1
|
Zong D, Cao L, Sun Y, Pang S, Li Y, Liu Y. Fast, Low-Cost, and Lyophilization-Free Synthesis of Multifunctional Elastic Nanofiber Aerogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412778. [PMID: 40317632 DOI: 10.1002/smll.202412778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Aerogels are regarded as ideal materials across a range of fields due to their exceptionally low densities and highly porous structures. However, their practical applications are significantly constrained by their inherent fragility, high production costs, and demanding conditions such as freeze-drying or supercritical drying. In this study, a novel, low-cost strategy is presented for the large-scale fabrication of hierarchically structured nanofiber aerogels (HENAs) using a lyophilization-free, dissolution-induced coordination (DIC) method. This approach enables fabrication within ≈4 h, which is 10 times faster than conventional lyophilization processes (usually require ≥48 h). Despite the absence of additional chemical crosslinking, the formation of stable coordination networks imparts the aerogels with excellent resilience (exhibiting only 3.9% deformation after 100 compression cycles). This strategy demonstrates fiber-type invariant universality, enabling the fabrication of HENAs with multifunctional properties, including noise absorption (noise reduction coefficient of 0.58), electromagnetic wave absorption (effective absorption bandwidth of 7.2 GHz), and oil adsorption (adsorbing capacity of 36.4 g g-1). The simplicity, rapidity, and cost-effectiveness of this synthesis approach provide a promising pathway for the large-scale production of multifunctional aerogels.
Collapse
Affiliation(s)
- Dingding Zong
- Ministry of Education Key Laboratory for Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Leitao Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yaning Sun
- Ministry of Education Key Laboratory for Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shuying Pang
- Ministry of Education Key Laboratory for Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuyao Li
- Ministry of Education Key Laboratory for Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yong Liu
- Ministry of Education Key Laboratory for Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
2
|
Huang S, Wen K, Liu Y, Wu C, Du X, Liang C, Ma Q, Liu Y. Optimized design, fabrication, and enhanced performance of honeycomb sandwich structure for excellent impact resistance and broadband microwave absorption. J Colloid Interface Sci 2025; 681:365-375. [PMID: 39612668 DOI: 10.1016/j.jcis.2024.11.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Lightweight microwave absorbing structures have wide applications in aerospace and military equipment. In general, honeycomb sandwich structure is regarded as an ideal choice. However, traditional honeycomb sandwich structure designs have limitations in improving absorption bandwidth, and their impact resistance remains unremarkable. Herein, a novel microwave absorbing honeycomb sandwich structure (MAHSS) has been thoroughly investigated through both theoretical and experimental validations. The MAHSS is crafted using a glass fiber (GF)/epoxy composite that is coated with reduced graphene oxide (RGO) for enhanced performance. The middle honeycomb layer of MAHSS is arranged transversely to add more interface. When the honeycomb core has 2 layers and a wall thickness of 2.4 mm in MAHSS, the maximum achievable bandwidth is 13.6 GHz, while the minimum reflection loss (RLmin) reaches -24.02 dB under TE mode. The mechanical properties of the MAHSS were evaluated by compression test and drop weight impact testing. The MAHSS exhibits excellent compression and impact resistance, accompanied by self-recovery performance post-unloading. It still did not penetrate under an impact energy of 150 J, absorbing up to 123 J of energy. This work provides theoretical guidance and technical support for designing and preparing structural and functional integration microwave absorption materials.
Collapse
Affiliation(s)
- Shaoliang Huang
- Shanxi Province Key Laboratory of Functional Polymer Composite Materials, College of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Kai Wen
- Shanxi Province Key Laboratory of Functional Polymer Composite Materials, College of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Yancheng Liu
- Shanxi Province Key Laboratory of Functional Polymer Composite Materials, College of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Congya Wu
- Shanxi Province Key Laboratory of Functional Polymer Composite Materials, College of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Xiaomei Du
- Shanxi Province Key Laboratory of Functional Polymer Composite Materials, College of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Chaobo Liang
- Shanxi Province Key Laboratory of Functional Polymer Composite Materials, College of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Quanjin Ma
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yaqing Liu
- Shanxi Province Key Laboratory of Functional Polymer Composite Materials, College of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
3
|
Wang X, Chen X, Wang B, He Q, Cao J, Zhu Y, Su K, Yan H, Sun P, Li R, Zhang J, Shao J. Ultra-Bandwidth Microwave Absorption and Low Angle Sensitivity in Dual-Network Aerogels with Dual-Scale Pores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412744. [PMID: 39981847 DOI: 10.1002/smll.202412744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Aerogels with porous structures offer an attractive approach to modulating electromagnetic parameters and enhancing electromagnetic wave (EMW) absorption performance. However, conventional aerogels are limited by their single-scale pore size and fixed orientation, which constrain their EMW absorption capabilities. This study introduces aerogels with dual-scale pores and dual-network structure constructed via constant-temperature freezing and secondary-infusion freezing method. Multiscale aerogels with both micrometer- and submillimeter-scale pores are constructed when the Ti3C2Tx MXene and thermoplastic polyurethane solution is frozen and dried at a specific temperature, leading to an ultra-wide effective absorption bandwidth (EAB) reaching 10.41 GHz in the vertical direction. Furthermore, to address the poor EMW absorption in the parallel direction, a secondary infusion freezing method is applied to form an aerogel with a dual-network structure, which forms reflective interfaces perpendicular to the incident EMW in various directions. This adjustment enhances the EAB in the parallel direction from 1.58 to 5.93 GHz, marking a 275.32% enhancement, while the EAB in the vertical incident direction reaches 8.08 GHz. This design strategy overcomes the limitations of structural scale and arrangement direction, enriching the attenuation mechanisms of the absorber, while effectively reducing sensitivity to the direction of incoming EMW, offering new insights for designing efficient EMW absorbers.
Collapse
Affiliation(s)
- Xin Wang
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoming Chen
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- XJTU-POLIMI Joint School of Design and Innovation, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baichuan Wang
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qingyuan He
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jincao Cao
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ye Zhu
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kewei Su
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huiyi Yan
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pengsong Sun
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Runlang Li
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinyou Shao
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
4
|
Li L, Ban Q, Song Y, Liu J, Qin Y, Zhang T, Kong J. Self-Templating Engineering of Hollow N-Doped Carbon Microspheres Anchored with Ternary FeCoNi Alloys for Low-Frequency Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406602. [PMID: 39344537 DOI: 10.1002/smll.202406602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Rational design and precision fabrication of magnetic-dielectric composites have significant application potential for microwave absorption in the low-frequency range of 2-8 GHz. However, the composition and structure engineering of these composites in regulating their magnetic-dielectric balance to achieve high-performance low-frequency microwave absorption remains challenging. Herein, a self-templating engineering strategy is proposed to fabricate hollow N-doped carbon microspheres anchored with ternary FeCoNi alloys. The high-temperature pyrolysis of FeCoNi alloy precursors creates core-shell FeCoNi alloy-graphitic carbon nano-units that are confined in carbon shells. Moreover, the anchored FeCoNi alloys play a critical role in maintaining hollow structural stability. In conjunction with the additional contribution of multiple heterogeneous interfaces, graphitization, and N doping to the regulation of electromagnetic parameters, hollow FeCoNi@NCMs exhibit a minimum reflection loss (RLmin) of -53.5 dB and an effective absorption bandwidth (EAB) of 2.48 GHz in the low-frequency range of 2-8 GHz. Furthermore, a filler loading of 20 wt% can also be used to achieve a broader EAB of 5.34 GHz with a matching thickness of 1.7 mm. In brief, this work opens up new avenues for the self-templating engineering of magnetic-dielectric composites for low-frequency microwave absorption.
Collapse
Affiliation(s)
- Luwei Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Qingfu Ban
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Yuejie Song
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Tiantian Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
5
|
Zhang L, Du J, Tang P, Zhao X, Hu C, Dong Y, Zhang X, Liu N, Wang B, Peng R, Zhang Y, Wu G. Regulation of PPy Growth States by Employing Porous Organic Polymers to Obtain Excellent Microwave Absorption Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406001. [PMID: 39263765 DOI: 10.1002/smll.202406001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Regulating the different growth states of polypyrrole (PPy) is a key strategy for obtaining PPy composites with high electromagnetic wave (EMW) absorption properties. This work finds that the growth states of PPy is regulated by controlling the amount of pyrrole added during the preparation of composites, so as to regulate the development of conductive networks to obtain excellent EMW absorption performance. The POP/PPy-200 composite achieves an effective absorption bandwidth (EAB) of 6.24 GHz (11.76-18.00 GHz) at a thickness of only 2.34 mm, covering 100% of the Ku band. The minimum reflection loss of -73.05 dB can be demonstrated at a thickness of only 2.29 mm, while at the same time showing an EAB of 5.96 GHz to meet the requirements of "thin", "light", "wide", and "strong". Such excellent EMW absorption performance is attributed to the conductive loss caused by the regulation of the growth states of PPy and the polarization loss caused by the heterostructure. This work also addresses the key challenge that porous organic polymers (POPs) cannot be applied to EMW absorption due to poor conductivity and providing new insights into the candidates for EMW absorbing materials.
Collapse
Affiliation(s)
- Liwen Zhang
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Jiawei Du
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Peng Tang
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Xueying Zhao
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Chuangwei Hu
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Yu Dong
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Xuyang Zhang
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Nana Liu
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Bo Wang
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Ruihui Peng
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Yaohong Zhang
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Guohua Wu
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui, 241000, China
| |
Collapse
|
6
|
Wu J, Zhu C, Morikawa H, Zhang X, Yin X, Yu J, Zhang S, Ding B. A Breathable Fibrous Membrane with Coaxially Heterogeneous Conductive Networks toward Personal Thermal Management and Electromagnetic Interference Shielding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311827. [PMID: 38381114 DOI: 10.1002/smll.202311827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Indexed: 02/22/2024]
Abstract
The expeditious growth of wearable electronic devices has boomed the development of versatile smart textiles for personal health-related applications. In practice, integrated high-performance systems still face challenges of compromised breathability, high cost, and complicated manufacturing processes. Herein, a breathable fibrous membrane with dual-driven heating and electromagnetic interference (EMI) shielding performance is developed through a facile process of electrospinning followed by targeted conformal deposition. The approach constructs a robust hierarchically coaxial heterostructure consisting of elastic polymers as supportive "core" and dual-conductive components of polypyrrole and copper sulfide (CuS) nanosheets as continuous "sheath" at the fiber level. The CuS nanosheets with metal-like electrical conductivity demonstrate the promising potential to substitute the expensive conductive nano-materials with a complex fabricating process. The as-prepared fibrous membrane exhibits high electrical conductivity (70.38 S cm-1), exceptional active heating effects, including solar heating (saturation temperature of 69.7 °C at 1 sun) and Joule heating (75.2 °C at 2.9 V), and impressive EMI shielding performance (50.11 dB in the X-band), coupled with favorable air permeability (161.4 mm s-1 at 200 Pa) and efficient water vapor transmittance (118.9 g m-2 h). This work opens up a new avenue to fabricate versatile wearable devices for personal thermal management and health protection.
Collapse
Affiliation(s)
- Jiajia Wu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
- Faculty of Textile Science and Technology, Institute for Fiber Engineering, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan
| | - Chunhong Zhu
- Faculty of Textile Science and Technology, Institute for Fiber Engineering, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan
| | - Hideaki Morikawa
- Faculty of Textile Science and Technology, Institute for Fiber Engineering, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan
| | - Xinxin Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Ma Z, Jiang R, Jing J, Kang S, Ma L, Zhang K, Li J, Zhang Y, Qin J, Yun S, Zhang G. Lightweight Dual-Functional Segregated Nanocomposite Foams for Integrated Infrared Stealth and Absorption-Dominant Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2024; 16:223. [PMID: 38884833 PMCID: PMC11183016 DOI: 10.1007/s40820-024-01450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
Lightweight infrared stealth and absorption-dominant electromagnetic interference (EMI) shielding materials are highly desirable in areas of aerospace, weapons, military and wearable electronics. Herein, lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO2 (SC-CO2) foaming combined with hydrogen bonding assembly and compression molding strategy. The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity, and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures. Particularly, the segregated nanocomposite foams present a large radiation temperature reduction of 70.2 °C at the object temperature of 100 °C, and a significantly improved EM wave absorptivity/reflectivity (A/R) ratio of 2.15 at an ultralow Ti3C2Tx content of 1.7 vol%. Moreover, the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles. The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace, weapons, military and wearable electronics.
Collapse
Affiliation(s)
- Zhonglei Ma
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, People's Republic of China.
| | - Ruochu Jiang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, People's Republic of China
| | - Jiayao Jing
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710072, People's Republic of China
| | - Songlei Kang
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710072, People's Republic of China
| | - Li Ma
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Kefan Zhang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, People's Republic of China
| | - Junxian Li
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yu Zhang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Jianbin Qin
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, People's Republic of China
| | - Shuhuan Yun
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Guangcheng Zhang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, People's Republic of China.
| |
Collapse
|
8
|
Liu X, Zhou J, Xue Y, Lu X. Structural Engineering of Hierarchical Magnetic/Carbon Nanocomposites via In Situ Growth for High-Efficient Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2024; 16:174. [PMID: 38619635 PMCID: PMC11018581 DOI: 10.1007/s40820-024-01396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024]
Abstract
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention, yet encounter significant challenges. Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption. Particularly, hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials, providing immense potential for creating versatile electromagnetic wave absorption materials. Herein, an exceptional multi-dimensional hierarchical structure was meticulously devised, unleashing the full microwave attenuation capabilities through in situ growth, self-reduction, and multi-heterogeneous interface integration. The hierarchical structure features a three-dimensional carbon framework, where magnetic nanoparticles grow in situ on the carbon skeleton, creating a necklace-like structure. Furthermore, magnetic nanosheets assemble within this framework. Enhanced impedance matching was achieved by precisely adjusting component proportions, and intelligent integration of diverse interfaces bolstered dielectric polarization. The obtain Fe3O4-Fe nanoparticles/carbon nanofibers/Al-Fe3O4-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss (RLmin) value of - 59.3 dB and an effective absorption bandwidth (RL ≤ - 10 dB) extending up to 5.6 GHz at 2.2 mm. These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials.
Collapse
Affiliation(s)
- Xianyuan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Jinman Zhou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Ying Xue
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Xianyong Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
9
|
Shen M, Qi J, Xu X, Li J, Xu Y, Yang H, Gao K, Huang J, Li J, Shang Z, Ni Y. Promoting Electromagnetic Wave Absorption Performance by Integrating MoS 2@Gd 2O 3/MXene Multiple Hetero-Interfaces in Wood-Derived Carbon Aerogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306915. [PMID: 37939317 DOI: 10.1002/smll.202306915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Multi-component composite materials with a magnetic-dielectric synergistic effect exhibit satisfactory electromagnetic wave absorption performance. However, the effective construction of the structure for these multi-component materials to fully exploit the advantages of each component remains a challenge. Inspired by natural biomass, this study utilizes wood as the raw material and successfully prepares high-performance MoS2@Gd2O3/Mxene loaded porous carbon aerogel (MGMCA) composite material through a one-pot hydrothermal method and carbonization treatment process. With a delicate structural design, the MGMCA is endowed with abundant heterogeneous interface structures, favorable impedance matching characteristics, and a magnetic-dielectric synergistic system, thus demonstrating multiple electromagnetic wave loss mechanisms. Benefiting from these advantages, the obtained MGMCA exhibits outstanding electromagnetic wave absorption performance, with a minimum reflection loss of -57.5 dB at an ultra-thin thickness of only 1.9 mm. This research proposes a reliable strategy for the design of multi-component composite materials, providing valuable insight for the design of biomass-based materials as electromagnetic wave absorbers.
Collapse
Affiliation(s)
- Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jiale Qi
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xinyu Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jinbao Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hao Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Kun Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianfeng Huang
- School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jiayin Li
- School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhen Shang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
10
|
Lian M, Ding W, Liu S, Wang Y, Zhu T, Miao YE, Zhang C, Liu T. Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling. NANO-MICRO LETTERS 2024; 16:131. [PMID: 38409640 PMCID: PMC10897091 DOI: 10.1007/s40820-024-01356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024]
Abstract
The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid-liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW m-1 K-1), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass.
Collapse
Affiliation(s)
- Meng Lian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Wei Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Song Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yufeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Tianyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yue-E Miao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
11
|
Liu P, Xu L, Li J, Peng J, Jiao Z. Advanced Science and Technology of Polymer Matrix Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:461. [PMID: 38255627 PMCID: PMC10821458 DOI: 10.3390/ma17020461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The advanced science and technology of polymer matrix nanomaterials are rapidly developing fields that focus on the synthesis, characterization, and application of nanomaterials in polymer matrices [...].
Collapse
Affiliation(s)
- Peijiang Liu
- Reliability Physics and Application Technology of Electronic Component Key Laboratory, The Fifth Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China;
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Jinlei Li
- Science and Technology on Space Physics Laboratory, Beijing 100076, China
| | - Jianping Peng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Zibao Jiao
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| |
Collapse
|
12
|
Jin H, Zhou J, Tao J, Gu Y, Yu C, Chen P, Yao Z. Commonly Neglected Ester Groups Enhanced Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304536. [PMID: 37475494 DOI: 10.1002/smll.202304536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Oxygen-containing functional groups have high potential to excite polarization loss. The nature and mechanism of the polarization loss brought on by oxygen-containing functional groups, however, remain unclear. In this study, metal-organic framework precursors are in situ pyrolyzed to produce ultrathin carbon nanosheets (UCS) that are abundant in oxygen functional groups. By altering the pyrolysis temperature, the type and concentration of functional groups are altered to produce good microwave absorption capabilities. It is demonstrated that the main processes of electromagnetic loss are polarization caused by "field effects and induced effects" brought on by strongly polar ester functional groups. Moreover, links between various oxygen functional groups and structural flaws are established, and their respective contributions to polarization are sharply separated. The sample with the highest ester group content ultimately achieves an effective absorption bandwidth of 6.47 GHz at a pyrolysis temperature of 800°C. This research fills a theoretical hole in the frequently overlooked polarization mechanism in the microwave band by defining the key polarization parameters in chaotic multiple dipole systems and, in particular, redefining the significance of ester groups.
Collapse
Affiliation(s)
- Haoshan Jin
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211100, P. R. China
| | - Jintang Zhou
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211100, P. R. China
| | - Jiaqi Tao
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211100, P. R. China
| | - Yansong Gu
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211100, P. R. China
| | - Chunyi Yu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ping Chen
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Zhengjun Yao
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211100, P. R. China
| |
Collapse
|
13
|
Liu P, Xu L, Li J, Peng J, Huang Z, Zhou J. Special Issue: Advanced Science and Technology of Polymer Matrix Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5551. [PMID: 37629842 PMCID: PMC10456407 DOI: 10.3390/ma16165551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
Polymer matrix nanomaterials have revolutionized materials science due to their unique properties resulting from the incorporation of nanoscale fillers into polymer matrices [...].
Collapse
Affiliation(s)
- Peijiang Liu
- Reliability Physics and Application Technology of Electronic Component Key Laboratory, The Fifth Electronics Research Institute of the Ministry of Information Industry, Guangzhou 510610, China;
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Jinlei Li
- Science and Technology on Space Physics Laboratory, Beijing 100076, China
| | - Jianping Peng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (J.P.); (Z.H.)
| | - Zhenkai Huang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (J.P.); (Z.H.)
| | - Jintang Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| |
Collapse
|
14
|
Zhou Z, Zhu Q, Liu Y, Zhang Y, Jia Z, Wu G. Construction of Self-Assembly Based Tunable Absorber: Lightweight, Hydrophobic and Self-Cleaning Properties. NANO-MICRO LETTERS 2023; 15:137. [PMID: 37245198 PMCID: PMC10225461 DOI: 10.1007/s40820-023-01108-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
Although multifunctional aerogels are expected to be used in applications such as portable electronic devices, it is still a great challenge to confer multifunctionality to aerogels while maintaining their inherent microstructure. Herein, a simple method is proposed to prepare multifunctional NiCo/C aerogels with excellent electromagnetic wave absorption properties, superhydrophobicity, and self-cleaning by water-induced NiCo-MOF self-assembly. Specifically, the impedance matching of the three-dimensional (3D) structure and the interfacial polarization provided by CoNi/C as well as the defect-induced dipole polarization are the primary contributors to the broadband absorption. As a result, the prepared NiCo/C aerogels have a broadband width of 6.22 GHz at 1.9 mm. Due to the presence of hydrophobic functional groups, CoNi/C aerogels improve the stability in humid environments and obtain hydrophobicity with large contact angles > 140°. This multifunctional aerogel has promising applications in electromagnetic wave absorption, resistance to water or humid environments.
Collapse
Affiliation(s)
- Zehua Zhou
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qianqian Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yue Liu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yan Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zirui Jia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
15
|
Zheng H, Nan K, Lu Z, Wang N, Wang Y. Core-shell FeCo@carbon nanocages encapsulated in biomass-derived carbon aerogel: Architecture design and interface engineering of lightweight, anti-corrosion and superior microwave absorption. J Colloid Interface Sci 2023; 646:555-566. [PMID: 37210903 DOI: 10.1016/j.jcis.2023.05.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
The development of multifunctional microwave absorbing materials for practical applications in complex environments is a challenging research hotspot. Herein, the core-shell structure FeCo@C nanocages were successfully anchored on the surface of biomass-derived carbon (BDC) from pleurotus eryngii (PE) via freeze-drying and electrostatic self-assembly process, achieving lightweight, anti-corrosive, and excellent absorption properties. The superior versatility benefits from the large specific surface area, high conductivity, three-dimensional cross-linked networks, and appropriate impedance matching characteristics. The as-prepared aerogel realizes a minimum reflection loss (RLmin) of -69.5 dB with a corresponding effective absorption bandwidth (EAB) of 8.6 GHz at 2.9 mm. Simultaneously, the computer simulation technique (CST) further proves that the multifunctional material can dissipate microwave energy in actual applications. More importantly, the special heterostructure of aerogel endows excellent resistance to acid, alkali, salt medium, allowing potential applications of the microwave absorbing materials under complex environmental conditions.
Collapse
Affiliation(s)
- Hao Zheng
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Kai Nan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Zhao Lu
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Nian Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Yan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| |
Collapse
|
16
|
Guo X, Liu L, Ding N, Liu G. Transformation from Electromagnetic Inflection to Absorption of Silicone Rubber and Accordion-Shaped Ti 3C 2MXene Composites by Highly Electric Conductive Multi-Walled Carbon Nanotubes. Polymers (Basel) 2023; 15:polym15102332. [PMID: 37242907 DOI: 10.3390/polym15102332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Electromagnetic (EM) pollution becomes more penetrating in daily life and work due to more convenience provided by multi-electrical devices, as does secondary pollution caused by electromagnetic reflection. EM wave absorption material with less reflection is a good solution to absorb unavoidable EM radiation or reduce it from the source. Filled with two-dimensional Ti3SiC2MXenes, silicone rubber (SR)composite demonstrated a good electromagnetic shielding effectiveness of 20 dB in the X band by melt-mixing processes for good conductivity of more than 10-3 S/cm and displayed dielectric properties and a low magnetic permeability; however, the reflection loss was only -4 dB. By the combination of one-dimensional highly electric conductive multi-walled carbon nanotubes (HEMWCNTs) and MXenes, the composites achieved the transformation from electromagnetic inflection to an excellent absorbing performance to reach a minimum reflection loss of -30.19 dB due to electric conductivity of above 10-4 S/cm, a higher dielectric constant, and more loss in both dielectric and magnetic properties. Ni-added multi-walled carbon nanotubes were not able to achieve the transformation. The as-prepared SR/HEMWCNT/MXene composites have potential application prospects in protective layers, which can be used for electromagnetic wave absorption, electromagnetic interference suppression of devices, and stealth of the equipment.
Collapse
Affiliation(s)
- Xin Guo
- Engineering Research Center of High-Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Li Liu
- Engineering Research Center of High-Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Naixiu Ding
- Engineering Research Center of High-Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guangye Liu
- Engineering Research Center of High-Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
17
|
Xiang N, Zhou Z, Ma X, Zhang H, Xu X, Chen Y, Guo Z. The In Situ Preparation of Ni-Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property. Molecules 2023; 28:molecules28104128. [PMID: 37241869 DOI: 10.3390/molecules28104128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The composites of expanded graphite (EG) and magnetic particles have good electromagnetic wave attenuation properties in the centimeter band, which is valuable in the field of radar wave interference. In this paper, a novel preparation method of Ni-Zn ferrite intercalated EG (NZF/EG) is provided in order to promote the insertion of Ni-Zn ferrite particles (NZF) into the interlayers of EG. The NZF/EG composite is in situ prepared via thermal treatment of Ni-Zn ferrite precursor intercalated graphite (NZFP/GICs) at 900 °C, where NZFP/GICs is obtained through chemical coprecipitation. The morphology and phase characterization demonstrate the successful cation intercalation and NZF generation in the interlayers of EG. Furthermore, the molecular dynamics simulation shows that the magnetic particles in the EG layers tend to disperse on the EG layers rather than aggregate into larger clusters under the synergy of van der Waals forces, repulsive force, and dragging force. The radar wave attenuation mechanism and performance of NZF/EG with different NZF ratios are analyzed and discussed in the range of 2-18 GHz. The NZF/EG with the NZF ratio at 0.5 shows the best radar wave attenuation ability due to the fact that the dielectric property of the graphite layers is well retained while the area of the heterogeneous interface is increased. Therefore, the as-prepared NZF/EG composites have potential application value in attenuating radar centimeter waves.
Collapse
Affiliation(s)
- Ning Xiang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zunning Zhou
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoxia Ma
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Huichao Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangyuan Xu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yongpeng Chen
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zerong Guo
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
18
|
Chang X, Duan Z, Wang D, Wang S, Lin Z, Ma B, Wu K. High-Entropy Spinel Ferrites with Broadband Wave Absorption Synthesized by Simple Solid-Phase Reaction. Molecules 2023; 28:molecules28083468. [PMID: 37110704 PMCID: PMC10145696 DOI: 10.3390/molecules28083468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
In this work, high-entropy (HE) spinel ferrites of (FeCoNiCrM)xOy (M = Zn, Cu, and Mn) (named as HEO-Zn, HEO-Cu, and HEO-Mn, respectively) were synthesized by a simple solid-phase reaction. The as-prepared ferrite powders possess a uniform distribution of chemical components and homogeneous three-dimensional (3D) porous structures, which have a pore size ranging from tens to hundreds of nanometers. All three HE spinel ferrites exhibited ultrahigh structural thermostability at high temperatures even up to 800 °C. What is more, these spinel ferrites showed considerable minimum reflection loss (RLmin) and significantly enhanced effective absorption bandwidth (EAB). The RLmin and EAB values of HEO-Zn and HEO-Mn are about -27.8 dB at 15.7 GHz, 6.8 GHz, and -25.5 dB at 12.9 GHz, 6.9 GHz, with the matched thickness of 8.6 and 9.8 mm, respectively. Especially, the RLmin of HEO-Cu is -27.3 dB at 13.3 GHz with a matched thickness of 9.1 mm, and the EAB reaches about 7.5 GHz (10.5-18.0 GHz), which covers almost the whole X-band range. The superior absorbing properties are mainly attributed to the dielectric energy loss involving interface polarization and dipolar polarization, the magnetic energy loss referring to eddy current and natural resonance loss, and the specific functions of 3D porous structure, indicating a potential application prospect of the HE spinel ferrites as EM absorbing materials.
Collapse
Affiliation(s)
- Xiu Chang
- The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhiwei Duan
- The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Dashuang Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Shushen Wang
- The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhuang Lin
- The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ben Ma
- The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Kaiming Wu
- The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
19
|
Lee H, Ryu SH, Kwon SJ, Choi JR, Lee SB, Park B. Absorption-Dominant mmWave EMI Shielding Films with Ultralow Reflection using Ferromagnetic Resonance Frequency Tunable M-Type Ferrites. NANO-MICRO LETTERS 2023; 15:76. [PMID: 36976370 PMCID: PMC10050308 DOI: 10.1007/s40820-023-01058-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Although there is a high demand for absorption-dominant electromagnetic interference (EMI) shielding materials for 5G millimeter-wave (mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.
Collapse
Affiliation(s)
- Horim Lee
- Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-Gu, Changwon, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Seung Han Ryu
- Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-Gu, Changwon, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Suk Jin Kwon
- Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-Gu, Changwon, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Jae Ryung Choi
- Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-Gu, Changwon, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Sang-Bok Lee
- Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-Gu, Changwon, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Byeongjin Park
- Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-Gu, Changwon, Gyeongsangnam-Do, 51508, Republic of Korea.
| |
Collapse
|
20
|
Cao K, Yang X, Zhao R, Xue W. Fabrication of an Ultralight Ni-MOF-rGO Aerogel with Both Dielectric and Magnetic Performances for Enhanced Microwave Absorption: Microspheres with Hollow Structure Grow onto the GO Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9685-9696. [PMID: 36759507 DOI: 10.1021/acsami.2c22935] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An ultralight Ni-MOF-rGO aerogel which possess the merits of not only broad bandwidth and strong absorption but also lightweight and thin matching thickness is fabricated through a hydrothermal treatment, freeze-drying, and annealing procedure. The Ni@C microspheres are dispersed randomly and evenly on the graphene oxide (GO) nanosheets, which can be proved through SEM and TEM results. The electromagnetic parameters of the composite can be adjusted by changing the mass ratio of the MOF and GO to endow the material with both good impedance matching and superior electromagnetic wave absorption performances. Consequently, the resulting composite shows outstanding microwave absorption performance, which achieves strong absorption (-51.19 dB) and broad effective absorption bandwidth (6.32 GHz) with a thickness of 1.9 mm while the filling content is only 2 wt %. In addition, the multiple loss mechanisms of the Ni-MOF-rGO aerogel are illustrated, including conduction loss, dipolar polarization, interfacial polarization, magnetic resonance, and eddy current loss. In a word, the extraordinary microwave absorption performance is ascribed to the synergistic effects of the unique multiple layered structure of GO and the hollow core-shell structure of the Ni@C microsphere. This work demonstrates that the ultralight aerogel with excellent electromagnetic wave absorption performance is a promising strategy for microwave absorption application.
Collapse
Affiliation(s)
- Kunyao Cao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Rui Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Weidong Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
21
|
Xue T, Yang Y, Yu D, Wali Q, Wang Z, Cao X, Fan W, Liu T. 3D Printed Integrated Gradient-Conductive MXene/CNT/Polyimide Aerogel Frames for Electromagnetic Interference Shielding with Ultra-Low Reflection. NANO-MICRO LETTERS 2023; 15:45. [PMID: 36752927 PMCID: PMC9908813 DOI: 10.1007/s40820-023-01017-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Construction of advanced electromagnetic interference (EMI) shielding materials with miniaturized, programmable structure and low reflection are promising but challenging. Herein, an integrated transition-metal carbides/carbon nanotube/polyimide (gradient-conductive MXene/CNT/PI, GCMCP) aerogel frame with hierarchical porous structure and gradient-conductivity has been constructed to achieve EMI shielding with ultra-low reflection. The gradient-conductive structures are obtained by continuous 3D printing of MXene/CNT/poly (amic acid) inks with different CNT contents, where the slightly conductive top layer serves as EM absorption layer and the highly conductive bottom layer as reflection layer. In addition, the hierarchical porous structure could extend the EM dissipation path and dissipate EM by multiple reflections. Consequently, the GCMCP aerogel frames exhibit an excellent average EMI shielding efficiency (68.2 dB) and low reflection (R = 0.23). Furthermore, the GCMCP aerogel frames with miniaturized and programmable structures can be used as EMI shielding gaskets and effectively block wireless power transmission, which shows a prosperous application prospect in defense industry and aerospace.
Collapse
Affiliation(s)
- Tiantian Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Yi Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Dingyi Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Qamar Wali
- NUTECH School of Applied Sciences & Humanities, National University of Technology, Islamabad, 44000, Pakistan
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Wei Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China.
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China.
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
22
|
Du Z, Wang D, Zhang X, Yi Z, Tang J, Yang P, Cai R, Yi S, Rao J, Zhang Y. Core-Shell Structured SiO 2@NiFe LDH Composite for Broadband Electromagnetic Wave Absorption. Int J Mol Sci 2022; 24:ijms24010504. [PMID: 36613944 PMCID: PMC9820398 DOI: 10.3390/ijms24010504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
In this work, a novel core-shell structure material, NiFe layered double hydroxide (NiFe LDH) loaded on SiO2 microspheres (SiO2@NiFe LDH), was synthesized by a one-step hydrothermal method, and the spontaneous electrostatic self-assembly process. The morphology, structure, and microwave absorption properties of SiO2@NiFe LDH nanocomposites with different NiFe element ratios were systematically investigated. The results show that the sample of SiO2@NiFe LDH-3 nanocomposite has excellent microwave absorption properties. It exhibits broadband effective absorption bandwidth (RL < −10 dB) of 8.24 GHz (from 9.76 GHz to 18.0 GHz) and the reflection loss is −53.78 dB at the matched thickness of 6.95 mm. It is expected that this SiO2@NiFe-LDH core-shell structural material can be used as a promising non-precious, metal-based material microwave absorber to eliminate electromagnetic wave contamination.
Collapse
Affiliation(s)
- Zhilan Du
- College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Dashuang Wang
- College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xinfang Zhang
- College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Zhiyu Yi
- College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jihai Tang
- No. 59 Research Institute of China Ordnance Industries, Chongqing 400039, China
| | - Pingan Yang
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Rui Cai
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Shuang Yi
- College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jinsong Rao
- College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yuxin Zhang
- College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
- Correspondence:
| |
Collapse
|
23
|
Sun Q, Yang X, Shu T, Yang X, Qiao M, Wang D, Liu Z, Li X, Rao J, Zhang Y, Yang P, Yao K. In Situ Synthesis of C-N@NiFe 2O 4@MXene/Ni Nanocomposites for Efficient Electromagnetic Wave Absorption at an Ultralow Thickness Level. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010233. [PMID: 36615427 PMCID: PMC9822367 DOI: 10.3390/molecules28010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Recently, the development of composite materials composed of magnetic materials and MXene has attracted significant attention. However, the thickness and microwave absorption performance of the composite is still barely satisfactory. In this work, the C-N@NiFe2O4@MXene/Ni nanocomposites were successfully synthesized in situ by hydrothermal and calcination methods. Benefiting from the introduction of the carbon-nitrogen(C-N) network structure, the overall dielectric properties are improved effectively, consequently reducing the thickness of the composite while maintaining excellent absorption performance. As a result, the minimum reflection loss of C-N@NiFe2O4@MXene/Ni can reach -50.51 dB at 17.3 GHz at an ultralow thickness of 1.5 mm, with an effective absorption bandwidth of 4.95 GHz (13.02-18 GHz). This research provides a novel strategy for materials to maintain good absorption performance at an ultralow thickness level.
Collapse
Affiliation(s)
- Qing Sun
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Xin Yang
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Tie Shu
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Xianfeng Yang
- State Key Laboratory of Photon-Technology in Western China Energy, School of Physics, Northwest University, Xi’an 710127, China
| | - Min Qiao
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Dashuang Wang
- College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Zhaohui Liu
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Correspondence: (Z.L.); (K.Y.)
| | - Xinghua Li
- State Key Laboratory of Photon-Technology in Western China Energy, School of Physics, Northwest University, Xi’an 710127, China
| | - Jinsong Rao
- College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yuxin Zhang
- College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Pingan Yang
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Kexin Yao
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Correspondence: (Z.L.); (K.Y.)
| |
Collapse
|
24
|
Jankowski-Mihułowicz P, Węglarski M, Wilczkiewicz B, Chamera M, Laskowski G. The Influence of Textile Substrates on the Performance of Textronic RFID Transponders. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7060. [PMID: 36295134 PMCID: PMC9605568 DOI: 10.3390/ma15207060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Recent advances in the development of innovative textronic products are often related to the implementation of radio-frequency identification (RFID) technology. Such devices contain components of wireless telecommunications systems, in which radiofrequency circuits should be designed taking into account not only the frequency band or destined application, but also the dielectric properties of the materials. As is known from the theory of RFID systems, the dielectric permittivity and loss angle of the substrates significantly affect the performance of RFID transponders. Therefore, the knowledge on the variability of these parameters is highly important in the context of developing new solutions in textronic devices with the RFID interface. According to the plan of studies, at the beginning, the comprehensive characterization and determination of the dielectric parameters of various types of textile substrates were carried out. On this basis, the influence of fabrics on the performance of textronic RFID (RFIDtex) tags was characterized with numerical calculations. As the RFIDtex transponders proposed by the authors in the patent PL231291 have an outstanding design in which the antenna and the chip are located on physically separated substrates and are galvanically isolated, the special means had to be implemented when creating a numerical model. On the other hand, the great advantage of the developed construction was confirmed. Since the impedance at the chip's terminals is primarily determined by the coupling system, the selected fabrics have relatively low impact on the efficiency of the RFIDtex transponder. Such an effect is impossible to achieve with classical designs of passive or semi-passive transponders. The correctness of the simulations was verified on the exemplary demonstrators, in threshold and rotation measurements performed at the laboratory stand.
Collapse
Affiliation(s)
- Piotr Jankowski-Mihułowicz
- Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, ul. Wincentego Pola 2, 35-959 Rzeszów, Poland
| | - Mariusz Węglarski
- Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, ul. Wincentego Pola 2, 35-959 Rzeszów, Poland
| | - Bartłomiej Wilczkiewicz
- Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, ul. Wincentego Pola 2, 35-959 Rzeszów, Poland
| | | | - Grzegorz Laskowski
- Research & Development Center of Esotiq & Henderson S.A., ul. Budowlanych 31c, 80-298 Gdańsk, Poland
| |
Collapse
|