1
|
Miao L, Xue Y, Song P, Hasegawa T, Okawa A, Maezono R, Sekino T, Yin S. W/Mo/Cr Doping Modulates the Negative-Positive Inversion Gas Sensing Behavior of VO 2(M1). ACS Sens 2025; 10:526-536. [PMID: 39785969 PMCID: PMC11773573 DOI: 10.1021/acssensors.4c03006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
The anomalous gas sensing behavior has garnered significant attention from researchers, prompting a re-evaluation of the gas sensing theory. This work focuses on inversion gas sensing behavior induced by element doping. W/Mo/Cr-doped VO2(M1) samples are synthesized, and their sensing behaviors are investigated. The results show that the elements can modulate the sensing behavior with an opposite orientation. The sensing behavior in the opposite orientation is attributed to the extent of the reduced Fermi level of VO2(M1) after doping. W-doped VO2(M1) maintains a resistance-decreased sensing behavior (-n). In contrast, the decrease in Fermi level results in the formation of a Schottky barrier between the gas-absorbed Mo/Cr-doped VO2(M1) and the electrode. The formation of Schottky barriers leads to the inversion sensing behavior, which feedbacks as an increased resistance (-p). This study offers a novel perspective on the gas sensing theory.
Collapse
Affiliation(s)
- Lei Miao
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Yibei Xue
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Peng Song
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Takuya Hasegawa
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Ayahisa Okawa
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Ryo Maezono
- School
of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
| | | | - Shu Yin
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Odebowale AA, Abdulghani A, Berhe AM, Somaweera D, Akter S, Abdo S, As'ham K, Saadabad RM, Tran TT, Bishop DP, Solntsev AS, Miroshnichenko AE, Hattori HT. Emerging Low Detection Limit of Optically Activated Gas Sensors Based on 2D and Hybrid Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1521. [PMID: 39330677 PMCID: PMC11435144 DOI: 10.3390/nano14181521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Gas sensing is essential for detecting and measuring gas concentrations across various environments, with applications in environmental monitoring, industrial safety, and healthcare. The integration of two-dimensional (2D) materials, organic materials, and metal oxides has significantly advanced gas sensor technology, enhancing its sensitivity, selectivity, and response times at room temperature. This review examines the progress in optically activated gas sensors, with emphasis on 2D materials, metal oxides, and organic materials, due to limited studies on their use in optically activated gas sensors, in contrast to other traditional gas-sensing technologies. We detail the unique properties of these materials and their impact on improving the figures of merit (FoMs) of gas sensors. Transition metal dichalcogenides (TMDCs), with their high surface-to-volume ratio and tunable band gap, show exceptional performance in gas detection, especially when activated by UV light. Graphene-based sensors also demonstrate high sensitivity and low detection limits, making them suitable for various applications. Although organic materials and hybrid structures, such as metal-organic frameworks (MoFs) and conducting polymers, face challenges related to stability and sensitivity at room temperature, they hold potential for future advancements. Optically activated gas sensors incorporating metal oxides benefit from photoactive nanomaterials and UV irradiation, further enhancing their performance. This review highlights the potential of the advanced materials in developing the next generation of gas sensors, addressing current research gaps and paving the way for future innovations.
Collapse
Affiliation(s)
- Ambali Alade Odebowale
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Amer Abdulghani
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Andergachew Mekonnen Berhe
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Dinelka Somaweera
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Sanjida Akter
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Salah Abdo
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Khalil As'ham
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Reza Masoudian Saadabad
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Toan T Tran
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - David P Bishop
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alexander S Solntsev
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Andrey E Miroshnichenko
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| | - Haroldo T Hattori
- School of Engineering and Technology, The University of New South Wales at Canberra, Campbell, ACT 2612, Australia
| |
Collapse
|
3
|
Wang T, Zhao W, Miao Y, Cui A, Gao C, Wang C, Yuan L, Tian Z, Meng A, Li Z, Zhang M. Enhancing Defect-Induced Dipole Polarization Strategy of SiC@MoO 3 Nanocomposite Towards Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2024; 16:273. [PMID: 39147921 PMCID: PMC11327238 DOI: 10.1007/s40820-024-01478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024]
Abstract
Defect engineering in transition metal oxides semiconductors (TMOs) is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials. However, achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive, posing a substantial challenge to the advancement of TMOs absorbers. The current research describes a process for the deposition of a MoO3 layer onto SiC nanowires, achieved via electro-deposition followed by high-temperature calcination. Subsequently, intentional creation of oxygen vacancies within the MoO3 layer was carried out, facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material. Remarkably, the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of - 50.49 dB at a matching thickness of 1.27 mm. Furthermore, the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm, comprehensively covering the entire Ku band. These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness. SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO3 nanocomposite. The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution, which in turn enhances conductivity loss and induced polarization loss capacity. This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.
Collapse
Affiliation(s)
- Ting Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Wenxin Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yukun Miao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Anguo Cui
- Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061, People's Republic of China
| | - Chuanhui Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Chang Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Liying Yuan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Zhongning Tian
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Alan Meng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Meng Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
4
|
Recum P, Hirsch T. Graphene-based chemiresistive gas sensors. NANOSCALE ADVANCES 2023; 6:11-31. [PMID: 38125587 PMCID: PMC10729924 DOI: 10.1039/d3na00423f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023]
Abstract
Gas sensors allow the monitoring of the chemical environment of humans, which is often crucial for their wellbeing or even survival. Miniaturization, reversibility, and selectivity are some of the key challenges for serial use of chemical sensors. This tutorial review describes critical aspects when using nanomaterials as sensing substrates for the application in chemiresistive gas sensors. Graphene has been shown to be a promising candidate, as it allows gas sensors to be operated at room temperature, possibly saving large amounts of energy. In this review, an overview is given on the general mechanisms for gas-sensitive semiconducting materials and the implications of doping and functionalization on the sensing parameters of chemiresistive devices. It shows in detail how different challenges, like sensitivity, response time, reversibility and selectivity have been approached by material development and operation modes. In addition, perspectives from the area of data analysis and intelligent algorithms are presented, which can further enhance these sensors' usability in the field.
Collapse
|
5
|
Mehrez JAA, Chen X, Zeng M, Yang J, Hu N, Wang T, Liu R, Xu L, González-Alfaro Y, Yang Z. MoTe 2/InN van der Waals heterostructures for gas sensors: a DFT study. Phys Chem Chem Phys 2023; 25:28677-28690. [PMID: 37849357 DOI: 10.1039/d3cp02906a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Vertical van der Waals (vdW) heterostructures have shown potential for gas sensing owing to their remarkable sensitivity. However, the optimization process for achieving the best gas sensing performance is complicated by the heterostructure's reliance on both physical and electrical characteristics. This study employs density functional theory (DFT) to analyse the structural and electronic parameters of a MoTe2/InN vdW heterostructure. The findings of this study indicate that the vdW heterostructure has a type-II band alignment with higher adsorption energy towards NH3, NO2, and SO2 than the individual monolayers. In specific, the heterostructure is well suited for NO2 detection but has limitations in reliably detecting NH3 and SO2 due to longer recovery times. We find significant hybridization between the adsorbate and interacting surfaces' orbitals and a notable presence of NO2 molecular orbitals in proximity to the Fermi level. Additionally, dielectric and work function modulations offer a viable means to develop optical-based gas sensors that can selectively detect NO2. Our research provides valuable insights into vdW heterostructure design for high-performance gas sensors.
Collapse
Affiliation(s)
- Jaafar Abdul-Aziz Mehrez
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Xiyu Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Tao Wang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Ruili Liu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Lin Xu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, National Clinical Research Centre for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Centre for Visual Science and Photomedicine, Shanghai 200080, People's Republic of China
| | | | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
6
|
Hooshmand S, Kassanos P, Keshavarz M, Duru P, Kayalan CI, Kale İ, Bayazit MK. Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. SENSORS (BASEL, SWITZERLAND) 2023; 23:8648. [PMID: 37896744 PMCID: PMC10611361 DOI: 10.3390/s23208648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
With a rising emphasis on public safety and quality of life, there is an urgent need to ensure optimal air quality, both indoors and outdoors. Detecting toxic gaseous compounds plays a pivotal role in shaping our sustainable future. This review aims to elucidate the advancements in smart wearable (nano)sensors for monitoring harmful gaseous pollutants, such as ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), hydrogen sulfide (H2S), sulfur dioxide (SO2), ozone (O3), hydrocarbons (CxHy), and hydrogen fluoride (HF). Differentiating this review from its predecessors, we shed light on the challenges faced in enhancing sensor performance and offer a deep dive into the evolution of sensing materials, wearable substrates, electrodes, and types of sensors. Noteworthy materials for robust detection systems encompass 2D nanostructures, carbon nanomaterials, conducting polymers, nanohybrids, and metal oxide semiconductors. A dedicated section dissects the significance of circuit integration, miniaturization, real-time sensing, repeatability, reusability, power efficiency, gas-sensitive material deposition, selectivity, sensitivity, stability, and response/recovery time, pinpointing gaps in the current knowledge and offering avenues for further research. To conclude, we provide insights and suggestions for the prospective trajectory of smart wearable nanosensors in addressing the extant challenges.
Collapse
Affiliation(s)
- Sara Hooshmand
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Panagiotis Kassanos
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK;
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Meysam Keshavarz
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK;
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Pelin Duru
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| | - Cemre Irmak Kayalan
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| | - İzzet Kale
- Applied DSP and VLSI Research Group, Department of Computer Science and Engineering, University of Westminster, London W1W 6UW, UK;
| | - Mustafa Kemal Bayazit
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| |
Collapse
|
7
|
Tomović AŽ, Miljkovic H, Dražić MS, Jovanović VP, Zikic R. Tunnel junction sensing of TATP explosive at the single-molecule level. Phys Chem Chem Phys 2023; 25:26648-26658. [PMID: 37772423 DOI: 10.1039/d3cp02767h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Triacetone triperoxide (TATP) is a highly potent homemade explosive commonly used in terrorist attacks. Its detection poses a significant challenge due to its volatility, and the lack of portability of current sensing techniques. To address this issue, we propose a novel approach based on single-molecule TATP detection in the air using a device where tunneling current in N-terminated carbon-nanotubes nanogaps is measured. By employing the density functional theory combined with the non-equilibrium Green's function method, we show that current of tens of nanoamperes passes through TATP trapped in the nanogap, with a discrimination ratio of several orders of magnitude even against prevalent indoor volatile organic compounds (VOCs). This high tunneling current through TATP's highest occupied molecular orbital (HOMO) is facilitated by the strong electric field generated by N-C polar bonds at the electrode ends and by the hybridization between TATP and the electrodes, driven by oxygen atoms within the probed molecule. The application of the same principle is discussed for graphene nanogaps and break-junctions.
Collapse
Affiliation(s)
- Aleksandar Ž Tomović
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Helena Miljkovic
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Miloš S Dražić
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Vladimir P Jovanović
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Radomir Zikic
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| |
Collapse
|
8
|
Hermawan A, Alviani VN, Wibisono, Seh ZW. Fundamentals, rational catalyst design, and remaining challenges in electrochemical NO x reduction reaction. iScience 2023; 26:107410. [PMID: 37593457 PMCID: PMC10428125 DOI: 10.1016/j.isci.2023.107410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Nitrogen oxides (NOx) emissions carry pernicious consequences on air quality and human health, prompting an upsurge of interest in eliminating them from the atmosphere. The electrochemical NOx reduction reaction (NOxRR) is among the promising techniques for NOx removal and potential conversion into valuable chemical feedstock with high conversion efficiency while benefiting energy conservation. However, developing efficient and stable electrocatalysts for NOxRR remains an arduous challenge. This review provides a comprehensive survey of recent advancements in NOxRR, encompassing the underlying fundamentals of the reaction mechanism and rationale behind the design of electrocatalysts using computational modeling and experimental efforts. The potential utilization of NOxRR in a Zn-NOx battery is also explored as a proof of concept for concurrent NOx abatement, NH3 synthesis, and decarbonizing energy generation. Despite significant strides in this domain, several hurdles still need to be resolved in developing efficient and long-lasting electrocatalysts for NOx reduction. These possible means are necessary to augment the catalytic activity and electrocatalyst selectivity and surmount the challenges of catalyst deactivation and corrosion. Furthermore, sustained research and development of NOxRR could offer a promising solution to the urgent issue of NOx pollution, culminating in a cleaner and healthier environment.
Collapse
Affiliation(s)
- Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia
| | - Vani Novita Alviani
- Graduate School of Environmental Studies, Tohoku University, Sendai 9808579, Japan
| | - Wibisono
- Research Center for Radiation Detection and Nuclear Analysis Technology, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
9
|
Liu H, Liu J, Liu Q, Li Y, Zhang G, He C. Conductometric Gas Sensor Based on MoO 3 Nanoribbon Modified with rGO Nanosheets for Ethylenediamine Detection at Room Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2220. [PMID: 37570537 PMCID: PMC10420955 DOI: 10.3390/nano13152220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
An ethylenediamine (EDA) gas sensor based on a composite of MoO3 nanoribbon and reduced graphene oxide (rGO) was fabricated in this work. MoO3 nanoribbon/rGO composites were synthesized using a hydrothermal process. The crystal structure, morphology, and elemental composition of MoO3/rGO were analyzed via XRD, FT-IR, Raman, TEM, SEM, XPS, and EPR characterization. The response value of MoO3/rGO to 100 ppm ethylenediamine was 843.7 at room temperature, 1.9 times higher than that of MoO3 nanoribbons. The MoO3/rGO sensor has a low detection limit (LOD) of 0.235 ppm, short response time (8 s), good selectivity, and long-term stability. The improved gas-sensitive performance of MoO3/rGO composites is mainly due to the excellent electron transport properties of graphene, the generation of heterojunctions, the higher content of oxygen vacancies, and the large specific surface area in the composites. This study presents a new approach to efficiently and selectively detect ethylenediamine vapor with low power.
Collapse
Affiliation(s)
- Hongda Liu
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemical Engineering and Material, Heilongjiang University, Ministry of Education, 74 Xuefu Road, Harbin 150080, China; (H.L.); (Y.L.)
| | - Jiongjiang Liu
- School of Chemical Engineering and Material, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China; (J.L.); (Q.L.)
| | - Qi Liu
- School of Chemical Engineering and Material, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China; (J.L.); (Q.L.)
| | - Yinghui Li
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemical Engineering and Material, Heilongjiang University, Ministry of Education, 74 Xuefu Road, Harbin 150080, China; (H.L.); (Y.L.)
| | - Guo Zhang
- School of Chemical Engineering and Material, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China; (J.L.); (Q.L.)
| | - Chunying He
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemical Engineering and Material, Heilongjiang University, Ministry of Education, 74 Xuefu Road, Harbin 150080, China; (H.L.); (Y.L.)
- School of Chemical Engineering and Material, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China; (J.L.); (Q.L.)
| |
Collapse
|
10
|
Bulusheva LG, Semushkina GI, Fedorenko AD. Heteroatom-Doped Molybdenum Disulfide Nanomaterials for Gas Sensors, Alkali Metal-Ion Batteries and Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2182. [PMID: 37570500 PMCID: PMC10420692 DOI: 10.3390/nano13152182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Molybdenum disulfide (MoS2) is the second two-dimensional material after graphene that received a lot of attention from the research community. Strong S-Mo-S bonds make the sandwich-like layer mechanically and chemically stable, while the abundance of precursors and several developed synthesis methods allow obtaining various MoS2 architectures, including those in combinations with a carbon component. Doping of MoS2 with heteroatom substituents can occur by replacing Mo and S with other cations and anions. This creates active sites on the basal plane, which is important for the adsorption of reactive species. Adsorption is a key step in the gas detection and electrochemical energy storage processes discussed in this review. The literature data were analyzed in the light of the influence of a substitutional heteroatom on the interaction of MoS2 with gas molecules and electrolyte ions. Theory predicts that the binding energy of molecules to a MoS2 surface increases in the presence of heteroatoms, and experiments showed that such surfaces are more sensitive to certain gases. The best electrochemical performance of MoS2-based nanomaterials is usually achieved by including foreign metals. Heteroatoms improve the electrical conductivity of MoS2, which is a semiconductor in a thermodynamically stable hexagonal form, increase the distance between layers, and cause lattice deformation and electronic density redistribution. An analysis of literature data showed that co-doping with various elements is most attractive for improving the performance of MoS2 in sensor and electrochemical applications. This is the first comprehensive review on the influence of foreign elements inserted into MoS2 lattice on the performance of a nanomaterial in chemiresistive gas sensors, lithium-, sodium-, and potassium-ion batteries, and supercapacitors. The collected data can serve as a guide to determine which elements and combinations of elements can be used to obtain a MoS2-based nanomaterial with the properties required for a particular application.
Collapse
Affiliation(s)
- Lyubov G. Bulusheva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (G.I.S.); (A.D.F.)
| | | | | |
Collapse
|
11
|
Khan MM, Matussin SN, Rahman A. Recent development of metal oxides and chalcogenides as antimicrobial agents. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02878-1. [PMID: 37198515 DOI: 10.1007/s00449-023-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Pathogenic microbes are a major concern in hospitals and other healthcare facilities because they affect the proper performance of medical devices, surgical devices, etc. Due to the antimicrobial resistance or multidrug resistance, combatting these microbial infections has grown to be a significant research area in science and medicine as well as a critical health concern. Antibiotic resistance is where microbes acquire and innately exhibit resistance to antimicrobial agents. Therefore, the development of materials with promising antimicrobial strategy is a necessity. Amongst other available antimicrobial agents, metal oxide and chalcogenide-based materials have shown to be promising antimicrobial agents due to their inherent antimicrobial activity as well as their ability to kill and inhibit the growth of microbes effectively. Moreover, other features including the superior efficacy, low toxicity, tunable structure, and band gap energy has makes metal oxides (i.e. TiO2, ZnO, SnO2 and CeO2 in particular) and chalcogenides (Ag2S, MoS2, and CuS) promising candidates for antimicrobial applications as illustrated by examples discussed in this review.
Collapse
Affiliation(s)
- Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam.
| | - Shaidatul Najihah Matussin
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Ashmalina Rahman
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| |
Collapse
|
12
|
Concepción O, de Melo O. The versatile family of molybdenum oxides: synthesis, properties, and recent applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:143002. [PMID: 36630718 DOI: 10.1088/1361-648x/acb24a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The family of molybdenum oxides has numerous advantages that make them strong candidates for high-value research and various commercial applications. The variation of their multiple oxidation states allows their existence in a wide range of compositions and morphologies that converts them into highly versatile and tunable materials for incorporation into energy, electronics, optical, and biological systems. In this review, a survey is presented of the most general properties of molybdenum oxides including the crystalline structures and the physical properties, with emphasis on present issues and challenging scientific and technological aspects. A section is devoted to the thermodynamical properties and the most common preparation techniques. Then, recent applications are described, including photodetectors, thermoelectric devices, solar cells, photo-thermal therapies, gas sensors, and energy storage.
Collapse
Affiliation(s)
- O Concepción
- Peter Gruenberg Institute 9 (PGI-9), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - O de Melo
- Physics Faculty, University of Havana, 10400 Havana, Cuba
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Cd. Universitaria, A.P. 70-360, Coyoacán 04510, Mexico
| |
Collapse
|
13
|
Wang W, Wang D, Zhang X, Yang C, Zhang D. Self-Powered Nitrogen Dioxide Sensor Based on Pd-Decorated ZnO/MoSe 2 Nanocomposite Driven by Triboelectric Nanogenerator. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4274. [PMID: 36500897 PMCID: PMC9741003 DOI: 10.3390/nano12234274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
This paper introduces a high-performance self-powered nitrogen dioxide gas sensor based on Pd-modified ZnO/MoSe2 nanocomposites. Poly(vinyl alcohol) (PVA) nanofibers were prepared by high-voltage electrospinning and tribological nanogenerators (TENGs) were designed. The output voltage of TENG and the performance of the generator at different frequencies were measured. The absolute value of the maximum positive and negative voltage exceeds 200 V. Then, the output voltage of a single ZnO thin-film sensor, Pd@ZnO thin-film sensor and Pd@ZnO/MoSe2 thin-film sensor was tested by using the energy generated by TENG at 5 Hz, when the thin-film sensor was exposed to 1-50 ppm NO2 gas. The experimental results showed that the sensing response of the Pd@ZnO/MoSe2 thin-film sensor was higher than that of the single ZnO film sensor and Pd@ZnO thin-film sensor. The TENG-driven response rate of the Pd@ZnO/MoSe2 sensor on exposure to 50 ppm NO2 gas was 13.8. At the same time, the sensor had good repeatability and selectivity. The synthetic Pd@ZnO/MoSe2 ternary nanocomposite was an ideal material for the NO2 sensor, with excellent structure and performance.
Collapse
|
14
|
Zhou H, Ren Z, Xu C, Xu L, Lee C. MOF/Polymer-Integrated Multi-Hotspot Mid-Infrared Nanoantennas for Sensitive Detection of CO 2 Gas. NANO-MICRO LETTERS 2022; 14:207. [PMID: 36271989 PMCID: PMC9588146 DOI: 10.1007/s40820-022-00950-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/09/2022] [Indexed: 05/20/2023]
Abstract
Metal-organic frameworks (MOFs) have been extensively used for gas sorption, storage and separation owing to ultrahigh porosity, exceptional thermal stability, and wide structural diversity. However, when it comes to ultra-low concentration gas detection, technical bottlenecks of MOFs appear due to the poor adsorption capacity at ppm-/ppb-level concentration and the limited sensitivity for signal transduction. Here, we present hybrid MOF-polymer physi-chemisorption mechanisms integrated with infrared (IR) nanoantennas for highly selective and ultrasensitive CO2 detection. To improve the adsorption capacity for trace amounts of gas molecules, MOFs are decorated with amino groups to introduce the chemisorption while maintaining the structural integrity for physisorption. Additionally, leveraging all major optimization methods, a multi-hotspot strategy is proposed to improve the sensitivity of nanoantennas by enhancing the near field and engineering the radiative and absorptive loss. As a benefit, we demonstrate the competitive advantages of our strategy against the state-of-the-art miniaturized IR CO2 sensors, including low detection limit, high sensitivity (0.18%/ppm), excellent reversibility (variation within 2%), and high selectivity (against C2H5OH, CH3OH, N2). This work provides valuable insights into the integration of advanced porous materials and nanophotonic devices, which can be further adopted in ultra-low concentration gas monitoring in industry and environmental applications.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Liangge Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore.
- NUS Suzhou Research Institute (NUSRI), Suzhou, 215123, People's Republic of China.
| |
Collapse
|
15
|
Puspasari V, Ridhova A, Hermawan A, Amal MI, Khan MM. ZnO-based antimicrobial coatings for biomedical applications. Bioprocess Biosyst Eng 2022; 45:1421-1445. [PMID: 35608710 PMCID: PMC9127292 DOI: 10.1007/s00449-022-02733-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
Rapid transmission of infectious microorganisms such as viruses and bacteria through person-to-person contact has contributed significantly to global health issues. The high survivability of these microorganisms on the material surface enumerates their transmissibility to the susceptible patient. The antimicrobial coating has emerged as one of the most interesting technologies to prevent growth and subsequently kill disease-causing microorganisms. It offers an effective solution a non-invasive, low-cost, easy-in-use, side-effect-free, and environmentally friendly method to prevent nosocomial infection. Among antimicrobial coating, zinc oxide (ZnO) stands as one of the excellent materials owing to zero toxicity, high biocompatibility to human organs, good stability, high abundancy, affordability, and high photocatalytic performance to kill various infectious pathogens. Therefore, this review provides the latest research progress on advanced applications of ZnO nanostructure-based antibacterial coatings for medical devices, biomedical applications, and health care facilities. Finally, future challenges and clinical practices of ZnO-based antibacterial coating are addressed.
Collapse
Affiliation(s)
- Vinda Puspasari
- Research Center for Metallurgy, National Research and Innovation Agency, PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Aga Ridhova
- Research Center for Metallurgy, National Research and Innovation Agency, PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency, South Tangerang, Banten, 15315, Indonesia
| | - Muhamad Ikhlasul Amal
- Research Center for Metallurgy, National Research and Innovation Agency, PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
16
|
Xu X, Wang S, Chen Y, Liu W, Wang X, Jiang H, Ma S, Yun P. CsPbBr 3-Based Nanostructures for Room-Temperature Sensing of Volatile Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39524-39534. [PMID: 35976102 DOI: 10.1021/acsami.2c09586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
All-inorganic halide perovskites, as a dominant member of the perovskite family, have been proven to be excellent semiconductors due to the great successes for solar cells, light-emitting diodes, photodetectors, and nanocrystal photocatalysts. Despite the remarkable advances in those fields, there are few research studies focusing on gas and humidity-sensing performances, especially for pure CsPbBr3 and heterogeneous CsPbBr3@MoS2 composites. Here, we first report a valuable CsPbBr3 sensor prepared by electrospinning, and the excellent gas sensing performances are investigated. The CsPbBr3 sensor can quickly and effectively detect ethanolamine at room temperature. The response time is only 16 s, and the response to 100 ppm ethanolamine is as high as 29.87, besides the excellent repeatability and good stability. The theoretical detection limit is estimated to be 21 ppb. Furthermore, considering the irreplaceable role of heterostructures in regulating the electronic structure and supporting rich reaction boundaries, we also actively explored the EA sensitivity of inorganic CsPbBr3-based heterogeneous composites CsPbBr3@MoS2. At the same time, the roles of the critical capping agents OA and OAm are systematically investigated. This work demonstrates the great potential of all-inorganic halide perovskites in promising volatile organic compound detection.
Collapse
Affiliation(s)
- Xiaoli Xu
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shengyi Wang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yan Chen
- Northwest University for Nationalities, Lanzhou, Gansu 730030, China
| | - Wangwang Liu
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoping Wang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hongtao Jiang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shuyi Ma
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pengdou Yun
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
17
|
Zha X, Yang W, Shi L, Li Y, Zeng Q, Xu J, Yang Y. Morphology Control Strategy of Bimetallic MOF Nanosheets for Upgrading the Sensitivity of Noninvasive Glucose Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37843-37852. [PMID: 35947783 DOI: 10.1021/acsami.2c10760] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The precise measurement of glucose level is significant for the health management of the human body. However, the existing sensitive materials and detection methods for glucose are less satisfying for practical applications. Herein, an ultrathin reticular two-dimensional nanosheets array composed of trimesic acid (H3BTC)-based bimetal metal-organic frameworks (MOFs) and carbon cloth (CC), which is constructed through a morphology control strategy, is reported for glucose sensing. Meanwhile, this nonmoving sweat glucose sensor based on a NiCo-BTC/CC electrode has been successfully prepared by a screen printing method. Benefiting from the regular and ultrathin nanosheets array, the NiCo-BTC/CC electrode has an excellent sensitivity of 2701.29 μA mM-1 cm-2, which is about 2.4 times that of its unregulated counterpart (1127.85 μA mM-1 cm-2) in the linear range 5-205 μM. In addition, an ultralow detection limit (0.09 μM, S/N = 3) and good selectivity of NiCo-BTC/CC were also obtained. The high sensitivity of the glucose sensor based on NiCo-BTC/CC electrode is 0.174 μA μM-1 (50-1000 μM). Remarkably, the preciously designed sensor is used to detect glucose concentration in sweat with a noninvasive mode, and the results are basically consistent with those of a commercial glucose device with an invasive mode. This research exhibits potential methodology for the morphology design of bimetallic MOFs nanosheets to achieve a high accuracy rate and noninvasive and timeless measurement of a glucose sensor.
Collapse
Affiliation(s)
- Xiaoting Zha
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Wenyao Yang
- Chongqing Engineering Research Center of New Energy Storage Devices and Applications, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Liuwei Shi
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yi Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Qi Zeng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jianhua Xu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yajie Yang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
18
|
Zhang Y, Jiang Y, Duan Z, Wu Y, Zhao Q, Liu B, Huang Q, Yuan Z, Li X, Tai H. Edge-enriched MoS 2 nanosheets modified porous nanosheet-assembled hierarchical In 2O 3 microflowers for room temperature detection of NO 2 with ultrahigh sensitivity and selectivity. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128836. [PMID: 35421674 DOI: 10.1016/j.jhazmat.2022.128836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanosheets-assembled three-dimensional (3D) In2O3 microflowers have been synthesized to improve the sensitivity and selectivity of NO2 detection at RT. The results show that the In2O3/MoS2 composite sensor exhibits a response as high as 343.09-5 ppm NO2, which is 309 and 72.5 times higher than the sensors based on the pristine MoS2 and In2O3. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In2O3/MoS2 sensor to NO2 is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In2O3/MoS2 sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO2 sensors.
Collapse
Affiliation(s)
- Yajie Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Zaihua Duan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Yingwei Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Qiuni Zhao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Bohao Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Qi Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Xian Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China.
| |
Collapse
|
19
|
Aleksandrova M. Texturing of nanocoatings for surface acoustic wave-based sensors for volatile organic compounds. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
An approach for texturing of gas-sensitive nanocoatings by using surface acoustic waves (SAW) is presented in this article. The objective of the work is to enhance the performance of precise SAW-based gas sensors due to the increased specific area of the sensitive nanocoating, induced during its growth and to replace the expensive lithographic techniques for nanopatterning, typically used for this purpose. The technique can be used for tuneable alignment of nanoparticles or nanowires and it is scale-independent. To control the texture of the sensitive nanocoating, a specific electrode topology was used to generate waves with a specific space distribution, which in turn caused assembling of the nanoparticles increasing the adsorption capacity. In this way, a broader dynamic range of 7,000 ppm was achieved (three times extended as compared to the non-textured sensing film), measurement error of 0.6% against 4% for the non-patterned, faster response time in the sub-seconds range (970 ms vs 1.1 s), negligible hysteresis of 10 mV (against >100 mV), and very good sensitivity of 5 µV per ppm, which are in line with the current standards for ethanol sensors. The enhanced sensor parameters were achieved by implementation of conventional patterning technologies without the need for nanolithographic techniques for the texturing the nanocoating. The method is low-cost, and applicable in a variety of sensing structures despite the sensing coating (optical, biological, etc.).
Collapse
Affiliation(s)
- Mariya Aleksandrova
- Department of Microelectronics, Technical University of Sofia , Sofia 1000 , Bulgaria
| |
Collapse
|
20
|
Abstract
Layered Au/SnS2 nanosheet based chemiresistive-type sensors were successfully prepared by using an in situ chemical reduction method followed by the hydrothermal treatment. SEM and XRD were used to study the microscopic morphology and crystal lattice structure of the synthesis of Au/SnS2 nanomaterials. TEM and XPS characterization were further carried out to verify the formation of the Schottky barrier between SnS2 nanosheets and Au nanoparticles. The as-fabricated Au/SnS2 nanosheet based sensor demonstrated excellent sensing properties to low-concentrations of NO2, and the response of the sensor to 4 ppm NO2 at 120 °C was approximately 3.94, which was 65% higher than that of the pristine SnS2 (2.39)-based sensor. Moreover, compared to that (220 s/520 s) of the pristine SnS2-based sensor, the response/recovery time of the Au/SnS2-based one was significantly improved, reducing to 42 s/127 s, respectively. The sensor presents a favorable long-term stability with a deviation in the response of less than 4% for 40 days, and a brilliant selectivity to several possible interferents such as NH3, acetone, toluene, benzene, methanol, ethanol, and formaldehyde. The Schottky barrier that formed at the interface between the SnS2 nanosheets and Au nanoparticles modulated the conducting channel of the nanocomposites. The “catalysis effect” and “spillover effect” of noble metals jointly improved the sensitivity of the sensor and effectively decreased the response/recovery time.
Collapse
|
21
|
Wang X, Li M, Xu P, Chen Y, Yu H, Li X. In Situ TEM Technique Revealing the Deactivation Mechanism of Bimetallic Pd-Ag Nanoparticles in Hydrogen Sensors. NANO LETTERS 2022; 22:3157-3164. [PMID: 35191710 DOI: 10.1021/acs.nanolett.1c05018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimetallic Pd-Ag alloy nanoparticles exhibit satisfactory H2-sensing improvements and show application potential for H2 sensor construction. However, the long-term stability of the H2 sensor with Pd-Ag nanoparticles as the catalyst is found to dramatically decrease during operation. Herein, gas-cell in situ transmission electron microscopy (TEM) is used to investigate the failure mechanisms of Pd-Ag nanoparticles under operation conditions. Based on the in situ TEM results, the Pd-Ag nanoparticles have two failure mechanisms: particles coalescence at 300 °C and phase segregation at 500 °C. Guided by the failure mechanisms, the H2 sensor is comprehensively optimized based on the working temperature and the amount of Pd-Ag alloy nanoparticles. The optimized sensor exhibits satisfactory H2-sensing properties, and the response decline of the sensor after 1 month is negligible. The revealing of the failure mechanisms with in situ TEM technology provides a valuable route for developing gas sensors with high long-term stability.
Collapse
Affiliation(s)
- Xueqing Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Pengcheng Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Haitao Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|