1
|
Li Y, Bai N, Chang Y, Liu Z, Liu J, Li X, Yang W, Niu H, Wang W, Wang L, Zhu W, Chen D, Pan T, Guo CF, Shen G. Flexible iontronic sensing. Chem Soc Rev 2025; 54:4651-4700. [PMID: 40165624 DOI: 10.1039/d4cs00870g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The emerging flexible iontronic sensing (FITS) technology has introduced a novel modality for tactile perception, mimicking the topological structure of human skin while providing a viable strategy for seamless integration with biological systems. With research progress, FITS has evolved from focusing on performance optimization and structural enhancement to a new phase of integration and intelligence, positioning it as a promising candidate for next-generation wearable devices. Therefore, a review from the perspective of technological development trends is essential to fully understand the current state and future potential of FITS devices. In this review, we examine the latest advancements in FITS. We begin by examining the sensing mechanisms of FITS, summarizing research progress in material selection, structural design, and the fabrication of active and electrode layers, while also analysing the challenges and bottlenecks faced by different segments in this field. Next, integrated systems based on FITS devices are reviewed, highlighting their applications in human-machine interaction, healthcare, and environmental monitoring. Additionally, the integration of artificial intelligence into FITS is explored, focusing on optimizing front-end device design and improving the processing and utilization of back-end data. Finally, building on existing research, future challenges for FITS devices are identified and potential solutions are proposed.
Collapse
Affiliation(s)
- Yang Li
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Ningning Bai
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Yu Chang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.
| | - Zhiguang Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jianwen Liu
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Xiaoqin Li
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Wenhao Yang
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Hongsen Niu
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Ubiquitous Intelligent Computing, University of Jinan, Jinan, 250022, China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Wenhao Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Di Chen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Tingrui Pan
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Ding Q, Wang H, Zhou Y, Zhang Z, Luo Y, Wu Z, Yang L, Xie R, Yang BR, Tao K, Pan S, Liu F, Fu J, Huo F, Wu J. Self-Powered Switchable Gas-Humidity Difunctional Flexible Chemosensors Based on Smart Adaptable Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502369. [PMID: 40326194 DOI: 10.1002/adma.202502369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Indexed: 05/07/2025]
Abstract
The development of self-powered, flexible, and multi-function sensors is highly anticipated in wearable electronics, however, it remains a daunting challenge to identify different signals based on a single device with singular sensing material without algorithmic support. Here, a smart adaptable hydrogel is developed by co-introducing two ions with vastly different hydrophilicity for the construction of an electrochemically self-powered, flexible, and reversibly switchable difunctional chemosensor with a metal-air battery structure. The prepared hydrogel can readily switch between water-rich and water-deficient states for crosstalk-free detection of oxygen and humidity respectively, since O2 gas and water molecules can directly participate in the oxygen reduction reaction in the device and act alone as limiting reactants and catalysts to affect the reaction rate under different hydrogel states. The resulting sensor demonstrates breakthrough O2 and humidity sensing performance with sensitivities as high as 4170.5%/% and 380.2%/% RH in water-rich and water-deficient states, respectively, and ultrawide detection ranges. Thanks to these, the devices can be applied for real-time and remote monitoring of ambient oxygen, transcutaneous oxygen pressure changes, respiration, and skin moisture by combining with wireless communication technology, and therefore have important application prospects in the fields of safety, health management, and non-contact human-machine interaction.
Collapse
Affiliation(s)
- Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai, 200050, P. R. China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yubin Zhou
- Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy and Dongguan Innovation Institute, Guangdong Medical University, Dongguan, 523808, China
| | - Zhicheng Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zixuan Wu
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, P. R. China
| | - Le Yang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, Guangzhou, Guangdong, 510055, P. R. China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou, Guangdong, 510080, China
| | - Ruijie Xie
- The Institute of Flexible Electronics (IFE Future Technologies), Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shaowu Pan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jun Fu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Fengwei Huo
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, P. R. China
- The Institute of Flexible Electronics (IFE Future Technologies), Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai, 200050, P. R. China
| |
Collapse
|
3
|
Yan J, Yang S, Chen J, Wu X, Qing Y. Dynamic BO bonds-induced viscoelasticity and surface adhesion regulation for constructing konjac glucomannan-based soft actuators with superior mobility and capturability. Int J Biol Macromol 2025; 305:141033. [PMID: 39954880 DOI: 10.1016/j.ijbiomac.2025.141033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
In all soft actuators, achieving both outstanding mobility and capturability is crucial; however, these properties are usually mutually exclusive due to the lack of an effective mechanism for controlling the viscoelasticity of the switching polymer matrix while maintaining a moderate surface adhesion. In this study, we propose a dynamic bond cross-linking strategy to successfully develop a magnetically responsive soft hydrogel (MRSH) with exceptional mobility (117.56 mm/s) and capturability. By introducing dynamic BO bonds into the KGM@Fe3O4@PSSMA NPs composite matrix, the crosslinking density and overall cohesion of MRSH can be precisely controlled, resulting in unique non-Newtonian fluid characteristics. Additionally, the dynamic BO bonds transition between associative and dissociative states with the hydroxyl groups on the KGM molecular chains, which can effectively regulate the amount of hydroxyl groups on the surface of MRSH, thereby achieving demonstrate moderate surface adhesion. As a result, the synthesized MRSH exhibits remarkable capturability on various target surfaces and maintains outstanding mobility, even in underwater environments. This work paves the way for new possibilities in the field of soft actuators and engineering by overcoming the limitations of traditional soft actuators in terms of surface adhesion and responsiveness through innovative structural design and material combinations.
Collapse
Affiliation(s)
- Jie Yan
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Suwen Yang
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianshan Chen
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xianzhang Wu
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yan Qing
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
4
|
Han F, Chen S, Wang F, Liu M, Li J, Liu H, Yang Y, Zhang H, Liu D, He R, Cao W, Qin X, Xu F. High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412726. [PMID: 39874215 PMCID: PMC12021042 DOI: 10.1002/advs.202412726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented. The hydrogel is designed with a hydrogen-bonded and chemically crosslinked network, achieving excellent conductivity (0.49 ± 0.05 S m-1), adhesion (36.73 ± 2.28 kPa), and self-healing capacity even at -80 °C. Furthermore, the ICHs maintain functionality for over 45 days, showcasing outstanding anti-freezing properties. This material demonstrates significant potential for non-invasive, continuous health monitoring, adhering conformally to the skin without signal crosstalk, and enabling real-time, high-fidelity signal transmission in human-machine interactions under cryogenic conditions. These ICHs offer transformative potential for the next generation of multimodal sensors, broadening application possibilities in harsh environments, including extreme weather and outer space.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Shumeng Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Fei Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Mei Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Jiahui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yanshen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Dong Liu
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityNo. 28, Xianning West RoadXi'anShaanxi710049P. R. China
| | - Rongyan He
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
- Guangxi Key Laboratory of Special BiomedicineSchool of MedicineGuangxi UniversityNanning530004P. R. China
| | - Wentao Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Xiaochuan Qin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
5
|
Li Y, Tan S, Zhang X, Li Z, Cai J, Liu Y. Design Strategies and Emerging Applications of Conductive Hydrogels in Wearable Sensing. Gels 2025; 11:258. [PMID: 40277694 PMCID: PMC12027214 DOI: 10.3390/gels11040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Conductive hydrogels, integrating high conductivity, mechanical flexibility, and biocompatibility, have emerged as crucial materials driving the evolution of next-generation wearable sensors. Their unique ability to establish seamless interfaces with biological tissues enables real-time acquisition of physiological signals, external stimuli, and even therapeutic feedback, paving the way for intelligent health monitoring and personalized medical interventions. To fully harness their potential, significant efforts have been dedicated to tailoring the conductive networks, mechanical properties, and environmental stability of these hydrogels through rational design and systematic optimization. This review comprehensively summarizes the design strategies of conductive hydrogels, categorized into metal-based, carbon-based, conductive polymer-based, ionic, and hybrid conductive systems. For each type, the review highlights structural design principles, strategies for conductivity enhancement, and approaches to simultaneously enhance mechanical robustness and long-term stability under complex environments. Furthermore, the emerging applications of conductive hydrogels in wearable sensing systems are thoroughly discussed, covering physiological signal monitoring, mechano-responsive sensing platforms, and emerging closed-loop diagnostic-therapeutic systems. Finally, this review identifies key challenges and offers future perspectives to guide the development of multifunctional, intelligent, and scalable conductive hydrogel sensors, accelerating their translation into advanced flexible electronics and smart healthcare technologies.
Collapse
Affiliation(s)
- Yingchun Li
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710071, China
| | - Shaozhe Tan
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, Xi’an 710071, China
| | - Xuesi Zhang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, Xi’an 710071, China
| | - Zhenyu Li
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, Xi’an 710071, China
| | - Jun Cai
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, Xi’an 710071, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an 710069, China
| |
Collapse
|
6
|
Wang Y, Zhang N, Zhang J, Yao R, He J, Wu F. Reinforced enzyme mineralized chitosan hydrogels with superior mechanical and osteogenic properties. Carbohydr Polym 2025; 349:123032. [PMID: 39638528 DOI: 10.1016/j.carbpol.2024.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
As a natural cationic polymer material, the application of chitosan hydrogel for bone tissue engineering has been greatly limited due to its poor mechanical strength. Enzymatic mineralization has drawn increased attention to effectively improve the mechanical properties of hydrogels. In this study, carboxymethyl chitosan (CMCS) hydrogels cross-linked with different concentrations of genipin (2.5 %, 5 % and 10 %) were prepared and further mineralized through enzyme-induced biomimetic mineralization. The mechanical properties of the CMCS hydrogels were significantly increased as a result of mineralization, showing improvement of 1200-1500 % on storage moduli, and even exhibiting certain tensile behavior with the elongation rate of 30-35 %, likely due to the uniform formation and small size of mineralized products. Interestingly, the cationicity of chitosan also exerted an important modulation effect and the mineralization behavior and mechanical properties of mineralized hydrogels. In addition, the enzymatic mineralized hydrogels showed enhanced biocompatibility and osteogenic differentiation in-vitro, likely due to its superior mechanical properties and the introduction of calcium phosphate biominerals. In vivo experiments further suggest excellent bone-forming activity for the enzymatic mineralized hydrogels. Overall, tuning cationicity and enzymatic mineralization provide an effective approach for the preparation of chitosan hydrogels with superior mechanical and biological properties for bone tissue engineering application.
Collapse
Affiliation(s)
- Yao Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Nihui Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Ruijuan Yao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
7
|
Tang S, Feng K, Yang R, Cheng Y, Chen M, Zhang H, Shi N, Wei Z, Ren H, Ma Y. Multifunctional Adhesive Hydrogels: From Design to Biomedical Applications. Adv Healthc Mater 2025; 14:e2403734. [PMID: 39604246 DOI: 10.1002/adhm.202403734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Adhesive hydrogels characterized by structural properties similar to the extracellular matrix, excellent biocompatibility, controlled degradation, and tunable mechanical properties have demonstrated significant potential in biomedical applications, including tissue engineering, biosensors, and drug delivery systems. These hydrogels exhibit remarkable adhesion to target substrates and can be rationally engineered to meet specific requirements. In recent decades, adhesive hydrogels have experienced significant advancements driven by the introduction of numerous multifunctional design strategies. This review initially summarizes the chemical bond-based design strategies for tissue adhesion, encompassing static covalent bonds, dynamic covalent bonds, and non-covalent interactions. Subsequently, the multiple functionalities imparted by these diverse design strategies, including highly stretchable and tough performances, responsiveness to microenvironments, anti-freezing/heating properties, conductivity, antibacterial activity, and hemostatic properties are discussed. In addition, recent advances in the biomedical applications of adhesive hydrogels, focusing on tissue repair, drug delivery, medical devices, and wearable sensors are reviewed. Finally, the current challenges are highlighted and future trends in this rapidly evolving field are discussed.
Collapse
Affiliation(s)
- Shaoxin Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Keru Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Rui Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yang Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Meiyue Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
8
|
Zong B, Wu S, Yang Y, Li Q, Tao T, Mao S. Smart Gas Sensors: Recent Developments and Future Prospective. NANO-MICRO LETTERS 2024; 17:54. [PMID: 39489808 PMCID: PMC11532330 DOI: 10.1007/s40820-024-01543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Gas sensor is an indispensable part of modern society with wide applications in environmental monitoring, healthcare, food industry, public safety, etc. With the development of sensor technology, wireless communication, smart monitoring terminal, cloud storage/computing technology, and artificial intelligence, smart gas sensors represent the future of gas sensing due to their merits of real-time multifunctional monitoring, early warning function, and intelligent and automated feature. Various electronic and optoelectronic gas sensors have been developed for high-performance smart gas analysis. With the development of smart terminals and the maturity of integrated technology, flexible and wearable gas sensors play an increasing role in gas analysis. This review highlights recent advances of smart gas sensors in diverse applications. The structural components and fundamental principles of electronic and optoelectronic gas sensors are described, and flexible and wearable gas sensor devices are highlighted. Moreover, sensor array with artificial intelligence algorithms and smart gas sensors in "Internet of Things" paradigm are introduced. Finally, the challenges and perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.
Collapse
Affiliation(s)
- Boyang Zong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Shufang Wu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Yuehong Yang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Tian Tao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
9
|
Liang S, Ji Q, Wang R, Hu G, Li W, He L, Jiao Y, Singh T, Zhu H, Wang K, Fu Q, He W. Wood Cell Wall Nanoengineering toward Anisotropic, Strong, and Flexible Cellulosic Hydrogel Sensors. NANO LETTERS 2024. [PMID: 39373896 DOI: 10.1021/acs.nanolett.4c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Achieving highly ionic conductive hydrogels from natural wood remains challenging owing to their insufficient surface area and low number of active sites on the cell wall. This study proposes a viable strategy to design a strong and anisotropic wood-based hydrogel through cell wall nanoengineering. By manipulating the microstructure of the wood cell wall, a flexible cellulosic hydrogel is achieved through Schiff base bonding via the polyacrylamide and cellulose molecular chains. This results in excellent flexibility and mechanical properties of the wood hydrogel with tensile strengths of 22.3 and 6.1 MPa in the longitudinal and transverse directions, respectively. Moreover, confining aqueous salt electrolytes within the porous structure gives anisotropic ionic conductivities (19.5 and 6.02 S/m in the longitudinal and transverse directions, respectively). The wood-based hydrogel sensor has a favorable sensitivity and a stable working performance at a low temperature of -25 °C in monitoring human motions, thereby demonstrating great potential applications in wearable sensor devices.
Collapse
Affiliation(s)
- Shuang Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiuling Ji
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gangzheng Hu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenxuan Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei He
- Institute of Forest Products, Jiangxi Academy of Forestry, No. 1629, Fenglin West Street, Nanchang Economic and Technological Development Zone, Jiangxi 330013, China
| | - Yue Jiao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tripti Singh
- Scion, 49 Sala Street, Te Papa Tipu Innovation Park, Rotorua 3046, New Zealand
- National Centre for Timber Durability and Design Life, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Hongfei Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kaiyin Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiliang Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Scion, 49 Sala Street, Te Papa Tipu Innovation Park, Rotorua 3046, New Zealand
| | - Wen He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Xue C, Chen L, Wang N, Chen H, Xu W, Xi Z, Sun Q, Kang R, Xie L, Liu X. Stimuli-responsive hydrogels for bone tissue engineering. BIOMATERIALS TRANSLATIONAL 2024; 5:257-273. [PMID: 39734705 PMCID: PMC11681187 DOI: 10.12336/biomatertransl.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 08/30/2024] [Indexed: 12/31/2024]
Abstract
The treatment of bone defects remains a great clinical challenge. With the development of science and technology, bone tissue engineering technology has emerged, which can mimic the structure and function of natural bone tissues and create solutions for repairing or replacing human bone tissues based on biocompatible materials, cells and bioactive factors. Hydrogels are favoured by researchers due to their high water content, degradability and good biocompatibility. This paper describes the hydrogel sources, roles and applications. According to the different types of stimuli, hydrogels are classified into three categories: physical, chemical and biochemical responses, and the applications of different stimuli-responsive hydrogels in bone tissue engineering are summarised. Stimuli-responsive hydrogels can form a semi-solid with good adhesion based on different physiological environments, which can carry a variety of bone-enhancing bioactive factors, drugs and cells, and have a long retention time in the local area, which is conducive to a long period of controlled release; they can also form a scaffold for constructing tissue repair, which can jointly promote the repair of bone injury sites. However, it also has many defects, such as poor biocompatibility, immunogenicity and mechanical stability. Further studies are still needed in the future to facilitate its clinical translation.
Collapse
Affiliation(s)
- Congyang Xue
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Liping Chen
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Nan Wang
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Heng Chen
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wenqiang Xu
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Zhipeng Xi
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Qing Sun
- Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ran Kang
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lin Xie
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xin Liu
- Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
11
|
Zhao P, Bai Y, Zhao C, Gao W, Ma P, Yu J, Zhang Y, Zhu P. Multiwalled Carbon Nanotube-Templated Nickel Porphyrin Covalent Organic Framework for Pencil-Drawn Noninvasive Respiration Sensors. ACS Sens 2024; 9:4711-4720. [PMID: 39186011 DOI: 10.1021/acssensors.4c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Paper-integrated configuration with miniaturized functionality represents one of the future main green electronics. In this study, a paper-based respiration sensor was prepared using a multiwalled carbon nanotube-templated nickel porphyrin covalent organic framework (MWCNTs@COFNiP-Ph) as an electrical identification component and pencil-drawn graphite electric circuits as interdigitated electrodes (IDEs). The MWCNTs@COFNiP-Ph not only inherited the high gas sensing performance of porphyrin and the aperture induction effect of COFs but also overcame the shielding effect between phases through the MWCNT template. Furthermore, it possessed highly exposed M-N4 metallic active sites and unique periodic porosity, thereby effectively addressing the key technical issue of room-temperature sensing for the respiration sensor. Meanwhile, the introduction of a pencil-drawing approach on common printing papers facilitates the inexpensive and simple manufacturing of the as-fabricated graphite IDE. Based on the above advantages, the MWCNTs@COFNiP-Ph respiration sensor had the characteristics of wide detection range (1-500 ppm), low detection limit (30 ppb), acceptable flexibility for toluene, and rapid response/recovery time (32 s/116 s). These advancements facilitated the integration of the respiration sensor into surgical masks and clothes with maximum functionality at a minimized size and weight. Moreover, the primary internal mechanism of COFNiP-Ph for this efficient toluene detection was investigated through in situ FTIR spectra, thereby directly elucidating that the chemisorption interaction of oxygen modulated the depletion layers, resulting in alterations in sensor resistance upon exposure to the target gas. The encouraging results revealed the feasibility of employing a paper-sensing system as a wearable platform in green electronics.
Collapse
Affiliation(s)
- Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yujiao Bai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chuanrui Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenqing Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Pan Ma
- Jinan Academy of Agricultural Sciences, Jinan 250316, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
12
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
13
|
Kumar G, Panda S. Probing the ionic activation enthalpies in anionic polysaccharide xerogel-based single ion conductor for temperature sensing. Carbohydr Polym 2024; 340:122258. [PMID: 38857999 DOI: 10.1016/j.carbpol.2024.122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Ionic charge transport in polymer-based solid electrolytes is significantly affected by thermal perturbations, facilitating the detection of temperature variations. However, the impact of ionic interactions and molecular arrangements in polymeric single-ion conductors (SICs) has not been thoroughly investigated for temperature sensing. By probing the effect of the associated energies for ionic interactions and polymeric rearrangements, the thermal sensing characteristics of alginate have been studied. For the first time, alginate SIC interacting with multivalent ions (viz., Na+, Ca2+ and Fe3+) to form xerogel has been exploited as a temperature-sensing layer by fabricating a xerogel-based ionic thermistor (xIT) as a temperature sensor. The xIT has demonstrated stable functioning from 25 to 70 °C and unveiled enhanced sensing abilities in the physiological state of the human body (35-40 °C), exhibiting a monotonic linear response, high sensitivity (-3.77 % °C-1), and high accuracy (0.1 °C). The sensing characteristic is observed due to the inward ionic flux under thermal and electrical perturbations. The concentration of ionic charge carriers and ionic drift are assumed to be Arrhenius-activated processes. A general microscopic model of ion transport within polysaccharides has been elucidated via hopping mechanisms, and the effects of the associated activation energies on temperature sensitivity have been explained.
Collapse
Affiliation(s)
- Gaurav Kumar
- Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; National Center for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Siddhartha Panda
- Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; National Center for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India.
| |
Collapse
|
14
|
Chen Z, Li Z, He H, Liu J, Deng J, Jiang L, Liu X. Ratiometric fluorescence sensor based on deep learning for rapid and user-friendly detection of tetracycline antibiotics. Food Chem 2024; 450:138961. [PMID: 38640544 DOI: 10.1016/j.foodchem.2024.138961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/21/2024]
Abstract
The detection of tetracycline antibiotics (TCs) in food holds great significance in minimizing their absorption within the human body. Hence, this study aims to develop a rapid, convenient, real-time, and accurate detection method for detecting antibiotics in an authentic market setting. A colorimetric fluorescence sensor was devised for tetracycline detection utilizing PVA aerogels as the substrate. Its operating principle is based on the IFE effect and antenna effect. A detection device is designed to capture fluorescence images while deep learning was employed to aid in the detection process. The sensor exhibits high responsiveness with a mere 60-s requirement for detection and demonstrates substantial color changes(blue to red), achieving 99% accuracy within the range of 10-100 μM with the assistance of deep learning (Resnet18). Real sample simulation tests yielded recovery rates between 95% and 130%. Overall, the proposed strategy proved to be a simple, portable, reliable, and responsive solution for rapid real-time TCs detection in food samples.
Collapse
Affiliation(s)
- Zhengjie Chen
- Electronic Information School, Wuhan University, Wuhan 430072, PR China
| | - Zhi Li
- Electronic Information School, Wuhan University, Wuhan 430072, PR China
| | - Haibin He
- Institute of Artificial Intelligence and School of Computer Science, Wuhan University, Wuhan 430072, PR China
| | - Juhua Liu
- Institute of Artificial Intelligence and School of Computer Science, Wuhan University, Wuhan 430072, PR China
| | - Junjie Deng
- Electronic Information School, Wuhan University, Wuhan 430072, PR China
| | - Lin Jiang
- Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699-5720, USA
| | - Xinghai Liu
- Electronic Information School, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
15
|
Mei H, Peng J, Wang T, Zhou T, Zhao H, Zhang T, Yang Z. Overcoming the Limits of Cross-Sensitivity: Pattern Recognition Methods for Chemiresistive Gas Sensor Array. NANO-MICRO LETTERS 2024; 16:269. [PMID: 39141168 PMCID: PMC11324646 DOI: 10.1007/s40820-024-01489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024]
Abstract
As information acquisition terminals for artificial olfaction, chemiresistive gas sensors are often troubled by their cross-sensitivity, and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area. Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors. It is crucial to choose an appropriate pattern recognition method for enhancing data analysis, reducing errors and improving system reliability, obtaining better classification or gas concentration prediction results. In this review, we analyze the sensing mechanism of cross-sensitivity for chemiresistive gas sensors. We further examine the types, working principles, characteristics, and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays. Additionally, we report, summarize, and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification. At the same time, this work showcases the recent advancements in utilizing these methods for gas identification, particularly within three crucial domains: ensuring food safety, monitoring the environment, and aiding in medical diagnosis. In conclusion, this study anticipates future research prospects by considering the existing landscape and challenges. It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
Collapse
Affiliation(s)
- Haixia Mei
- Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun, 130022, People's Republic of China
| | - Jingyi Peng
- Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun, 130022, People's Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Hongran Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.
| | - Zhi Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
16
|
Bian Y, Shi H, Yuan Q, Zhu Y, Lin Z, Zhuang L, Han X, Wang P, Chen M, Wang X. Patterning Techniques Based on Metallized Electrospun Nanofibers for Advanced Stretchable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309735. [PMID: 38687841 PMCID: PMC11234419 DOI: 10.1002/advs.202309735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Stretchable electronics have experienced remarkable progress, especially in sensors and wireless communication systems, attributed to their ability to conformably contact with rough or uneven surfaces. However, the development of complex, multifunctional, and high-precision stretchable electronics faces substantial challenges, including instability at rigid-soft interfaces and incompatibility with traditional high-precision patterning technologies. Metallized electrospun nanofibers emerge as a promising conductive filler, offering exceptional stretchability, electrical conductivity, transparency, and compatibility with existing patterning technologies. Here, this review focuses on the fundamental properties, preparation processes, patterning technologies, and application scenarios of conductive stretchable composites based on metallized nanofibers. Initially, it introduces the fabrication processes of metallized electrospun nanofibers and their advantages over alternative materials. It then highlights recent progress in patterning technologies, including collector collection, vapor deposition with masks, and lithography, emphasizing their role in enhancing precision and integration. Furthermore, the review shows the broad applicability and potential influence of metallized electrospun nanofibers in various fields through their use in sensors, wireless systems, semiconductor devices, and intelligent healthcare solutions. Ultimately, this review seeks to spark further innovation and address the prevailing challenges in stretchable electronics, paving the way for future breakthroughs in this dynamic field.
Collapse
Affiliation(s)
- Yuhan Bian
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haozhou Shi
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qunchen Yuan
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuxuan Zhu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhengzi Lin
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liujing Zhuang
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xun Han
- ZJU-Hangzhou Global Scientific and Technological Innovation Center School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Ping Wang
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mengxiao Chen
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311121, P. R. China
| | - Xiandi Wang
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
17
|
Ni Y, Chen J, Chen K. Flexible vanillin-polyacrylate/chitosan/mesoporous nanosilica-MXene composite film with self-healing ability towards dual-mode sensors. Carbohydr Polym 2024; 335:122042. [PMID: 38616072 DOI: 10.1016/j.carbpol.2024.122042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
Manufacturing flexible sensors with prominent mechanical properties, multifunctional sensing abilities, and remarkable self-healing capabilities remains a difficult task. In this study, a novel vanillin-modified polyacrylate (VPA), which is capable of forming green dynamic covalent crosslinking with chitosan (CS), was synthesized. The synthesized VPA was combined with mesoporous silica-modified MXene (AMS-MXene) and covalently cross-linked simultaneously with CS, resulting in the formation of a flexible composite conductive film designed for dual-mode sensors. Due to the multidimensional structure formed by the mesoporous silica and MXene layers, the resulting composite film is not only suitable for strain sensing but also excels in gas response sensing. Most importantly, the composite films demonstrate a remarkable self-healing capability through reversible dynamic covalent bonds, specifically Schiff base bonds, coupled with multiple hydrogen bonding interactions with AMS-MXene. This robust self-repair functionality remains effective even at a low temperature of 30 °C. Additionally, the synergistic antibacterial effect exerted by vanillin and CS in the film can endow the composite sensor with excellent antimicrobial properties. This multifunctional composite film holds tremendous potential for applications in green flexible wearable sensors. Furthermore, it can show diverse applications in a wide variety of fields, driving advances in wearable technology and human health monitoring.
Collapse
Affiliation(s)
- Yezhou Ni
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingyu Chen
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Kunlin Chen
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
He J, Liang B, Kong W, Dai J, Liu F, Pan S, Wang C, Sun P, Kang B, Wang Y, Lu G. Self-Healing, Laminated, and Low Resistance NH 3 Sensor Based on 6,6',6″-(Nitrilotris(benzene-4,1-diyl))tris(5-phenylpyrazine-2,3-dicarbonitrile) Sensing Material Operating at Room Temperature. ACS Sens 2024; 9:171-181. [PMID: 38159288 DOI: 10.1021/acssensors.3c01804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
With the rapid development of the concept of the Internet of Things (IoT), gas sensors with the function of simulating the human sense of smell became irreplaceable as a key element. Among them, ammonia (NH3) sensors played an important role in respiration tests, environmental monitoring, safety, and other fields. However, the fabrication of the high-performance device with high stability and resistance to mechanical damages was still a challenge. In this work, polyurethane (PU) with excellent self-healing ability was applied as the substrate, and the sensor was designed from new sensitive material design and device structure optimization, through applying the organic molecule with groups which could absorb NH3 and the laminated structure to shorten the electronic transmission path to achieve a low resistance state and favorable sensing properties. Accordingly, a room temperature flexible NH3 sensor based on 6,6',6″-(nitrilotris(benzene-4,1-diyl))tris(5-phenylpyrazine-2,3-dicarbonitrile) (TPA-3DCNPZ) was successfully developed. The device could self-heal by means of a thermal evaporation assisted method. It exhibited a detection limit of 1 ppm at 98% relative humidity (RH), as well as great stability, selectivity, bending flexibility, and self-healing properties. The improved NH3 sensing performance under high RH was further investigated by complex impedance plots (CIPs) and density functional theory (DFT), attributing to the enhanced adsorption of NH3. The TPA-3DCNPZ based NH3 sensors proved to have great potential for application on simulated exhaled breath to determine the severity of kidney diseases and the progress of treatment. This work also provided new ideas for the construction of high-performance room temperature NH3 sensors.
Collapse
Affiliation(s)
- Junming He
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Baoyan Liang
- Jihua Laboratory, 28 Huandao South Road, Foshan 528200, Guangdong, China
| | - Weibo Kong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianan Dai
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Si Pan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bonan Kang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
19
|
Shen S, Zhang J, Han Y, Pu C, Duan Q, Huang J, Yan B, You X, Lin R, Shen X, Qiu X, Hou H. A Core-Shell Nanoreinforced Ion-Conductive Implantable Hydrogel Bioelectronic Patch with High Sensitivity and Bioactivity for Real-Time Synchronous Heart Monitoring and Repairing. Adv Healthc Mater 2023; 12:e2301990. [PMID: 37467758 DOI: 10.1002/adhm.202301990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
To achieve synchronous repair and real-time monitoring the infarcted myocardium based on an integrated ion-conductive hydrogel patch is challenging yet intriguing. Herein, a novel synthetic strategy is reported based on core-shell-structured curcumin-nanocomposite-reinforced ion-conductive hydrogel for synchronous heart electrophysiological signal monitoring and infarcted heart repair. The nanoreinforcement and multisite cross-linking of bioactive curcumin nanoparticles enable well elasticity with negligible hysteresis, implantability, ultrahigh mechanoelectrical sensitivity (37 ms), and reliable sensing capacity (over 3000 cycles) for the nanoreinforced hydrogel. Results of in vitro and in vivo experiments demonstrate that such solely physical microenvironment of electrophysiological and biomechanical characteristics combining with the role of bioactive curcumin exert the synchronous benefit of regulating inflammatory microenvironment, promoting angiogenesis, and reducing myocardial fibrosis for effective myocardial infarction (MI) repair. Especially, the hydrogel sensors offer the access for achieving accurate acquisition of cardiac signals, thus monitoring the whole MI healing process. This novel bioactive and electrophysiological-sensing ion-conductive hydrogel cardiac patch highlights a versatile strategy promising for synchronous integration of in vivo real-time monitoring the MI status and excellent MI repair performance.
Collapse
Affiliation(s)
- Si Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yanni Han
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Chunyi Pu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Qixiang Duan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jianxing Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Bing Yan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoxi Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
20
|
Zhao G, Sun J, Zhang M, Guo S, Wang X, Li J, Tong Y, Zhao X, Tang Q, Liu Y. Highly Strain-Stable Intrinsically Stretchable Olfactory Sensors for Imperceptible Health Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302974. [PMID: 37610561 PMCID: PMC10582427 DOI: 10.1002/advs.202302974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Indexed: 08/24/2023]
Abstract
Intrinsically stretchable gas sensors possess outstanding advantages in seamless conformability and high-comfort wearability for real-time detection toward skin/respiration gases, making them promising candidates for health monitoring and non-invasive disease diagnosis and therapy. However, the strain-induced deformation of the sensitive semiconductor layers possibly causes the sensing signal drift, resulting in failure in achievement of the reliable gas detection. Herein, a surprising result that the stretchable organic polymers present a universal strain-insensitive gas sensing property is shown. All the stretchable polymers with different degrees of crystallinity, including indacenodithiophene-benzothiadiazole (PIDTBT), diketo-pyrrolo-pyrrole bithiophene thienothiophene (DPPT-TT) and poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiad-iazolo [3,4-c] pyridine] (PCDTPT), show almost unchanged gas response signals in the different stretching states. This outstanding advantage enables the intrinsically stretchable devices to imperceptibly adhere on human skin and well conform to the versatile deformations such as bending, twisting, and stretching, with the highly strain-stable gas sensing property. The intrinsically stretchable PIDTBT sensor also demonstrates the excellent selectivity toward the skin-emitted trimethylamine (TMA) gas, with a theoretical limit of detection as low as 0.3 ppb. The work provides new insights into the preparation of the reliable skin-like gas sensors and highlights the potential applications in the real-time detection of skin gas and respiration gas for non-invasive medical treatment and disease diagnosis.
Collapse
Affiliation(s)
- Guodong Zhao
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Jing Sun
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Mingxin Zhang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Shanlei Guo
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Xue Wang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Juntong Li
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| |
Collapse
|
21
|
Tao K, Yu J, Zhang J, Bao A, Hu H, Ye T, Ding Q, Wang Y, Lin H, Wu J, Chang H, Zhang H, Yuan W. Deep-Learning Enabled Active Biomimetic Multifunctional Hydrogel Electronic Skin. ACS NANO 2023; 17:16160-16173. [PMID: 37523784 DOI: 10.1021/acsnano.3c05253] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
There is huge demand for recreating human skin with the functions of epidermis and dermis for interactions with the physical world. Herein, a biomimetic, ultrasensitive, and multifunctional hydrogel-based electronic skin (BHES) was proposed. Its epidermis function was mimicked using poly(ethylene terephthalate) with nanoscale wrinkles, enabling accurate identification of materials through the capabilities to gain/lose electrons during contact electrification. Internal mechanoreceptor was mimicked by interdigital silver electrodes with stick-slip sensing capabilities to identify textures/roughness. The dermis function was mimicked by patterned microcone hydrogel, achieving pressure sensors with high sensitivity (17.32 mV/Pa), large pressure range (20-5000 Pa), low detection limit, and fast response (10 ms)/recovery time (17 ms). Assisted by deep learning, this BHES achieved high accuracy and minimized interference in identifying materials (95.00% for 10 materials) and textures (97.20% for four roughness cases). By integrating signal acquisition/processing circuits, a wearable drone control system was demonstrated with three-degree-of-freedom movement and enormous potentials for soft robots, self-powered human-machine interaction interfaces of digital twins.
Collapse
Affiliation(s)
- Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, No.45th, Gaoxin South ninth Road, Nanshan District, Shenzhen City 518063, China
| | - Jiahao Yu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, No.45th, Gaoxin South ninth Road, Nanshan District, Shenzhen City 518063, China
| | - Jiyuan Zhang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, No.45th, Gaoxin South ninth Road, Nanshan District, Shenzhen City 518063, China
| | - Aocheng Bao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haowen Hu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaozheng Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Haobin Lin
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
| | - Honglong Chang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Weizheng Yuan
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
22
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
23
|
Luo Y, Li J, Ding Q, Wang H, Liu C, Wu J. Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors. NANO-MICRO LETTERS 2023; 15:136. [PMID: 37225851 PMCID: PMC10209388 DOI: 10.1007/s40820-023-01109-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023]
Abstract
Breathing is an inherent human activity; however, the composition of the air we inhale and gas exhale remains unknown to us. To address this, wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks, and for the early detection and treatment of diseases for home healthcare. Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable. Functionalized hydrogels are intrinsically conductive, self-healing, self-adhesive, biocompatible, and room-temperature sensitive. Compared with traditional rigid vapor sensors, hydrogel-based gas and humidity sensors can directly fit human skin or clothing, and are more suitable for real-time monitoring of personal health and safety. In this review, current studies on hydrogel-based vapor sensors are investigated. The required properties and optimization methods of wearable hydrogel-based sensors are introduced. Subsequently, existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized. Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented. Moreover, the potential of hydrogels in the field of vapor sensing is elucidated. Finally, the current research status, challenges, and future trends of hydrogel gas/humidity sensing are discussed.
Collapse
Affiliation(s)
- Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
24
|
Lee JY, Yu BS, Chang WS, Sim SJ. A strategy to maximize astaxanthin production from Haematococcus pluvialis in a cost-effective process by utilizing a PBR-LGP-PBR array (PLPA) hybrid system using light guide panel (LGP) and solar cells. BIORESOURCE TECHNOLOGY 2023; 376:128902. [PMID: 36933577 DOI: 10.1016/j.biortech.2023.128902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated economic feasibility through production efficiency, return on investment (ROI) and payout time of a hybrid system using a photobioreactor (PBR)-light guide panel (LGP)-PBR array (PLPA) and solar cells developed for astaxanthin and ω-3 FA simultaneous production of Haematococcus pluvialis. The economic feasibility of the PLPA hybrid system (8 PBRs) and the PBR-PBR-PBR array (PPPA) system (8 PBRs) was evaluated for producing high-value products while effectively reducing CO2. Introducing a PLPA hybrid system has increased the amount of culture per area by 1.6 times. Also, the shading effect was effectively suppressed with an LGP placed between each PBR, increasing biomass and astaxanthin productivity by 3.39-fold and 4.79-fold, respectively compared to the untreated H. pluvialis cultures. In addition, ROI increased by 6.55 and 4.71 times, and the payout time was reduced by 1.34 and 1.37 times, respectively in 10 and 100-ton scale processes.
Collapse
Affiliation(s)
- Ju Yeon Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Won Seok Chang
- Research Institute, Korea District Heating Corp., 92, Gigok-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17099, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
25
|
Abstract
The advancement of microfluidics has enabled numerous discoveries and technologies in life sciences. However, due to the lack of industry standards and configurability, the design and fabrication of microfluidic devices require highly skilled technicians. The diversity of microfluidic devices discourages biologists and chemists from applying this technique in their laboratories. Modular microfluidics, which integrates the standardized microfluidic modules into a whole, complex platform, brings the capability of configurability to conventional microfluidics. The exciting features, including portability, on-site deployability, and high customization motivate us to review the state-of-the-art modular microfluidics and discuss future perspectives. In this review, we first introduce the working mechanisms of the basic microfluidic modules and evaluate their feasibility as modular microfluidic components. Next, we explain the connection approaches among these microfluidic modules, and summarize the advantages of modular microfluidics over integrated microfluidics in biological applications. Finally, we discuss the challenge and future perspectives of modular microfluidics.
Collapse
Affiliation(s)
- Jialin Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Hui Fang
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
26
|
Du B, Zhang M, Ye J, Wang D, Han J, Zhang T. Novel Au Nanoparticle-Modified ZnO Nanorod Arrays for Enhanced Photoluminescence-Based Optical Sensing of Oxygen. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23062886. [PMID: 36991596 PMCID: PMC10051414 DOI: 10.3390/s23062886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 05/31/2023]
Abstract
Novel optical gas-sensing materials for Au nanoparticle (NP)-modified ZnO nanorod (NR) arrays were fabricated using hydrothermal synthesis and magnetron sputtering on Si substrates. The optical performance of ZnO NR can be strongly modulated by the annealing temperature and Au sputtering time. With exposure to trace quantities of oxygen, the ultraviolet (UV) emission of the photoluminescence (PL) spectra of Au/ZnO samples at ~390 nm showed a large variation in intensity. Based on this mechanism, ZnO NR based oxygen gas sensing via PL spectra variation demonstrated a wide linear detection range of 10-100%, a high response value, and a 1% oxygen content sensitivity detection limit at 225 °C. This outstanding optical oxygen-sensing performance can be attributed to the large surface area to volume ratio, high crystal quality, and high UV emission efficiency of the Au NP-modified ZnO NR arrays. Density functional theory (DFT) simulation results confirmed that after the Au NPs modified the surface of the ZnO NR, the charge at the interface changed, and the structure of Au/ZnO had the lowest adsorption energy for oxygen molecules. These results suggest that Au NP-modified ZnO NR are promising for high-performance optical gas-sensing applications.
Collapse
Affiliation(s)
- Baosheng Du
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| | - Meng Zhang
- Institute of War Studies, Academy of Military Sciences, Beijing 100091, China
| | - Jifei Ye
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| | - Diankai Wang
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| | - Jianhui Han
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| | - Tengfei Zhang
- State Key Laboratory of Laser Propulsion and Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
| |
Collapse
|
27
|
Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. NANO RESEARCH 2023; 16:3475-3515. [DOI: 10.1007/s12274-022-5129-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2025]
|
28
|
Łuczak B, Sumelka W, Szymkuć W, Jopek H. Self-Healing Mechanical Properties of Selected Roofing Felts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1204. [PMID: 36770208 PMCID: PMC9919955 DOI: 10.3390/ma16031204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
In this work, roof felts are considered. Special attention is paid to the mechanical properties and self-healing (SH) phenomena under elevated temperatures. The results of the heating and strength tests for the entire range of material work, from the first load to sample breaking, are shown with respect to the angle of reinforcement relative to the longitudinal axis of the sample and different ways of breaking the continuity of the material. The influence that the material thickness and modifiers used for the production of the base material have on the obtained results was also pointed out. The meaningful SH strength is reported-from 5% up to 20% of the strength of the undamaged material-which, in perspective, can provide comprehensive knowledge of the optimal use of roofing felts and its proper mathematical modeling.
Collapse
Affiliation(s)
- Bartosz Łuczak
- Institute of Structural Analysis, Poznan University of Technology, Piotrowo 5, 60-965 Poznań, Poland
| | - Wojciech Sumelka
- Institute of Structural Analysis, Poznan University of Technology, Piotrowo 5, 60-965 Poznań, Poland
| | - Wojciech Szymkuć
- Institute of Structural Analysis, Poznan University of Technology, Piotrowo 5, 60-965 Poznań, Poland
| | - Hubert Jopek
- Institute of Applied Mechanics, Poznan University of Technology, Jana Pawła II 24, 60-965 Poznań, Poland
| |
Collapse
|
29
|
Jiang C, Ding X, Xie W, Wu D. Ultrastretchable Composite Organohydrogels with Dual Cross-Links Enabling Multimodal Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55143-55154. [PMID: 36453939 DOI: 10.1021/acsami.2c18667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Building multiple cross-links or networks is a favorable way of diversifying applications of the hydrogels, which is also available for the organohydrogels prepared via the solvent replacement way. However, the situations become more complicated for organohydrogels due to the presence of replaced solvents. Therefore, the correlations between the multiple cross-links and final performance need to be better understood for the organohydrogels, which is vital for tailoring their inherent properties to expand final application scenarios. Polyacrylamide (PAM)/poly(vinyl alcohol) (PVA)/MXene composite organohydrogels with dual cross-links, namely, the covalently cross-linked PAM chains as the primary network and the physically cross-linked PVA/PAM chains with MXene particles as the secondary cross-links, were developed here for the study. The occurrence of the secondary cross-links plays multiple roles as sacrificial units endowing the system with ultrastretchability with an excellent strain-resistance effect and as temperature-sensitive units endowing the system with thermosensation ability with an outstanding temperature coefficient of resistance. Thus, the optimized sample can be used as a strain sensor with excellent environmental tolerance for detecting human motion as a pressure sensor to probe compression with weak deformation and as a thermal sensor to capture environmental temperature changes. This work provides valuable information on developing organohydrogels with superior performance for multimodal sensors.
Collapse
Affiliation(s)
- Chenguang Jiang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Xuexue Ding
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Wenyuan Xie
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
- Institute for Innovative Materials & Energy, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
- Provincial Key Laboratories of Environmental Materials & Engineering, Yangzhou 225002, Jiangsu, P. R. China
| |
Collapse
|
30
|
Li X, Li J, Wang T, Khan SA, Yuan Z, Yin Y, Zhang H. Self-Powered Respiratory Monitoring Strategy Based on Adaptive Dual-Network Thermogalvanic Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48743-48751. [PMID: 36269324 DOI: 10.1021/acsami.2c14239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As a low-grade sustainable heat source, the breath waste heat exhaled by human bodies is always ignored, although producing a greater temperature than ambient. Converting this heat into electric energy for use as power sources or detecting signals is extremely important in cutting-edge wearable medicine. This heat-to-electricity conversion is possible with thermogalvanic hydrogels. However, challenges remain in their antifreezing and antidrying properties, significantly restricting the durability of thermogalvanic gels in practical applications. Herein, a dual-network poly(vinyl alcohol)/gelatin (PVA/GEL) gel thermogalvanic device with Fe(CN)63-/4- as a redox pair is developed, with an outstanding low-temperature durability and antidrying capacity. These features result from the use of a binary H2O/GL (glycerin) solvent to limit hydrogen bonding between water molecules. The prepared thermogalvanic gel patch is capable of easily converting physiological data into understandable electrical impulses using the temperature difference between the ambient environment and the heat produced by human breathing, realizing a simple self-powered respiratory monitoring strategy for the first time. Even below zero temperature, the gel patch-based mask can operate normally, implying it fits into low-temperature environments. This study sheds fresh light on the development of active wearable medical electronics that are powered by demic low-level heat.
Collapse
Affiliation(s)
- Xuebiao Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianing Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Tao Wang
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Saeed Ahmed Khan
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Zhongyun Yuan
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yifan Yin
- Department of Mechatronics and Vehicle Engineering, Taiyuan University, Taiyuan 030032, China
| | - Hulin Zhang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
31
|
Ou LX, Liu MY, Zhu LY, Zhang DW, Lu HL. Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. NANO-MICRO LETTERS 2022; 14:206. [PMID: 36271065 PMCID: PMC9587164 DOI: 10.1007/s40820-022-00956-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 05/05/2023]
Abstract
With the rapid development of the Internet of Things, there is a great demand for portable gas sensors. Metal oxide semiconductors (MOS) are one of the most traditional and well-studied gas sensing materials and have been widely used to prepare various commercial gas sensors. However, it is limited by high operating temperature. The current research works are directed towards fabricating high-performance flexible room-temperature (FRT) gas sensors, which are effective in simplifying the structure of MOS-based sensors, reducing power consumption, and expanding the application of portable devices. This article presents the recent research progress of MOS-based FRT gas sensors in terms of sensing mechanism, performance, flexibility characteristics, and applications. This review comprehensively summarizes and discusses five types of MOS-based FRT gas sensors, including pristine MOS, noble metal nanoparticles modified MOS, organic polymers modified MOS, carbon-based materials (carbon nanotubes and graphene derivatives) modified MOS, and two-dimensional transition metal dichalcogenides materials modified MOS. The effect of light-illuminated to improve gas sensing performance is further discussed. Furthermore, the applications and future perspectives of FRT gas sensors are also discussed.
Collapse
Affiliation(s)
- Lang-Xi Ou
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Meng-Yang Liu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Li-Yuan Zhu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - David Wei Zhang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China.
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000, Zhejiang, People's Republic of China.
| |
Collapse
|
32
|
Hou Y, Ma S, Hao J, Lin C, Zhao J, Sui X. Construction and Ion Transport-Related Applications of the Hydrogel-Based Membrane with 3D Nanochannels. Polymers (Basel) 2022; 14:polym14194037. [PMID: 36235985 PMCID: PMC9571189 DOI: 10.3390/polym14194037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogel is a type of crosslinked three-dimensional polymer network structure gel. It can swell and hold a large amount of water but does not dissolve. It is an excellent membrane material for ion transportation. As transport channels, the chemical structure of hydrogel can be regulated by molecular design, and its three-dimensional structure can be controlled according to the degree of crosslinking. In this review, our prime focus has been on ion transport-related applications based on hydrogel materials. We have briefly elaborated the origin and source of hydrogel materials and summarized the crosslinking mechanisms involved in matrix network construction and the different spatial network structures. Hydrogel structure and the remarkable performance features such as microporosity, ion carrying capability, water holding capacity, and responsiveness to stimuli such as pH, light, temperature, electricity, and magnetic field are discussed. Moreover, emphasis has been made on the application of hydrogels in water purification, energy storage, sensing, and salinity gradient energy conversion. Finally, the prospects and challenges related to hydrogel fabrication and applications are summarized.
Collapse
|
33
|
Liang Y, Ding Q, Wang H, Wu Z, Li J, Li Z, Tao K, Gui X, Wu J. Humidity Sensing of Stretchable and Transparent Hydrogel Films for Wireless Respiration Monitoring. NANO-MICRO LETTERS 2022; 14:183. [PMID: 36094761 PMCID: PMC9468213 DOI: 10.1007/s40820-022-00934-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 05/31/2023]
Abstract
Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors. However, traditional humidity sensors suffer from a trade-off between deformability, sensitivity, and transparency, and thus the development of high-performance, stretchable, and low-cost humidity sensors is urgently needed as wearable electronics. Here, ultrasensitive, highly deformable, and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels. Concomitantly, a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area, which can be applied to different polymer networks and facilitate the development of flexible integrated electronics. In addition, sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network, exhibiting excellent water adsorption capacity. Through the synergistic optimization of structure and composition, the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH, which is unprecedented. Moreover, the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity. As a proof of concept, we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission, enabling real-time monitoring of human health status. This work provides a general strategy to construct high-performance, stretchable, and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.
Collapse
Affiliation(s)
- Yuning Liang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhenyi Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
34
|
Ultrasensitive, stretchable, and transparent humidity sensor based on ion-conductive double-network hydrogel thin films. SCIENCE CHINA MATERIALS 2022; 65:2540-2552. [PMID: 35600911 PMCID: PMC9109751 DOI: 10.1007/s40843-021-2022-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022]
Abstract
Ion-conductive hydrogels with intrinsic biocompatibility, stretchability, and stimuli-responsive capability have attracted considerable attention because of their extensive application potential in wearable sensing devices. The miniaturization and integration of hydrogel-based devices are currently expected to achieve breakthroughs in device performance and promote their practical application. However, currently, hydrogel film is rarely reported because it can be easily wrinkled, torn, and dehydrated, which severely hinders its development in microelectronics. Herein, thin, stretchable, and transparent ion-conductive double-network hydrogel films with controllable thickness are integrated with stretchable elastomer substrates, which show good environmental stability and ultrahigh sensitivity to humidity (78,785.5%/% relative humidity (RH)). Benefiting from the ultrahigh surface-area-to-volume ratio, abundant active sites, and short diffusion distance, the hydrogel film humidity sensor exhibits 2 × 105 times increased response to 98% RH, as well as 5.9 and 7.6 times accelerated response and recovery speeds compared with the bulk counterpart, indicating its remarkable thickness-dependent humidity-sensing properties. The humidity-sensing mechanism reveals that the adsorption of water improves the ion migration and dielectric constant, as well as establishes the electrical double layer. Furthermore, the noncontact human-machine interaction and real-time respiratory frequency detection are enabled by the sensors. This work provides an innovative strategy to achieve further breakthroughs in device performance and promote the development of hydrogel-based miniaturized and integrated electronics.
![]()
Collapse
|
35
|
Wang F, Chen J, Cui X, Liu X, Chang X, Zhu Y. Wearable Ionogel-Based Fibers for Strain Sensors with Ultrawide Linear Response and Temperature Sensors Insensitive to Strain. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30268-30278. [PMID: 35758312 DOI: 10.1021/acsami.2c09001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fiber-shaped stretchable strain and temperature sensors are highly desirable for wearable electronics due to their excellent flexibility, comfort, air permeability, and easiness to be weaved into fabric. Herein, we prepare a smart ionogel-based fiber composed of thermoplastic polyurethane (TPU) and ionic liquid (IL) by the facile and scalable wet-spinning technique, which can serve as a wearable strain sensor with good linearity (a correlation coefficient of 0.997) in an ultrawide sensing range (up to 700%), ultralow-detection limit (0.05%), fast response (173 ms) and recovery (120 ms), and high reproducibility. Attributed to these outstanding strain sensing performances, the designed TPU/IL ionogel fiber-shaped sensor is able to monitor both subtle physiological activities and large human motions. More interestingly, because of the fast response and high resolution to strain, the fiber-shaped sensor can be sewn into the fabric to secretly encrypt and wirelessly translate message according to the principle of Morse code. More importantly, a wearable strain-insensitive temperature sensor can be obtained from the ionogel fiber if it is designed into an "S" shape, which can effectively eliminate the interference of strain on temperature sense. It is found that the inaccuracy of temperature sense is within 0.15 °C when the sensor is subjected to 30% tensile strain simultaneously. Moreover, this strain-insensitive temperature sensor shows a monotonic temperature response over a wide temperature range (-15 to 100 °C) with an ultrahigh detecting accuracy of 0.1 °C and good reliability, owing to the fast and stable thermal response of IL. This temperature sensor can realize the detection of thermal radiation, proximity, and respiration, exhibiting enormous potential in smart skin, personal healthcare, and wearable electronics. This work proposes a simple but effective strategy to realize the essential strain and temperature sensing capabilities of wearable electronics and smart fabrics without mutual interference.
Collapse
Affiliation(s)
- Fei Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Jianwen Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xihua Cui
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing City, Zhejiang 314001, China
| | - Xining Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xiaohua Chang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yutian Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
36
|
Ding H, Wu Z, Wang H, Zhou Z, Wei Y, Tao K, Xie X, Wu J. An ultrastretchable, high-performance, and crosstalk-free proximity and pressure bimodal sensor based on ionic hydrogel fibers for human-machine interfaces. MATERIALS HORIZONS 2022; 9:1935-1946. [PMID: 35535758 DOI: 10.1039/d2mh00281g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The traditional human-machine interaction mode of communicating solely with pressure sensors needs modification, especially at a time when COVID-19 is circulating globally. Here, a transparent, stretchable, resilient, and high-performance hydrogel fiber-based bimodal sensor is fabricated by using a polyacrylamide-alginate double network hydrogel, which features high sensitivity (3.17% cm-1), wide working range (18 cm), fast response/recovery speeds (90/90 ms) and good stability in proximity sensing, and impressive pressure sensing performance, including high sensitivity (0.91 kPa-1), short response/recovery time (40/40 ms), low detection limit (63 Pa) and good linearity. Moreover, the response switch between proximity/pressure modes is measured and non-interfering dual-mode detection is achieved. Notably, the stretchable bimodal sensor is capable of working under 100% tensile strain without degrading the sensing performance. Specifically, the proximity sensor shows good immunity to the strain, while the pressure sensitivity is even promoted. Furthermore, the sensor is tough enough to work normally after punctures from a knife and strikes from a wrench. Notably, the sensor can be used for gesture recognition and subtle pressure detection, such as small water droplets (10 mg), wrist pulse, etc. A 3 × 3 array is further shown for accurate spatial sensing and location identification, verifying the feasibility of its practical application.
Collapse
Affiliation(s)
- Haojun Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zijing Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
37
|
Wei Y, Wang H, Ding Q, Wu Z, Zhang H, Tao K, Xie X, Wu J. Hydrogel- and organohydrogel-based stretchable, ultrasensitive, transparent, room-temperature and real-time NO 2 sensors and the mechanism. MATERIALS HORIZONS 2022; 9:1921-1934. [PMID: 35535754 DOI: 10.1039/d2mh00284a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Highly stretchable, sensitive and room-temperature nitrogen dioxide (NO2) sensors are fabricated by exploiting intrinsically stretchable, transparent and ion-conducting hydrogels and active metals as the novel transducing materials and electrodes, respectively. The NO2 sensor exhibits high sensitivity (60.02% ppm-1), ultralow theoretical limit of detection (6.8 ppb), excellent selectivity, linearity and reversibility at room temperature. Notably, the sensitivity can be maintained even under 50% tensile strain. For the first time, it's found that the metal electrodes significantly impact the sensing performance. Specifically, the sensitivity is boosted from 31.18 to 60.02% ppm-1 by replacing the anodic silver with copper-tin alloy. Importantly, by applying specially designed sensing tests, and microscopic and composition analyses, we have obtained the inherent NO2 sensing mechanism: the anodic metal tends to be oxidized and the NO2 molecules tend to react in the cathode-gel interface. The introduction of glycerol converts the hydrogel into the organohydrogel with remarkably enhanced anti-drying and anti-freezing capacities and toughness, which effectively improved the long-time stability of the sensors. Importantly, we execute sound/light alarms and a wireless smartphone alarm by utilizing a designed circuit board and applet. This work gives an incisive investigation for the preparation, performance improvement, mechanism and application of hydrogel-based NO2 sensors, promoting the evolution of hydrogel ionotronics.
Collapse
Affiliation(s)
- Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - He Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering (SCUT), Ministry of Education, South China University of Technology, Guangzhou, 510641, China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
38
|
Yu H, Chen C, Sun J, Zhang H, Feng Y, Qin M, Feng W. Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room-Temperature Self-Healing Capacity. NANO-MICRO LETTERS 2022; 14:135. [PMID: 35704244 PMCID: PMC9200911 DOI: 10.1007/s40820-022-00882-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects. However, in view of the complexity of composite structure and composition, its self-heal is facing challenges. In this article, supramolecular effect is proposed to repair the multistage structure, mechanical and thermal properties of composite materials. A stiff and tough supramolecular frameworks of 2-[[(butylamino)carbonyl]oxy]ethyl ester (PBA)-polydimethylsiloxane (PDMS) were established using a chain extender with double amide bonds in a side chain to extend prepolymers through copolymerization. Then, by introducing the copolymer into a folded graphene film (FGf), a highly thermally conductive composite of PBA-PDMS/FGf with self-healing capacity was fabricated. The ratio of crosslinking and hydrogen bonding was optimized to ensure that PBA-PDMS could completely self-heal at room temperature in 10 min. Additionally, PBA-PDMS/FGf exhibits a high tensile strength of 2.23 ± 0.15 MPa at break and high thermal conductivity of 13 ± 0.2 W m-1 K-1; of which the self-healing efficiencies were 100% and 98.65% at room temperature for tensile strength and thermal conductivity, respectively. The excellent self-healing performance comes from the efficient supramolecular interaction between polymer molecules, as well as polymer molecule and graphene. This kind of thermal conductive self-healing composite has important application prospects in the heat dissipation field of next generation electronic devices in the future.
Collapse
Affiliation(s)
- Huitao Yu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Can Chen
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Jinxu Sun
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Heng Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Yiyu Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Mengmeng Qin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Wei Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
39
|
Wei C, Lin W, Liang S, Chen M, Zheng Y, Liao X, Chen Z. An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements. NANO-MICRO LETTERS 2022; 14:131. [PMID: 35699779 PMCID: PMC9198138 DOI: 10.1007/s40820-022-00875-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 06/09/2023]
Abstract
HIGHLIGHTS Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human-machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Human-machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human-machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human-machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects.
Collapse
Affiliation(s)
- Chao Wei
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Wansheng Lin
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shaofeng Liang
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Mengjiao Chen
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xinqin Liao
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361005, People's Republic of China.
| | - Zhong Chen
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
40
|
Chakraborty N, Mondal S. Chemiresistive NH 3 detection at sub-zero temperatures by polypyrrole- loaded Sn 1-xSb xO 2 nanocubes. MATERIALS HORIZONS 2022; 9:1750-1762. [PMID: 35507312 DOI: 10.1039/d2mh00236a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemiresistive gas sensors operate mainly at high temperatures, primarily due to the need of energy for surface adsorption-desorption of analytes. As a result, the operating temperature of the chemiresistive sensors could be reduced only to room temperature. Hence, a plethora of sensing requirements at temperatures below ambient have remained outside the scope of chemiresistive materials. In this work, we have developed an antimony-doped SnO2 nanocube-supported expanded polypyrrole network that could detect low ppm ammonia gas (≤20 ppm) at sub-zero temperatures with high response (∼4), selectivity, and short response and recovery times. The low temperature chemiresistive sensing has been explained in terms of the interplay of an extended conducting network of an in situ deposited polymer, effective transport properties of majority charge carriers and a loosely bound exciton-like electron-hole pair formation and breakage mechanism.
Collapse
Affiliation(s)
- Nirman Chakraborty
- CSIR Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Swastik Mondal
- CSIR Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
41
|
Pang Q, Hu H, Zhang H, Qiao B, Ma L. Temperature-Responsive Ionic Conductive Hydrogel for Strain and Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26536-26547. [PMID: 35657037 DOI: 10.1021/acsami.2c06952] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible wearable devices have achieved remarkable applications in health monitoring because of the advantages of multisignal collecting and real-time wireless transmission of information. However, the integration of bulky sensing elements and rigid metal circuit components in traditional wearable devices may lead to a mechanical and signal-conducting mismatch between wearable devices and biological tissues, thus restricting their wide applications in the human body. The excellent mechanical properties, conductivity, and high tissue resemblance of conductive hydrogel contribute to its application in flexible electronic sensors to monitor human health. In this work, a dual-network, temperature-responsive ionic conductive hydrogel with excellent stretchability, fast temperature responsiveness, and good conductivity was developed by introducing a polyvinylpyrrolidone (PVP)/ tannic acid (TA)/ Fe3+ cross-linked network into the N,N-methylene diacrylamide (MBAA) cross-linked poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAAm-co-AM)) network. Furthermore, the introduction of the PVP/TA/Fe3+ cross-linked network endowed the hydrogel with excellent stretchability and conductivity. By adjusting the molar ratio of TA and Fe3+ to 3:5, a hydrogel with a maximal stretching ratio of 720% and sensitive strain response (GF = 3.61) was achieved, showing a promising application in wearable strain sensors to monitor both large and fine human motions. Moreover, by introducing PNIPAAm with a lower critical solution temperature (LCST), the hydrogel may be used to monitor the environmental temperature through the temperature-conductivity responsiveness, which can be applied as a wearable temperature sensor to detect fever or tissue hyperthermia in the human body.
Collapse
Affiliation(s)
- Qian Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200437, China
| | - Hongtao Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haiqi Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bianbian Qiao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
42
|
Ding Q, Wu Z, Tao K, Wei Y, Wang W, Yang BR, Xie X, Wu J. Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. MATERIALS HORIZONS 2022; 9:1356-1386. [PMID: 35156986 DOI: 10.1039/d1mh01871j] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiple stretchable materials have been successively developed and applied to wearable devices, soft robotics, and tissue engineering. Organohydrogels are currently being widely studied and formed by dispersing immiscible hydrophilic/hydrophobic polymer networks or only hydrophilic polymer networks in an organic/water solvent system. In particular, they can not only inherit and carry forward the merits of hydrogels, but also have some unique advantageous features, such as anti-freezing and water retention abilities, solvent resistance, adjustable surface wettability, and shape memory effect, which are conducive to the wide environmental adaptability and intelligent applications. This review first summarizes the structure, preparation strategy, and unique advantages of the reported organohydrogels. Furthermore, organohydrogels can be optimized for electro-mechanical properties or endowed with various functionalities by adding or modifying various functional components owing to their modifiability. Correspondingly, different optimization strategies, mechanisms, and advanced developments are described in detail, mainly involving the mechanical properties, conductivity, adhesion, self-healing properties, and antibacterial properties of organohydrogels. Moreover, the applications of organohydrogels in flexible sensors, energy storage devices, nanogenerators, and biomedicine have been summarized, confirming their unlimited potential in future development. Finally, the existing challenges and future prospects of organohydrogels are provided.
Collapse
Affiliation(s)
- Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Weiyan Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
43
|
Dong H, Qian L, Cui Y, Zheng X, Cheng C, Cao Q, Xu F, Wang J, Chen X, Wang D. Online Accurate Detection of Breath Acetone Using Metal Oxide Semiconductor Gas Sensor and Diffusive Gas Separation. Front Bioeng Biotechnol 2022; 10:861950. [PMID: 35350181 PMCID: PMC8958005 DOI: 10.3389/fbioe.2022.861950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Breath acetone (BrAce) level is an indicator of lipid oxidation rate, which is crucial for evaluating the status of ketoacidosis, ketogenic diet, and fat burning during exercise. Despite its usefulness, detecting BrAce accurately is challenging because exhaled breath contains an enormous variety of compounds. Although many sensors and devices have been developed for BrAce measurement, most of them were tested with only synthetic or spiked breath samples, and few can detect low concentration BrAce in an online manner, which is critical for extending application areas and the wide acceptance of the technology. Here, we show that online detection of BrAce can be achieved using a metal oxide semiconductor acetone sensor. The high accuracy measurement of low concentration BrAce was enabled by separating major interference gases utilizing their large diffusion coefficients, and the accuracy is further improved by the correction of humidity effect. We anticipate that the approach can push BrAce measurement closer to being useful for various applications.
Collapse
Affiliation(s)
- Hao Dong
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, China
| | - Libin Qian
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Yaoxuan Cui
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Xubin Zheng
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Chen Cheng
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Qingpeng Cao
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Feng Xu
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Jin Wang
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, China
- *Correspondence: Xing Chen, ; Di Wang,
| | - Di Wang
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China
- *Correspondence: Xing Chen, ; Di Wang,
| |
Collapse
|