1
|
Lei C, Huang M, Chen J, Tao F, Zhang L, An Q. A novel cathode Li-supplement additive for high-energy and long-lifespan LIBs. Chem Commun (Camb) 2025; 61:6627-6630. [PMID: 40193053 DOI: 10.1039/d5cc00888c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
A novel cathode Li-supplement additive, Li4SiO4@rGO, has been developed; it features high capacity (820 mA h g-1), high air stability, and feasible Li-supplement potential (4.3 V). Its integration in NCM622‖graphite improves the energy density by 9% and enhances the capacity retention from 27.5% to 70%. Analogous improvements are also manifested in LFP‖graphite.
Collapse
Affiliation(s)
- Chengsifan Lei
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, P. R. China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Meng Huang
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, P. R. China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jinghui Chen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, P. R. China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Feng Tao
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, P. R. China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lei Zhang
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, P. R. China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qinyou An
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, P. R. China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
2
|
Huang X, Li L, Zhu H, Lv T, Tang L, Shentu Z, Li H, Gao T, Zhang K, Hu J, Wang W, Xue B, Lei H, Cao Y. Designing High-Damping, Optically Clear Ionogels through Competitive Binding for Flexible and Impact-Resistant Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9830-9840. [PMID: 39874299 DOI: 10.1021/acsami.4c19831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Developing damping materials that are both optically transparent and mechanically robust, while offering broad frequency damping capacity, is a significant challenge─particularly for devices that require protection without compromising visual clarity. Conventional methods often either fail to maintain transparency or involve complex designs that are difficult to implement. Here, we present an ionogel system that integrates a physically cross-linked elastic copolymer network with a viscous ionic liquid. The competitive interactions between the ionic liquid and the polymer network enable fine-tuning of the mechanical stability and damping capacity. The resulting ionogel is transparent and mechanically robust and exhibits excellent damping over a wide frequency range. Remarkably, a thin layer (0.15 mm) absorbs nearly 60% of the impact force and retains its performance after exposure to extreme conditions. This approach offers a straightforward method for designing advanced damping materials that meet both the aesthetic and functional demands of modern technologies.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Haoqi Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Tiancheng Lv
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Lei Tang
- Beijing Xiaomi Mobile Software Co., Ltd, Beijing 100085, China
| | - Zhexian Shentu
- Beijing Xiaomi Mobile Software Co., Ltd, Beijing 100085, China
| | - Haoyue Li
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Tian Gao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Kai Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Juntao Hu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Hai Lei
- School of Physics, Institute of Advanced Physics, Zhejiang University, Hangzhou 310027, China
| | - Yi Cao
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Ma X, Tan L, Xu J, Hao J. Co-Ni/C Composite Derived from N, S-Codoped Graphene Decorate Metal-Organic Framework toward Microwave Attenuation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3684-3694. [PMID: 39887190 DOI: 10.1021/acs.langmuir.4c05127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Metal-organic frameworks (MOFs) exhibit highly adjustable porosity, structure, and versatility, properties that render them promising for electromagnetic wave (EMW) absorption applications. However, the impedance matching of these composites is poor in practical applications, thereby compromising their EMW absorption performance. In this study, a novel EMW absorbing composite was synthesized by a solution-thermal method combined with a subsequent pyrolysis process. Specifically, we introduced heteroatom (N and S) codoped graphene (N, S-Gr) into the Co-Ni MOF, forming N, S-Gr/CoNi/C. Graphene was endowed with abundant defect and disorder sites through the codoping of nitrogen and sulfur, which enhanced interfacial polarization and dipole polarization. When nickel and cobalt were added in a 1:1 ratio, the minimum reflection loss (RLmin) of the N, S-Gr/Co-Ni/C composite reached -47.7 dB at 4.24 GHz, and the resultant material exhibited the best absorption properties. As a result, this composite is considered to be an ideal candidate for the development of highly effective EMW absorbers.
Collapse
Affiliation(s)
- Xiaowei Ma
- Specializing of Chemical Engineering and Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Lin Tan
- Specializing of Chemical Engineering and Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jiaqi Xu
- Xian SAFTY Energy Technology Co., Ltd., Xian 710000, China
| | - Jiaoyang Hao
- Specializing of Chemical Engineering and Technology, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
4
|
Wang N, Fang T, An T, Wang Y, Li J, Yu S, Sun H, Xiang D, Bo X, Cai K. Electronic Promoter Breaks the Linear Scaling Relationship: Ultra-Rapid High-Temperature Synthesis of Heterostructured CoS/SnO 2@C as a Bifunctional Oxygen Catalyst for Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406516. [PMID: 39937533 DOI: 10.1002/smll.202406516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/20/2024] [Indexed: 02/13/2025]
Abstract
Li-O2 batteries urgently needs high discharge capacity and stable cycling performance, requiring effective and reliable bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, Hovenia acerba Lindl-like heterostructure composed of cobalt sulfide and tin dioxide supported on carbon substrate (CoS/SnO2@C) is prepared via CO2 laser irradiation technology. The half-wave potential of CoS/SnO2@C for the ORR is 0.88 V, while the overpotential of the OER at 10 mA cm-2 is as low as 270 mV. The Li-O2 batteries employing the bifunctional CoS/SnO2@C catalyst displays a high discharge specific capacity of 3332.25 mAh g-1 and long cycling life of 226 cycles. Additionally, theory calculations demonstrate that the construction of heterostructure decreases energy barrier of the rate-determining step (RDS) for both ORR and OER. Notably, SnO2 behaves as the electronic promoter to optimize the electronic structure of heterostructure interface and triggers charge redistribution of CoS, which weakens the adsorption strength of the *O-intermediates and allows to break the linear scaling relationship, thus further enhancing the catalytic performance of CoS/SnO2@C. This research furnishes directions for the design of heterogeneous catalysts, highlighting its great potential for application in rechargeable Li-O2 batteries.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
- Institute of Ocean Research, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Tingxue Fang
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Tinghui An
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Yuhao Wang
- Rausser College of Natural Resources, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jiaqi Li
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Shuming Yu
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Honghai Sun
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Dong Xiang
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kedi Cai
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| |
Collapse
|
5
|
Chen C, Shan Z, Li B, Wang J, Liu T, Li SF, Yang H, Su J, Zhang G. Construction of 1D Molecular Conductive Wires Through a Polarized Gene Weaving Strategy for Efficient Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409786. [PMID: 39690892 DOI: 10.1002/smll.202409786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Indexed: 12/19/2024]
Abstract
The growing threat of electromagnetic pollution has become a pressing safety concern. Metal-organic framework (MOF) derivatives are considered ideal candidates for mitigating electromagnetic radiation. However, due to the limitations imposed by complex post-processing and disruption of pristine crystal structures, the mechanisms of electromagnetic wave absorption remain unclear, let alone achieving atomic-level regulation in MOF derivatives. Moreover, research on MOF-based electromagnetic wave absorbers (EMWA) has predominantly focused on 2D and 3D structures, leaving 1D MOFs largely unexplored. To address these challenges, a bottom-up polarization gene weaving strategy is proposed to integrate polarizable conjugated groups, thieno(3,2-b)thiophene (TBTT), into two types of conductive MOFs by fine-tuning self-assembly conditions. As expected, both MOFs exhibited strong natural polarization effects. Among them, the 1D linear coordination mode of CuTBTT-1D demonstrated enhanced charge carrier mobility and geometric effects compared to the 2D structure, CuTBTT-2D. The synthesized 1D molecular polarization wire, with a thickness of 2.2 mm, achieved ultra-high reflection loss (-77 dB) and super-wide absorption bandwidth (6.52 GHz). Its performance surpasses that of all known MOF-based EMWAs. This study provides a valuable strategy for the rational design of next-generation 1D MOF EMWA with atomic precision.
Collapse
Affiliation(s)
- Congjie Chen
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhen Shan
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bocong Li
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinjian Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tongtong Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shu-Fan Li
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hongwei Yang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jian Su
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Gen Zhang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
6
|
Zhang H, Cheng J, Liu K, Jiang SX, Zhang J, Wang Q, Lan C, Jia H, Li Z. Electric-magnetic dual-gradient structure design of thin MXene/Fe 3O 4 films for absorption-dominated electromagnetic interference shielding. J Colloid Interface Sci 2025; 678:950-958. [PMID: 39226835 DOI: 10.1016/j.jcis.2024.08.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
The challenge of achieving high-performance electromagnetic interference (EMI) shielding films, which focuses on electromagnetic waves absorption while maintaining thin thickness, is a crucial endeavor in contemporary electronic device advancement. In this study, we have successfully engineered hybrid films based on MXene nanosheets and Fe3O4 nanoparticles, featuring intricate electric-magnetic dual-gradient structures. Through the collaborative influence of a unique dual-gradient structure equipped with transition and reflection layers, these hybrid films demonstrate favorable impedance matching, abundant loss mechanisms (Ohmic loss, interfacial polarization and magnetic loss), and an "absorb-reflect-reabsorb" process to achieve absorption-dominated EMI shielding capability. Compared with the single conductive gradient structure, the dual-gradient structure effectively enhances the absorption intensity per unit thickness, and thus reduces the thickness of the film. The optimized film demonstrates a remarkable EMI shielding effectiveness (SE) of 49.98 dB alongside an enhanced absorption coefficient (A) of 0.51 with a thickness of only 180 μm. The thin films with a dual-gradient structure hold promise for crafting absorption-dominated electromagnetic shielding materials, highlighting the potential for advanced electromagnetic protection solutions.
Collapse
Affiliation(s)
- Hongwei Zhang
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiazhe Cheng
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Kaiyu Liu
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Shou-Xiang Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China; Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jichao Zhang
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Qian Wang
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chuntao Lan
- College of Textile and Garment, Nantong University, Nantong 226019, China.
| | - Hao Jia
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China; College of Textile& Garment, Shaoxing University, Shaoxing 312099, China.
| | - Zhaoling Li
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Wang Q, Feng Y, Lin F, Chen Y, Ding N, Zhang Y, Liu S, Zhao W, Zhao Q. High-Precision Printing Sandwich Flexible Transparent Silver Mesh for Tunable Electromagnetic Interference Shielding Visualization Windows. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70644-70655. [PMID: 39666894 DOI: 10.1021/acsami.4c16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Flexible transparent conductive films (FTCFs) with electromagnetic interference (EMI) shielding performance are increasingly crucial as visualization windows in optoelectronic devices due to their capabilities to block electromagnetic radiation (EMR) generated during operation. Metal mesh-based FTCFs have emerged as a promising representative in which EMI shielding effectiveness (SE) can be enhanced by increasing the line width, reducing the line spacing, or increasing mesh thickness. However, these conventional approaches decrease optical transmittance or increase material consumption, thus compromising the optical performance and economic viability. Hence, a significant challenge still remains in the realm of metal mesh-based FTCFs to enhance EMI SE while maintaining their original optical transmittance and equivalent material usage. Herein, we propose an innovative symmetric structural optimization strategy to create silver mesh-based sandwich-FTCFs with arbitrary customized sizes through high-precision extrusion printing technology for tunable EMI shielding performance. The meticulous adjustment of xy-axis offsets and printing starting point ensures perfect alignment of the silver mesh on both sides of the transparent substrate. This approach yields sandwich-FTCFs with optical transmittance equivalent to single-layer-FTCFs under identical parameters while simultaneously achieving up to 40% enhanced EMI SE. This improvement stems from the synergistic effect of multiple internal reflections and wave interference between the symmetric silver meshes. The excellent shielding performance of sandwich-FTCFs is evidenced through effectively blocking electromagnetic waves from common devices such as mobile phones, Bluetooth earphones, and smartwatches. Our work represents a significant advancement in balancing optical transmittance, EMI SE, and material efficiency in high-performance and cost-effective FTCFs.
Collapse
Affiliation(s)
- Qixiang Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Yuhui Feng
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Feifei Lin
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Yuzhe Chen
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Ning Ding
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Yijie Zhang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Weiwei Zhao
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
8
|
Cui J, Shu H, Gu X, Wu S, Liu X, Cao P. Enhancing antibacterial performance and stability of implant materials through surface modification with polydopamine/silver nanoparticles. Colloids Surf B Biointerfaces 2024; 245:114327. [PMID: 39427395 DOI: 10.1016/j.colsurfb.2024.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Implants and various medical devices possess surfaces that are prone to bacterial colonization due to bacterial adhesion and the formation of biofilms. Therefore, inhibiting bacterial colonization is a crucial strategy for preventing infections. Although there have been reports on antibacterial surfaces, the synthetic processes involved are often complex and labor-intensive, which significantly limits their practical applications. Furthermore, there is a lack of studies investigating the interplay between antibacterial performance and stability. In this study, silver ions were reduced to form silver nanoparticles, which were then loaded onto polydopamine (PDA) particles. The successful assembly of PDA-Ag on the surface of the titanium alloy was confirmed through X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS). The morphologies of the micro- and nanoparticles, as well as the surface morphology after deposition, were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a 3D optical profilometer. The abrasion experiments conducted on the three surfaces demonstrated that the TC4@PDA-Ag3 surface exhibited superior friction performance compared to the other two surfaces. Antibacterial and antibacterial stability experiments were conducted on this series of surfaces. The results indicated that the adhesion rate of TC4@PDA-Ag3 on Escherichia coli (E. coli) was 99.68 %, while the antibacterial efficiency against Staphylococcus aureus (S. aureus) was 95.97 %. This study presents a novel approach to address the issue of implant surface infections by demonstrating resistance to bacterial adhesion and colonization, specifically against E. coli and S. aureus.
Collapse
Affiliation(s)
- Junnan Cui
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haobo Shu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xin Gu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shutong Wu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Pan Cao
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
9
|
Zhao W, Dong J, Li Z, Zhou B, Liu C, Feng Y. Centrifugal Inertia-Induced Directional Alignment of AgNW Network for Preparing Transparent Electromagnetic Interference Shielding Films with Joule Heating Ability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406758. [PMID: 39116320 PMCID: PMC11481190 DOI: 10.1002/advs.202406758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Indexed: 08/10/2024]
Abstract
Transparent electromagnetic interference (EMI) shielding is highly desired in specific visual scenes, but the challenge remains in balancing their EMI shielding effectiveness (SE) and optical transmittance. Herein, this study proposed a directionally aligned silver nanowire (AgNW) network construction strategy to address the requirement of high EMI SE and satisfactory light transmittance using a rotation spraying technique. The orientation distribution of AgNW is induced by centrifugal inertia force generated by a high-speed rotating roller, which overcomes the issue of high contact resistance in random networks and achieves high conductivity even at low AgNW network density. Thus, the obtained transparent conductive film achieved a high light transmittance of 72.9% combined with a low sheet resistance of 4.5 Ω sq-1 and a desirable EMI SE value of 35.2 dB at X band, 38.9 dB in the K-band, with the highest SE of 43.4 dB at 20.4 GHz. Simultaneously, the excellent conductivity endowed the film with outstanding Joule heating performance and defogging/deicing ability, ensuring the visual transparency of windows when shielding electromagnetic waves. Hence, this research presents a highly effective strategy for constructing an aligned AgNW network, offering a promising solution for enhancing the performance of optical-electronic devices.
Collapse
Affiliation(s)
- Weijun Zhao
- State Key Laboratory of Structural AnalysisOptimization and CAE Software for Industrial EquipmentNational Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou UniversityZhengzhou450002China
| | - Jingwen Dong
- State Key Laboratory of Structural AnalysisOptimization and CAE Software for Industrial EquipmentNational Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou UniversityZhengzhou450002China
| | - Zhaoyang Li
- State Key Laboratory of Structural AnalysisOptimization and CAE Software for Industrial EquipmentNational Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou UniversityZhengzhou450002China
| | - Bing Zhou
- State Key Laboratory of Structural AnalysisOptimization and CAE Software for Industrial EquipmentNational Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou UniversityZhengzhou450002China
| | - Chuntai Liu
- State Key Laboratory of Structural AnalysisOptimization and CAE Software for Industrial EquipmentNational Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou UniversityZhengzhou450002China
| | - Yuezhan Feng
- State Key Laboratory of Structural AnalysisOptimization and CAE Software for Industrial EquipmentNational Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou UniversityZhengzhou450002China
| |
Collapse
|
10
|
Hu F, Tang H, Wu F, Ding P, Zhang P, Sun W, Cai L, Fan B, Zhang R, Sun Z. Sn Whiskers from Ti 2SnC Max Phase: Bridging Dual-Functionality in Electromagnetic Attenuation. SMALL METHODS 2024; 8:e2301476. [PMID: 38183383 DOI: 10.1002/smtd.202301476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Indexed: 01/08/2024]
Abstract
In the ever-evolving landscape of complex electromagnetic (EM) environments, the demand for EM-attenuating materials with multiple functionalities has grown. 1D metals, known for their high conductivity and ability to form networks that facilitate electron migration, stand out as promising candidates for EM attenuation. Presently, they find primary use in electromagnetic interference (EMI) shielding, but achieving a dual-purpose application for EMI shielding and microwave absorption (MA) remains a challenge. In this context, Sn whiskers derived from the Ti2SnC MAX phase exhibit exceptional EMI shielding and MA properties. A minimum reflection loss of -44.82 dB is achievable at lower loading ratios, while higher loading ratios yield efficient EMI shielding effectiveness of 42.78 dB. These qualities result from a delicate balance between impedance matching and EM energy attenuation via adjustable conductive networks; and the enhanced interfacial polarization effect at the cylindrical heterogeneous interface between Sn and SnO2, visually characterized through off-axis electron holography, also contributes to the impressive performance. Considering the compositional diversity of MAX phases and the scalable fabrication approach with environmental friendliness, this study provides a valuable pathway to multifunctional EM attenuating materials based on 1D metals.
Collapse
Affiliation(s)
- Feiyue Hu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Haifeng Tang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Fushuo Wu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Pei Ding
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Peigen Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wenwen Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Longzhu Cai
- The State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Bingbing Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
11
|
Ding Y, Xiong S, Sun L, Wang Y, Zhou Y, Li Y, Peng J, Fukuda K, Someya T, Liu R, Zhang X. Metal nanowire-based transparent electrode for flexible and stretchable optoelectronic devices. Chem Soc Rev 2024; 53:7784-7827. [PMID: 38953906 DOI: 10.1039/d4cs00080c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High-quality transparent electrodes are indispensable components of flexible optoelectronic devices as they guarantee sufficient light transparency and electrical conductivity. Compared to commercial indium tin oxide, metal nanowires are considered ideal candidates as flexible transparent electrodes (FTEs) owing to their superior optoelectronic properties, excellent mechanical flexibility, solution treatability, and higher compatibility with semiconductors. However, certain key challenges associated with material preparation and device fabrication remain for the practical application of metal nanowire-based electrodes. In this review, we discuss state-of-the-art solution-processed metal nanowire-based FTEs and their applications in flexible and stretchable optoelectronic devices. Specifically, the important properties of FTEs and a cost-benefit analysis of existing technologies are introduced, followed by a summary of the synthesis strategy, key properties, and fabrication technologies of the nanowires. Subsequently, we explore the applications of metal-nanowire-based FTEs in different optoelectronic devices including solar cells, photodetectors, and light-emitting diodes. Finally, the current status, future challenges, and emerging strategies in this field are presented.
Collapse
Affiliation(s)
- Yu Ding
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
| | - Sixing Xiong
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yiying Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yaowen Li
- College of Chemistry, Soochow University, Suzhou 215123, P. R. China
| | - Jun Peng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Kenjiro Fukuda
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohong Zhang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
12
|
Zhang Y, Feng Y, Li J, Xu T, Wu Y, Zhang X, Ji G. Multi-interfacial bridging engineering of flexible MXene film for efficient electromagnetic shielding and energy conversion. J Colloid Interface Sci 2024; 665:733-741. [PMID: 38554463 DOI: 10.1016/j.jcis.2024.03.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Accompanied by the progressive development of electronic equipment, excellent electromagnetic interference (EMI) shielding materials display a satisfying prospect in protecting electronic devices against electromagnetic pollution/radiation, while integrating energy conversion. Heretofore, it remains a conundrum to availably construct thin films with multi-interfacial bridging engineering as multifunctional shielding devices. To effectively achieve electromagnetic wave attenuation and integrate energy conversion, a co-mixed vacuum-assisted filtration strategy is designed to synthesize Au@MXene/cellulose nanocrystal/dodecylbenzenesulfonic acid-doped polyaniline (AMCP) films. Profited from the interfacial engineering, the total EMI shielding effectiveness (SE) can be increased by 27 % with the highest value of 67.9 dB. MXene with localized surface plasmon resonance characteristics gives the composite films good energy conversion performance, that is, the composite film can be rapidly heated up to 100 °C under the irradiation of an infrared lamp, and its surface temperature remains stable after continuous irradiation. Additionally, the infrared emissivity is as low as 0.173 within the 8-14 μm, which is necessary to adapt various application scenarios. Therefore, it is reliable that the AMCP films constructed by multicomponent offer a facile strategy for MXene-based EMI shielding devices with integration characteristics.
Collapse
Affiliation(s)
- Yuqing Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, PR China
| | - Yan Feng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, PR China
| | - Jianchao Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, PR China
| | - Tong Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, PR China
| | - Yue Wu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, PR China
| | - Ximing Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, PR China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, PR China.
| |
Collapse
|
13
|
Chung SI, Kang TW, Kim PK, Ha TG, Hong YP. Highly Transparent Ka-/W-Band Electromagnetic Shielding Films Based on Double-Layered Metal Meshes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56612-56622. [PMID: 37988133 DOI: 10.1021/acsami.3c14788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
An electromagnetic (EM) wave-shielding film exhibiting high performance in high-frequency bands, such as the Ka- and W-bands, was fabricated by using double-layered metal meshes. The double-layered shielding (DLS) film consists of metallic micromesh and nanomesh electrodes (NMEs) on the upper and lower surfaces of a poly(ethylene terephthalate) (PET) film, respectively. The micromesh electrodes (MMEs) were fabricated such that they possessed a thickness higher than the line width, and they thus exhibited excellent electromagnetic wave-shielding performance in addition to optical transmittance. Moreover, the nanomesh electrodes helped prevent the deterioration of the shielding performance owing to the increase in frequency, which was possible by decreasing the aperture size of the mesh-type electrodes. The shielding effectiveness (SE) of the double-layered metal-mesh film was evaluated by using a shielding measurement system that is optimized for high frequencies. In addition, optical transmittance and flexibility tests were conducted. The results confirm that the double-layered shielding film exhibited a shielding effectiveness of more than 50 dB at an optical transmittance of 90% and a stable bending resistance of up to 5000 cycles at a radius of curvature of 6 mm. Double-layered metal-mesh films with such excellent performance are expected to be widely used in diverse applications such as the automobile, medical, and military industries.
Collapse
Affiliation(s)
- Sung-Il Chung
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Republic of Korea
| | - Tae-Weon Kang
- Electromagnetic Wave Metrology Group, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Pan Kyeom Kim
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Republic of Korea
| | - Tae-Gyu Ha
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Republic of Korea
| | - Young-Pyo Hong
- Electromagnetic Wave Metrology Group, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| |
Collapse
|
14
|
Ren L, Zhou W, Wang L, Lin K, Xu Y, Wu J, Xie Y, Fu H. All-in-one self-floating porous foams as robust heat-blocking layers for efficient photothermal conversion and solar desalination. Sci Bull (Beijing) 2023; 68:2760-2768. [PMID: 37770326 DOI: 10.1016/j.scib.2023.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/04/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023]
Abstract
Solar-driven interfacial evaporation is a highly efficient and ecofriendly technology for producing freshwater. Herein, self-floating plasmon Ag/black TiO2/carbon porous layered foams (Ag-BTCFs) were demonstrated as efficient solar-thermal convectors using freeze-drying cast-molding and high-temperature surface hydrogenation strategies. This all-in-one three-dimensional (3D) cross-linked self-floating porous layered foam material with full-spectrum absorption can fully harvest sunlight (∼95.45%) and effectively block heat transfer to its sublayer. The synergy of sufficient utilization of absorbed ultraviolet radiation by black TiO2 (b-TiO2), visible light absorption by Ag nanoparticles (Ag NPs) via localized surface plasmon resonance, and near-infrared absorption by layered-amorphous carbon can achieve full-solar-spectrum absorption to concentrate thermal energy. In addition to their synergistic effect, they are conducive to the relaxation of hot electrons when utilizing photogenerated holes to degrade pollutants in domestic wastewater. The steam generation efficiency of Ag-BTCFs is up to 1.79 kg m-2h-1 due to their solar energy conversion efficiency of 81.74% under 1 sun irradiation, which is five times higher than the evaporation rate of pure water. Notably, the material's efficient ion removal rate of 99.80% for solar desalination indicates its high potential for various applications. This strategy provides new insights for fabricating recyclable heat-blocking layer systems against thermal loss to enhance solar steam generation.
Collapse
Affiliation(s)
- Liping Ren
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), Heilongjiang University, Harbin 150080, China
| | - Wei Zhou
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), Heilongjiang University, Harbin 150080, China; Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), Heilongjiang University, Harbin 150080, China
| | - Kuo Lin
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), Heilongjiang University, Harbin 150080, China
| | - Yachao Xu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), Heilongjiang University, Harbin 150080, China
| | - Jiaxing Wu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), Heilongjiang University, Harbin 150080, China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), Heilongjiang University, Harbin 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
15
|
Huang Q, Zhang Y, Tan S, Wu Y, Ji G. Multi-interfacial engineering in the hierarchical self-assembled micro-nano dielectric aerogel for wide-band absorption and low infrared emissivity. J Colloid Interface Sci 2023; 649:76-85. [PMID: 37336156 DOI: 10.1016/j.jcis.2023.06.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Radar-infrared (IR) compatible stealth can satisfy the characteristics of excellent electromagnetic wave attenuation property and low infrared emissivity. However, concurrently satisfying these demands is still a great challenge at present. Herein, multi-interfacial engineering strategy was proposed for the preparation of radar-IR compatible stealth materials. ZnO has a high electron binding energy and a large band gap at room temperature, and doping with sulphide can increase the concentration of unconstrained carriers. Therefore, bimetallic sulphide aerogels loaded with ZnO were prepared by means of carbonization and vulcanization, combined with freeze-drying method. When the filling ratio is 20 %, an absorption bandwidth (fe) of 6.62 GHz at a matching thickness of 2.0 mm and a reduction in IR emissivity from 0.920 to 0.539 in the 8-14 μm band are achieved. This work provides a guidance to design and synthesize high-performance absorbers by multi-interfacial engineering for IR-radar compatible stealth application.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, PR China
| | - Yuqing Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, PR China
| | - Shujuan Tan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, PR China.
| | - Yue Wu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, PR China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, PR China
| |
Collapse
|
16
|
Lee JS, Kim JW, Lee JH, Son YK, Kim YB, Woo K, Lee C, Kim ID, Seok JY, Yu JW, Park JH, Lee KJ. Flash-Induced High-Throughput Porous Graphene via Synergistic Photo-Effects for Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2023; 15:191. [PMID: 37532956 PMCID: PMC10397175 DOI: 10.1007/s40820-023-01157-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/17/2023] [Indexed: 08/04/2023]
Abstract
Porous 2D materials with high conductivity and large surface area have been proposed for potential electromagnetic interference (EMI) shielding materials in future mobility and wearable applications to prevent signal noise, transmission inaccuracy, system malfunction, and health hazards. Here, we report on the synthesis of lightweight and flexible flash-induced porous graphene (FPG) with excellent EMI shielding performance. The broad spectrum of pulsed flashlight induces photo-chemical and photo-thermal reactions in polyimide films, forming 5 × 10 cm2-size porous graphene with a hollow pillar structure in a few milliseconds. The resulting material demonstrated low density (0.0354 g cm-3) and outstanding absolute EMI shielding effectiveness of 1.12 × 105 dB cm2 g-1. The FPG was characterized via thorough material analyses, and its mechanical durability and flexibility were confirmed by a bending cycle test. Finally, the FPG was utilized in drone and wearable applications, showing effective EMI shielding performance for internal/external EMI in a drone radar system and reducing the specific absorption rate in the human body.
Collapse
Affiliation(s)
- Jin Soo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong-Wook Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong Koo Son
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young Bin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyoohee Woo
- Department of Printed Electronics, Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon, 34103, Republic of Korea
| | - Chanhee Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Young Seok
- Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Jong Won Yu
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung Hwan Park
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
17
|
Zhou M, Tan S, Wang J, Wu Y, Liang L, Ji G. "Three-in-One" Multi-Scale Structural Design of Carbon Fiber-Based Composites for Personal Electromagnetic Protection and Thermal Management. NANO-MICRO LETTERS 2023; 15:176. [PMID: 37428269 PMCID: PMC10333170 DOI: 10.1007/s40820-023-01144-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Wearable devices with efficient thermal management and electromagnetic interference (EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers (CF) @ polyaniline (PANI) / silver nanowires (Ag NWs) composites with a "branch-trunk" interlocked micro/nanostructure were achieved through "three-in-one" multi-scale design. The reasonable assembly of the three kinds of one-dimensional (1D) materials can fully exert their excellent properties i.e., the superior flexibility of CF, the robustness of PANI, and the splendid conductivity of AgNWs. Consequently, the constructed flexible composite demonstrates enhanced mechanical properties with a tensile stress of 1.2 MPa, which was almost 6 times that of the original material. This is mainly attributed to the fact that the PNAI (branch) was firmly attached to the CF (trunk) through polydopamine (PDA), forming a robust interlocked structure. Meanwhile, the composite possesses excellent thermal insulation and heat preservation capacity owing to the synergistically low thermal conductivity and emissivity. More importantly, the conductive path of the composite established by the three 1D materials greatly improved its EMI shielding property and Joule heating performance at low applied voltage. This work paves the way for rational utilization of the intrinsic properties of 1D materials, as well as provides a promising strategy for designing wearable electromagnetic protection and thermal energy management devices.
Collapse
Affiliation(s)
- Ming Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Shujuan Tan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, People's Republic of China.
| | - Jingwen Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Yue Wu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Leilei Liang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, People's Republic of China
| |
Collapse
|
18
|
Lee H, Ryu SH, Kwon SJ, Choi JR, Lee SB, Park B. Absorption-Dominant mmWave EMI Shielding Films with Ultralow Reflection using Ferromagnetic Resonance Frequency Tunable M-Type Ferrites. NANO-MICRO LETTERS 2023; 15:76. [PMID: 36976370 PMCID: PMC10050308 DOI: 10.1007/s40820-023-01058-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Although there is a high demand for absorption-dominant electromagnetic interference (EMI) shielding materials for 5G millimeter-wave (mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.
Collapse
Affiliation(s)
- Horim Lee
- Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-Gu, Changwon, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Seung Han Ryu
- Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-Gu, Changwon, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Suk Jin Kwon
- Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-Gu, Changwon, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Jae Ryung Choi
- Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-Gu, Changwon, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Sang-Bok Lee
- Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-Gu, Changwon, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Byeongjin Park
- Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-Gu, Changwon, Gyeongsangnam-Do, 51508, Republic of Korea.
| |
Collapse
|
19
|
Bian M, Qian Y, Cao H, Huang T, Ren Z, Dai X, Zhang S, Qiu Y, Si R, Yang L, Yin S. Chemically Welding Silver Nanowires toward Transferable and Flexible Transparent Electrodes in Heaters and Double-Sided Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13307-13318. [PMID: 36880523 DOI: 10.1021/acsami.2c21996] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Silver nanowires (AgNWs) are important materials for flexible transparent electrodes (FTEs). However, the loose stacking of nanowire junctions greatly affects the electric conductivity across adjacent nanowires. Soldering can effectively reduce the wire-wire contact resistance of AgNWs by epitaxially depositing nanosolders at the junctions, but the process normally needs to be performed with high energy consumption. In this work, we proposed a simple room-temperature method to achieve precise welding of junctions by adjusting the wettability of the soldered precursor solution on the surfaces of AgNWs. The nanoscale welding at nanowire cross junctions forms efficient conductive networks. Furthermore, reduced graphene oxide (rGO) was used to improve the stability of FTEs by wrapping the rGO around the AgNW surface. The obtained FTE shows a figure-of-merit (FoM) of up to 439.3 (6.5 Ω/sq at a transmittance of 88%) and has significant bending stability and environmental and acidic stability. A flexible transparent heater was successfully constructed, which could reach up to 160 °C within a short response time (43 s) and exhibit excellent switching stability. When laminating this FTE onto half perovskite solar cells as the top electrodes, the obtained double-side devices achieved power conversion efficiencies as high as 16.15% and 13.91% from each side, pointing out a convenient method for fabricating double-sided photovoltaic devices.
Collapse
Affiliation(s)
- Mengxi Bian
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), School of Science, Tianjin University of Technology, Tianjin 300384, PR China
- Tianjin Key Laboratory for Photoelectric Materials and Devices & National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Yicheng Qian
- Tianjin Key Laboratory for Photoelectric Materials and Devices & National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Huanqi Cao
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), School of Science, Tianjin University of Technology, Tianjin 300384, PR China
- Tianjin Key Laboratory for Photoelectric Materials and Devices & National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Tingting Huang
- Tianjin Key Laboratory for Photoelectric Materials and Devices & National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Zhixin Ren
- Tianjin Key Laboratory for Photoelectric Materials and Devices & National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Xiaodong Dai
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), School of Science, Tianjin University of Technology, Tianjin 300384, PR China
- Tianjin Key Laboratory for Photoelectric Materials and Devices & National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Shifu Zhang
- Tianjin Key Laboratory for Photoelectric Materials and Devices & National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Yuan Qiu
- Tianjin Key Laboratory for Photoelectric Materials and Devices & National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Rongmei Si
- Tianjin Baoxingwei Technology Co. Ltd., Economic Development Zone of Baodi District, Tianjin 301800, PR China
| | - Liying Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), School of Science, Tianjin University of Technology, Tianjin 300384, PR China
- Tianjin Key Laboratory for Photoelectric Materials and Devices & National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Shougen Yin
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), School of Science, Tianjin University of Technology, Tianjin 300384, PR China
- Tianjin Key Laboratory for Photoelectric Materials and Devices & National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| |
Collapse
|
20
|
Wang J, Wu X, Wang Y, Zhao W, Zhao Y, Zhou M, Wu Y, Ji G. Green, Sustainable Architectural Bamboo with High Light Transmission and Excellent Electromagnetic Shielding as a Candidate for Energy-Saving Buildings. NANO-MICRO LETTERS 2022; 15:11. [PMID: 36495422 PMCID: PMC9741695 DOI: 10.1007/s40820-022-00982-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 06/02/2023]
Abstract
Currently, light-transmitting, energy-saving, and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment. Here, we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo. The modified whole bamboo possessed an impressive optical transmittance of approximately 60% at 6.23 mm, illuminance of 1000 luminance (lux), water absorption stability (mass change rate less than 4%), longitudinal tensile strength (46.40 MPa), and surface properties (80.2 HD). These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro, but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro. Moreover, a multilayered device consisting of translucent whole bamboo, transparent bamboo sheets, and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB. The impressive optical transmittance, mechanical properties, thermal performance, and electromagnetic shielding abilities combined with the renewable and sustainable nature, as well as the fast and efficient manufacturing process, make this bamboo composite material suitable for effective application in transparent, energy-saving, and electromagnetic shielding buildings.
Collapse
Affiliation(s)
- Jing Wang
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xinyu Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yajing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Weiying Zhao
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yue Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, People's Republic of China
| | - Ming Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, People's Republic of China
| | - Yan Wu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, People's Republic of China.
| |
Collapse
|
21
|
Li W, Guo F, Zhao Y, Liu Y, Du Y. Facile Synthesis of Metal Oxide Decorated Carbonized Bamboo Fibers with Wideband Microwave Absorption. ACS OMEGA 2022; 7:39019-39027. [PMID: 36340137 PMCID: PMC9631727 DOI: 10.1021/acsomega.2c04767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Aiming at the disadvantages of high cost, complex processes, low yield, and narrow bandwidth of carbon-based microwave absorbing materials, this paper provides a novel and efficient method for synthesizing metal oxide/carbonized bamboo fibers using renewable natural bamboo fibers as a carbon source. The results suggested that the metal oxides such as NiO and Fe3O4 were uniformly dispersed on the carbonized bamboo fibers and proved that the dielectric component NiO and magnetic component Fe3O4 can significantly improve the microwave absorption performance of the carbonized bamboo fibers. As expected, the NiO/carbonized bamboo fibers showed excellent microwave absorption performance due to the appropriate complex permittivity, high impedance matching, and attenuation coefficient. A wide effective bandwidth of 6.4 GHz with 2.2 mm thickness is achieved, covering the entire Ku-band. Remarkably, the reflection loss (RL) values less than -10 dB covered the whole X-band at a thickness of 3.0 mm. This work reveals the potential of carbonized bamboo fibers-based composite as an economic and broadband microwave absorbent and offers a new strategy for designing promising microwave absorption materials.
Collapse
Affiliation(s)
- Wanxi Li
- Department
of Materials Science and Engineering, Jinzhong
University, Jinzhong030619, P.R. China
| | - Fang Guo
- Department
of Materials Science and Engineering, Jinzhong
University, Jinzhong030619, P.R. China
| | - Yali Zhao
- Department
of Materials Science and Engineering, Jinzhong
University, Jinzhong030619, P.R. China
| | - Yanyun Liu
- Department
of Materials Science and Engineering, Jinzhong
University, Jinzhong030619, P.R. China
| | - Yien Du
- Department
of Chemistry and Chemical Engineering, Jinzhong
University, Jinzhong030619, P.R. China
| |
Collapse
|
22
|
Cui J, Huang L, Ma J, Li Y, Yuan Y. Carbon-encapsulated core-shell structure ZnFe 2O 4 sphere composites coupled with excellent microwave absorption and corrosion resistance. NANOSCALE 2022; 14:15393-15403. [PMID: 36218187 DOI: 10.1039/d2nr04333e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microwave absorbing materials (MAMs) have been identified as an efficient means to solve major electromagnetic pollution problems. Current core-shell composite MAMs are fabricated as single magnetic cores with dielectric shells, yielding decreased magnetic couplings and impedance mismatches. Herein, carbon shell encapsulated core-shell structured zinc ferrate (ZnFe2O4) sphere composites (CSZF@C) were fabricated using a hydrothermal method and subsequent carbonisation process. The complex permittivity and complex permeability of CSZF@C can be effectively adjusted by varying the parameters of the outer carbon shell. The synergistic effect of carbon shell and inner core-shell structured ZnFe2O4 (CSZF) not only meets impedance matching but also improves electromagnetic energy loss, a result of the unique microstructure. CSZF@C-1 exhibited a considerable reflection loss (RL) of -53.5 dB and an effective absorption bandwidth (EAB) of up to 6.56 GHz, the thickness is only 2.94 mm. Meanwhile, the epoxy resin coating of CSZF@C-1 substantially increases the corrosion resistance of the metal substrate owing to carbon encapsulation. This study presents new ideas for designing efficient multifunctional nanocomposites with high microwave absorption and corrosion resistance.
Collapse
Affiliation(s)
- Jin Cui
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China.
| | - Li Huang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China.
| | - Jingwei Ma
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China.
| | - Yibin Li
- School of Materials Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Ye Yuan
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China.
- School of Materials Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
23
|
Hao Z, Liu J, He X, Meng Y, Wang X, Liu D, Yang N, Hou W, Bian C. Electromagnetic absorption enhancing mechanisms by modified biochar derived from Enteromorpha prolifera: a combined experimental and simulation study. NANOSCALE 2022; 14:14508-14519. [PMID: 36156672 DOI: 10.1039/d2nr04162f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although the rapid advances of wireless technologies and electronic devices largely improve the quality of life, electromagnetic (EM) pollution increases the risk of exposure to EM radiation. Developing high-efficiency absorbers with a rational structure and wideband characteristics is of great significance to eliminate radiation pollution. Herein, Enteromorpha prolifera derived biochar which would provide a suitable surface and multiple polarizations has been prepared as the supporter to anchor nanoparticles. In addition, theoretical simulation results further confirm that radar wave scattering could be largely inhibited after coating with absorbing materials. As a result, the hybrid absorbers achieve remarkable EM absorption properties attributed to the synergistic magnetic-dielectric loss. Elaborate compositional and structural characterization studies indicate that the absorber has a large specific area and numerous polarization centers, which would make full use of waste biomass as light weight and broadband high-performance EM absorption materials.
Collapse
Affiliation(s)
- Zhiwang Hao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Jimei Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Xinliang He
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Yubo Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Xiaobin Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Dong Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Naitao Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Wenjie Hou
- School of Computer Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Chao Bian
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| |
Collapse
|
24
|
Development of wrinkled reduced graphene oxide wrapped polymer-derived carbon microspheres as viable microwave absorbents via a charge-driven self-assembly strategy. J Colloid Interface Sci 2022; 630:34-45. [DOI: 10.1016/j.jcis.2022.09.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022]
|
25
|
Ren Q, Feng T, Song Z, Zhou P, Wang M, Zhang Q, Wang L. Autogenous and Tunable CNTs for Enhanced Polarization and Conduction Loss Enabling Sea Urchin-Like Co 3ZnC/Co/C Composites with Excellent Microwave Absorption Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41246-41256. [PMID: 36045505 DOI: 10.1021/acsami.2c13064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
ZIF-67-derived magnetic metal/carbon composites are considered prospective candidates for use as microwave absorption (MA) materials owing to their magnetoelectric synergy. However, the structure of ZIF-67-derived MA materials mainly depends on the morphology and composition of pristine metal-organic frameworks (MOFs), and their microstructures lack a rational design. Herein, a multidimensional sea urchin-like carbon nanotubes (CNTs)-grafted carbon polyhedra-encapsulated Co3ZnC/Co nanoparticle composite was prepared by one-step catalytic pyrolysis of ZIF-67/ZnO using a rational structural design. The autogenous and tunable CNTs obtained with the assistance of zinc evaporation not only overcome the limitation of homogeneous dispersion but also endow the Co3ZnC/Co/C composite with outstanding MA properties owing to the conduction loss provided by CNTs, polarization loss caused by multiple components, and electromagnetic wave trap composed of a special sea urchin-like structure. Consequently, the minimum reflection loss of ZZ0.1-600 reaches -60.3 dB at 1.6 mm, the maximum absorption bandwidth of ZZ0.05-600 is 6.24 GHz (covering nearly the entire Ku band) at 1.9 mm, and the structure has a low weight ratio (30 wt %). Compared with Z-600 and pure ZnO, the MA performance of the sea urchin-like Co3ZnC/Co/C composite obtained by rational structural design has been greatly improved; this strategy offers a new approach for optimizing the MA performance of materials according to their structural design.
Collapse
Affiliation(s)
- Qingguo Ren
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tong Feng
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi Song
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Panpan Zhou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Meng Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qitu Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Lixi Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| |
Collapse
|
26
|
Pan F, Rao Y, Batalu D, Cai L, Dong Y, Zhu X, Shi Y, Shi Z, Liu Y, Lu W. Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness. NANO-MICRO LETTERS 2022; 14:140. [PMID: 35788830 PMCID: PMC9256896 DOI: 10.1007/s40820-022-00869-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 05/28/2023]
Abstract
Electromagnetic cooperative strategy has been presented as a mainstream approach that can effectively optimize the matching thickness of dielectric loss dominant system. However, it is still challenging for dielectric-magnetic loss coexisting-type absorber to develop electromagnetic wave (EMW) performance with ultra-low matching thickness (≤ 1 mm). Breaking the limitation of traditional electromagnetic response at microscopic/mesoscopic scale, a ficus microcarpa-like magnetic aerogel with macroscopical electromagnetic cooperative effect was fabricated through highly oriented self-assembly engineering. The highly oriented Ni chains with unique macroscopic morphology (~ 1 cm in length) were achieved via a special magnetic field-induced growth. Strong magnetic coupling was observed in the Ni chains confirmed by the micromagnetic simulation. The deductive calculation validates that maintaining high value of electromagnetic parameters at high frequencies is the prerequisites of ultrathin absorber. The electromagnetic cooperative networks with uninterrupted and dual pathways spread through the entire aerogel skeleton, resulting in the impressive permittivity even at high frequencies. Consequently, the aerogel exhibits a remarkable EMW performance at an ultrathin thickness of 1 mm. Thus, based on the modulation of electromagnetic parameters, this work proposed a macroscopic ordered structure with the electromagnetic cooperative effect useful to develop a suitable strategy for achieving ultrathin EMW absorbers.
Collapse
Affiliation(s)
- Fei Pan
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yanping Rao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Dan Batalu
- Materials Science and Engineering Faculty, Politehnica University of Bucharest, 060042, Bucharest, Romania
| | - Lei Cai
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yanyan Dong
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Xiaojie Zhu
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yuyang Shi
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Zhong Shi
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yaowen Liu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Wei Lu
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| |
Collapse
|
27
|
Zheng R, Cheng Y, Jiang X, Lin T, Chen W, Deng G, Miras HN, Song YF. Fiber Templated Epitaxially Grown Composite Membranes: From Thermal Insulation to Infrared Stealth. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27214-27221. [PMID: 35653141 DOI: 10.1021/acsami.2c05906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Thermal insulation materials show a substantial impact on civil and military fields for applications. Fabrication of efficient, flexible, and comfortable composite materials for thermal insulation is thereby of significance. Herein, a "fiber templated epitaxial growth" strategy was adopted to construct PAN@LDH (PAN = polyacrylonitrile; LDH = layered double hydroxides) composite membranes with a three-dimensional (3D) network structure. The PAN@LDH showed an impressive temperature difference of 28.1 °C as a thermal insulation material in the hot stage of 80 °C with a thin layer of 0.6 mm. Moreover, when a human hand was covered with 3 layers of the PAN@LDH-70% composite membrane, it was rendered invisible under infrared radiation. Such excellent performance can be attributed to the following reasons: (1) the hierarchical interfaces of the PAN@LDH composite membrane reduced thermal conduction, (2) the 3D network structure of the PAN@LDH composite membranes restricted thermal convection, and (3) the selective infrared absorption of LDHs decreased thermal radiation. When modified with Dodecyltrimethoxysilane (DTMS), the resulting PAN@LDH@DTMS membrane can be used under high humidity conditions with excellent thermal insulation properties. As such, this work provides a facile strategy for the development of high-performance thermal insulation functional membranes.
Collapse
Affiliation(s)
- Ruoxuan Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Xiao Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tong Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Gaofeng Deng
- State Key Laboratory of Building Safety and Environment, China Academy of Building Research, Beijing 100013, P. R. China
| | - Haralampos N Miras
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
28
|
Nan Y, Zhang Z, Wang Z, Yuan H, Zhou Y, Wei J. Controllable Synthesis of Mo 3C 2 Encapsulated by N-Doped Carbon Microspheres to Achieve Highly Efficient Microwave Absorption at Full Wavebands: From Lemon-like to Fig-like Morphologies. Inorg Chem 2022; 61:6281-6294. [PMID: 35412830 DOI: 10.1021/acs.inorgchem.2c00533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mo3C2@N-doped carbon microspheres (Mo3C2@NC) have been discovered to be a family of superior microwave absorbing materials. Herein, Mo3C2@NC was synthesized through a simple high-temperature carbonization process by evaporating a graphite anode and Mo wire in Ar and N2 atmospheres with an N-doping content of 6.4 at. %. Attributing to the self-assembly mechanism, the number of Mo wires inserted into the graphite anode determined the morphologies of Mo3C2@NC, which were the unique lemon-like (1- and 2-Mo3C2@NC) and fig-like (3-, 4-, and 5-Mo3C2@NC) microstructures. 1- and 2-Mo3C2@NC exhibited powerful reflection losses (RLs) of -45.60, -45.59, and -47.11 dB at the S, C and X bands, respectively, which corresponded to thinner thicknesses. 3-, 4-, and 5-Mo3C2@NC showed outstanding absorption performance at the C, X, and Ku bands, respectively, with each value of a minimum RL less than -43.00 dB. In particular, the strongest RL (-43.56 dB) for 5-Mo3C2@NC corresponded to an ultrathin thickness of 1.3 mm. In addition, the maximum effective absorption bandwidth was 6.3 GHz for 4-Mo3C2@NC. After analysis, all Mo3C2@NC samples showed well-matched impedance due to the enhanced dielectric loss caused by the unique carbon structure and moderate magnetic loss derived from the weak magnetic property of Mo3C2. More importantly, the unique lemon-like and fig-like microstructures created sufficient interfaces and differentiated multiple reflection paths, which greatly contributed to the strong microwave absorptions at full wavebands. In full consideration of the simple preparation method and tunable absorption properties, Mo3C2@NC composites can be regarded as excellent electromagnetic wave absorption materials.
Collapse
Affiliation(s)
- Yanli Nan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zihan Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhaoyu Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hudie Yuan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Lu Zhou 646000, China
| | - Jian Wei
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
29
|
Meng Y, Li G, Tang H, Lu X, Lu S, Lu H, Ma Y, Xie C, Wu Y, Zi Z. Bimetallic ZIF-derived conductive network of Co–Zn@NPC@MWCNT nanocomposites for efficient electromagnetic wave absorption in the whole X-band. Dalton Trans 2022; 51:17466-17480. [DOI: 10.1039/d2dt02388a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bimetallic ZIFs-derived Co-Zn@NPC@MWCNTs nanocomposites are successfully fabricated, which possess double absorption peaks of −76.18 dB and −33.09 dB with a thickness of 3.187 mm. The composites exhibit a bandwidth of 6.56 GHz with 3.0 mm thickness.
Collapse
Affiliation(s)
- Ying Meng
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Guang Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Hao Tang
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Xiudong Lu
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Shibin Lu
- Anhui Province Key Laboratory of Simulation and Design for Electronic Information System, Hefei Normal University, Hefei, 230601, China
| | - Haisheng Lu
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Yuan Ma
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Changzheng Xie
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Yaodong Wu
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| | - Zhenfa Zi
- Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, 230601, China
| |
Collapse
|
30
|
Guo S, Zhang Y, Chen J, Wu Y, Cao J, Tang S, Ji G. The excellent electromagnetic wave absorbing properties of carbon fiber composites: effect of metal content. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00854h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the effect of metal loading on electromagnetic (EM) absorbing performance was investigated to obtain an excellent EM absorber through a simple process. Specifically, iron/cobalt/carbon nanocomposite fibers were...
Collapse
|