evidence of reduction in aldehyde dehydrogenase 1 (ALDH1) activity and the CD44high/CD24low phenotype. An in vivo orthotopic allograft model was used to investigate its effects on tumor growth and metastasis. The dissemination of CSCs from primary allografts was impaired by CDF-TM, along with inhibition of tumor growth via eradication of CSCs and downregulation of multidrug resistance 1 (MDR1). This new small molecule-based binary prodrug offers a novel therapeutic option for metastatic TNBC.
Collapse
|
22
|
Gao D, Shi Y, Ni J, Chen S, Wang Y, Zhao B, Song M, Guo X, Ren X, Zhang X, Tian Z, Yang Z. NIR/MRI-Guided Oxygen-Independent Carrier-Free Anti-Tumor Nano-Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106000. [PMID: 34854571 DOI: 10.1002/smll.202106000] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 05/22/2023]
Abstract
Imaging-guided photothermal therapy (PTT)/photodynamic therapy (PDT) for cancer treatment are beneficial for precise localization of the malignant lesions and combination of multiple cell killing mechanisms in eradicating stubborn thermal-resistant cancer cells. However, overcoming the adverse impact of tumor hypoxia on PDT efficacy remains a challenge. Here, carrier-free nano-theranostic agents are developed (AIBME@IR780-APM NPs) for magnetic resonance imaging (MRI)-guided synergistic PTT/thermodynamic therapy (TDT). Two IR780 derivatives are synthesized as the subject of nanomedicine to confer the advantages for the nanomedicine, which are by feat of amphiphilic IR780-PEG to enhance the sterical stability and reduce the risk from reticuloendothelial system uptake, and IR780-ATU to chelate Mn2+ for T1 -weighted MRI. Dimethyl 2,2'-azobis(2-methylpropionate) (AIBME), acting as thermally decomposable radical initiators, are further introduced into nanosystems with the purpose of generating highly cytotoxic alkyl radicals upon PTT launched by IR780 under 808 nm laser irradiation. Therefore, the sequentially generated heat and alkyl radicals synergistically induce cell death via synergistic PTT/TDT, ignoring tumor hypoxia. Moreover, these carrier-free nano-theranostic agents present satisfactory biocompatibility, which could be employed as a powerful weapon to hit hypoxic tumors via MRI-guided oxygen-independent PTT and photonic TDT.
Collapse
Affiliation(s)
- Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yupeng Shi
- Henan Key laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Jiahua Ni
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Shuojia Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Epidemiology, Shaanxi Provincial Tumor Hospital, Xi'an, 710061, P. R. China
| | - Manli Song
- Henan Key laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Xiaoqing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuechun Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xingcai Zhang
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Research Center of Life Science, Research Institute of Xi'an Jiaotong University, Zhejiang, 311200, P. R. China
| |
Collapse
|
23
|
Sufian A, Bhattacherjee D, Barman P, Srivastava A, Thummer RP, Bhabak KP. Stimuli-responsive prodrug of non-steroidal anti-inflammatory drug diclofenac: self-immolative drug release with turn-on near-infrared fluorescence. Chem Commun (Camb) 2022; 58:7833-7836. [PMID: 35748501 DOI: 10.1039/d2cc02132c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species (ROS)-responsive near infrared (NIR) fluorogenic prodrug DCI-ROS is developed for the self-immolative release of diclofenac (DCF) with turn-on fluorescence. The non-toxic prodrug exhibited turn-on red fluorescence with endogenous ROS in cancer cells and inhibited COX-2 expression in the inflammation-induced macrophage cells. The prodrug strategy thus would be helpful for the controlled fluorogenic delivery of DCF for inflammatory diseases.
Collapse
Affiliation(s)
- Abu Sufian
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Debojit Bhattacherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Abhay Srivastava
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Rajkumar P Thummer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
24
|
Yu W, Sun J, Wang X, Yu S, Yan M, Wang F, Liu X. Boosting Cancer Immunotherapy via the Convenient A2AR Inhibition Using a Tunable Nanocatalyst with Light-Enhanced Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106967. [PMID: 34910838 DOI: 10.1002/adma.202106967] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Blockade of A2A adenosine receptors (A2AR)-adenosinergic signaling shows high potency to mobilize antitumor immunity for its in-depth involvement in immune regulation of nearly all immune cells. Available A2AR inhibition strategies are mainly based on small molecules or proteins inhibitors, yet are limited by the non-specific operation as well as the off-target toxicity. Herein, the first effort to design a convenient tumor-specific A2AR inhibition strategy to improve antitumor immune responses via the spatiotemporally controlled oxygen supply by virtue of a versatile photo-modulated nanoreactor is reported on. This nanoreactor, consisting of a catalase-mimicking shell (Pt nanocatalyst) and a photothermal core (polydopamine), is rationally designed for achieving the near-infrared radiation (NIR)-guided/accelerated oxygen supplementation on tumor site, and for relieving the A2AR-mediated immunosuppression without toxicity concern. Meanwhile, the NIR light could also mediate the direct photothermal ablation of tumor, and elicit immunogenic cell deaths to boost antitumor immunity. In a poorly immunogenic breast cancer model, the intravenous injection of the nanoreactor leads to the improved immune response with an increased animal survival rate, and achieves the long-term immunological memory effect against tumor recurrence as well as rechallenge. This convenient nanoreactor-stimulated A2AR inhibition approach provides a versatile promising paradigm for improving these existing immunotherapies.
Collapse
Affiliation(s)
- Wenqian Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Junlin Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiuyuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shuyi Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Mingzhu Yan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
25
|
Shi J, Zhang Y, Zhang X, Chen R, Wei J, Hou J, Wang B, Lai H, Huang Y. Remodeling immune microenvironment in periodontitis using resveratrol liposomes as an antibiotic-free therapeutic strategy. J Nanobiotechnology 2021; 19:429. [PMID: 34930286 PMCID: PMC8686397 DOI: 10.1186/s12951-021-01175-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Periodontitis is a complicated inflammatory disease that damages the tooth-supporting tissues, with limited pharmacotherapy available. Macrophage-targeting therapy is promising for inflammatory diseases. Resveratrol (RSV), a nonflavonoid polyphenol, is known for its anti-inflammatory and immunomodulatory effects. However, its medical application is limited by its poor stability and water-solubility, as well as its low bioavailability. RESULT A therapeutic resveratrol-loaded liposomal system (Lipo-RSV) was developed to treat periodontitis. The physical properties of Lipo-RSV and its ability to regulate macrophages were investigated. The results showed that Lipo-RSV had good biocompatibility and could re-educate the inflammatory macrophages from M1- to M2-like phenotype through activating p-STAT3 and downregulating p-STAT1. Besides, the Lipo-RSV could scavenge ROS and inhibit the NF-κB signal and inflammasomes, thereby reducing the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. CONCLUSION These results revealed that Lipo-RSV could be a potential therapeutic system for the antibiotic-free treatment for periodontal diseases.
Collapse
Affiliation(s)
- Junyu Shi
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yi Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Xiaomeng Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ruiying Chen
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jianxu Wei
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jiazhen Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Bing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Hongchang Lai
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, 528437, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, 201203, China.
- Taizhou University, School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou, 318000, China.
| |
Collapse
|
26
|
Qi Y, Qian K, Chen J, E Y, Shi Y, Li H, Zhao L. A thermoreversible antibacterial zeolite-based nanoparticles loaded hydrogel promotes diabetic wound healing via detrimental factor neutralization and ROS scavenging. J Nanobiotechnology 2021; 19:414. [PMID: 34895257 PMCID: PMC8665638 DOI: 10.1186/s12951-021-01151-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND As recovery time of diabetic wound injury is prolonged by the production of detrimental factors, including reactive oxygen species (ROS) and inflammatory cytokines, attenuating the oxidative stress and inflammatory reactions in the microenvironment of the diabetic wound site would be significant. EXPERIMENTAL DESIGN In our study, we prepared thermoreversible, antibacterial zeolite-based nanoparticles loaded hydrogel to promote diabetic wound healing via the neutralization of detrimental factors such as inflammatory cytokines and ROS. RESULTS The cerium (Ce)-doped biotype Linde type A (LTA) zeolite nanoparticles synergistically eliminated mitochondrial ROS and neutralized free inflammatory factors, thus remodeling the anti-inflammatory microenvironment of the wound and enhancing angiogenesis. Moreover, the thermoreversible hydrogel composed of Pluronic F127 and chitosan demonstrated strong haemostatic and bactericidal behavior. CONCLUSIONS In conclusion, the obtained thermoreversible, antibacterial, zeolite-based nanoparticles loaded hydrogels represent a multi-targeted combination therapy for diabetic wound healing.
Collapse
Affiliation(s)
- Yao Qi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Kun Qian
- Department of Chemistry, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Jin Chen
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Yifeng E
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Hongdan Li
- Life Science Institute, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| |
Collapse
|
27
|
Hao W, Cui Y, Fan Y, Chen M, Yang G, Wang Y, Yang M, Li Z, Gong W, Yang Y, Gao C. Hybrid membrane-coated nanosuspensions for multi-modal anti-glioma therapy via drug and antigen delivery. J Nanobiotechnology 2021; 19:378. [PMID: 34801032 PMCID: PMC8606100 DOI: 10.1186/s12951-021-01110-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Glioma is one of the deadliest human cancers. Although many therapeutic strategies for glioma have been explored, these strategies are seldom used in the clinic. The challenges facing the treatment of glioma not only involve the development of chemotherapeutic drugs and immunotherapeutic agents, but also the lack of a powerful platform that could deliver these two moieties to the targeted sites. Herein, we developed chemoimmunotherapy delivery vehicles based on C6 cell membranes and DC membranes to create hybrid membrane-coated DTX nanosuspensions (DNS-[C6&DC]m). RESULTS Results demonstrated successful hybrid membrane fusion and nanosuspension functionalization, and DNS-[C6&DC]m could be used for different modes of anti-glioma therapy. For drug delivery, membrane coating could be applied to target the source cancer cells via a homotypic-targeting mechanism of the C6 cell membrane. For cancer immunotherapy, biomimetic nanosuspension enabled an immune response based on the professional antigen-presenting characteristic of the dendritic cell membrane (DCm), which carry the full array of cancer cell membrane antigens and facilitate the uptake of membrane-bound tumor antigens for efficient presentation and downstream immune n. CONCLUSION DNS-[C6&DC]m is a multifunctional biomimetic nano-drug delivery system with the potential to treat gliomas through tumor-targeted drug delivery combined with immunotherapy, thereby presenting a promising approach that may be utilized for multiple modes of cancer therapy.
Collapse
Affiliation(s)
- Wenyan Hao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| | - Yuexin Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| | - Yueyue Fan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| | - Mengyu Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| | - Guobao Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China.
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China.
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China.
| |
Collapse
|
28
|
Xu S, Chang L, Hu Y, Zhao X, Huang S, Chen Z, Ren X, Mei X. Tea polyphenol modified, photothermal responsive and ROS generative black phosphorus quantum dots as nanoplatforms for promoting MRSA infected wounds healing in diabetic rats. J Nanobiotechnology 2021; 19:362. [PMID: 34758829 PMCID: PMC8579683 DOI: 10.1186/s12951-021-01106-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Healing of MRSA (methicillin-resistant Staphylococcus aureus) infected deep burn wounds (MIDBW) in diabetic patients remains an obstacle but is a cutting-edge research problem in clinical science. Surgical debridement and continuous antibiotic use remain the primary clinical treatment for MIDBW. However, suboptimal pharmacokinetics and high doses of antibiotics often cause serious side effects such as fatal complications of drug-resistant bacterial infections. MRSA, which causes wound infection, is currently a bacterium of concern in diabetic wound healing. In more severe cases, it can even lead to amputation of the patient's limb. The development of bioactive nanomaterials that can promote infected wound healing is significant. RESULTS The present work proposed a strategy of using EGCG (Epigallocatechin gallate) modified black phosphorus quantum dots (BPQDs) as therapeutic nanoplatforms for MIDBW to achieve the synergistic functions of NIR (near-infrared)-response, ROS-generation, sterilization, and promoting wound healing. The electron spin resonance results revealed that EGCG-BPQDs@H had a more vital photocatalytic ability to produce singlet oxygen than BPQDs@H. The inhibition results indicated an effective bactericidal rate of 88.6% against MRSA. Molecular biology analysis demonstrated that EGCG-BPQDs significantly upregulated CD31 nearly fourfold and basic fibroblast growth factor (bFGF) nearly twofold, which were beneficial for promoting the proliferation of vascular endothelial cells and skin epidermal cells. Under NIR irradiation, EGCG-BPQDs hydrogel (EGCG-BPQDs@H) treated MIDBW area could rapidly raise temperature up to 55 °C for sterilization. The MIBDW closure rate of rats after 21 days of treatment was 92.4%, much better than that of 61.1% of the control group. The engineered EGCG-BPQDs@H were found to promote MIDBW healing by triggering the PI3K/AKT and ERK1/2 signaling pathways, which could enhance cell proliferation and differentiation. In addition, intravenous circulation experiment showed good biocompatibility of EGCG-BPQDs@H. No significant damage to major organs was observed in rats. CONCLUSIONS The obtained results demonstrated that EGCG-BPQDs@H achieved the synergistic functions of photocatalytic property, photothermal effects and promoted wound healing, and are promising multifunctional nanoplatforms for MIDBW healing in diabetics.
Collapse
Affiliation(s)
- Shibo Xu
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Linna Chang
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Yanan Hu
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xingjun Zhao
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Shuocheng Huang
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Zhenhua Chen
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Xiuli Ren
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
29
|
Li J, Song S, Meng J, Tan L, Liu X, Zheng Y, Li Z, Yeung KWK, Cui Z, Liang Y, Zhu S, Zhang X, Wu S. 2D MOF Periodontitis Photodynamic Ion Therapy. J Am Chem Soc 2021; 143:15427-15439. [PMID: 34516125 DOI: 10.1021/jacs.1c07875] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Traditional surgical intervention and antibiotic treatment are poor and even invalid for chronic diseases including periodontitis induced by diverse oral pathogens, which often causes progressive destruction of tissues, even tooth loss, and systemic diseases. Herein, an ointment comprising atomic-layer Fe2O3-modified two-dimensional porphyrinic metal-organic framework (2D MOF) nanosheets is designed by incorporating a polyethylene glycol matrix. After the atomic layer deposition surface engineering, the enhanced photocatalytic activity of the 2D MOF heterointerface results from lower adsorption energy and more charge transfer amounts due to the synergistic effect of metal-linker bridging units, abundant active sites, and an excellent light-harvesting network. This biocompatible and biodegradable 2D MOF-based heterostructure exhibits broad-spectrum antimicrobial activity (99.87 ± 0.09%, 99.57 ± 0.21%, and 99.03 ± 0.24%) against diverse oral pathogens (Porphyromonas gingivalis, Fusobacterium nucleatum, and Staphylococcus aureus) by the synergistic effect of reactive oxygen species and released ions. This photodynamic ion therapy exhibits a superior therapeutic effect to the reported clinical periodontitis treatment owing to rapid antibacterial activity, alleviative inflammation, and improved angiogenesis.
Collapse
Affiliation(s)
- Jun Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shuang Song
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lei Tan
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, State Key Laboratory for Turbulence and Complex System, Peking University, Beijing 100871, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Yanqin Liang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Xingcai Zhang
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| |
Collapse
|