1
|
Cho SC, Seok JH, Manh HN, Seol JH, Lee CH, Lee SU. Expanding the frontiers of electrocatalysis: advanced theoretical methods for water splitting. NANO CONVERGENCE 2025; 12:4. [PMID: 39856392 PMCID: PMC11759758 DOI: 10.1186/s40580-024-00467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
Electrochemical water splitting, which encompasses the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers a promising route for sustainable hydrogen production. The development of efficient and cost-effective electrocatalysts is crucial for advancing this technology, especially given the reliance on expensive transition metals, such as Pt and Ir, in traditional catalysts. This review highlights recent advances in the design and optimization of electrocatalysts, focusing on density functional theory (DFT) as a key tool for understanding and improving catalytic performance in the HER and OER. We begin by exploring DFT-based approaches for evaluating catalytic activity under both acidic and alkaline conditions. The review then shifts to a material-oriented perspective, showcasing key catalyst materials and the theoretical strategies employed to enhance their performance. In addition, we discuss scaling relationships that exist between binding energies and electronic structures through the use of charge-density analysis and d-band theory. Advanced concepts, such as the effects of adsorbate coverage, solvation, and applied potential on catalytic behavior, are also discussed. We finally focus on integrating machine learning (ML) with DFT to enable high-throughput screening and accelerate the discovery of novel water-splitting catalysts. This comprehensive review underscores the pivotal role that DFT plays in advancing electrocatalyst design and highlights its potential for shaping the future of sustainable hydrogen production.
Collapse
Affiliation(s)
- Seong Chan Cho
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jun Ho Seok
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hung Ngo Manh
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Hun Seol
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chi Ho Lee
- Artie McFerrin, Department of Chemical Engineering and Texas A&M Energy Institute, Texas A&M University, College Station, TX, 77843, USA.
| | - Sang Uck Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Zhang X, Zhao N, Zhang H, Fan Y, Jin F, Li C, Sun Y, Wang J, Chen M, Hu X. Recent Advances in Wide-Range Temperature Metal-CO 2 Batteries: A Mini Review. NANO-MICRO LETTERS 2024; 17:99. [PMID: 39739147 DOI: 10.1007/s40820-024-01607-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/23/2024] [Indexed: 01/02/2025]
Abstract
The metal-carbon dioxide batteries, emerging as high-energy-density energy storage devices, enable direct CO2 utilization, offering promising prospects for CO2 capture and utilization, energy conversion, and storage. However, the electrochemical performance of M-CO2 batteries faces significant challenges, particularly at extreme temperatures. Issues such as high overpotential, poor charge reversibility, and cycling capacity decay arise from complex reaction interfaces, sluggish oxidation kinetics, inefficient catalysts, dendrite growth, and unstable electrolytes. Despite significant advancements at room temperature, limited research has focused on the performance of M-CO2 batteries across a wide-temperature range. This review examines the effects of low and high temperatures on M-CO2 battery components and their reaction mechanism, as well as the advancements made in extending operational ranges from room temperature to extremely low and high temperatures. It discusses strategies to enhance electrochemical performance at extreme temperatures and outlines opportunities, challenges, and future directions for the development of M-CO2 batteries.
Collapse
Affiliation(s)
- Xuejing Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Ning Zhao
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hanqi Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yiming Fan
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Feng Jin
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Chunsheng Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Yan Sun
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Jiaqi Wang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Ming Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Xiaofei Hu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
3
|
Gao S, Li M, Li N, Zhang L, Liu Q, Wang X, Hu G. Porous carbon-nanostructured electrocatalysts for zinc-air batteries: from materials design to applications. NANOSCALE ADVANCES 2024; 7:60-88. [PMID: 39600825 PMCID: PMC11586858 DOI: 10.1039/d4na00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Zinc-air batteries (ZABs) are pivotal in the evolution of sustainable energy storage solutions, distinguished by their high energy density and minimal environmental footprint. The oxygen electrode, which relies on sophisticated porous carbon materials, is critical to operational efficiency. This review scrutinizes oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes in ZABs through advanced porous carbon applications. It delves into innovative synthesis techniques such as templating, chemical vapor deposition, and self-assembly that tailor pore structures for peak performance. The interactions between catalytic sites and carbon nanostructures, which significantly boost electrochemical performance, are highlighted. The manuscript discusses future strategies for overcoming current challenges by advancing catalytic efficiency and electrode design, emphasizing the integration of nano-engineering and materials science to foster ZABs with superior energy capacity and adaptability. Additionally, the review projects how ongoing research into carbon material properties could unlock new applications in other energy systems, potentially broadening the scope of ZAB technology. This paper integrates recent advancements in porous carbon materials, offering pivotal insights for next-generation high-performance ZAB development.
Collapse
Affiliation(s)
- Sanshuang Gao
- Institute of Information Technology, Shenzhen Institute of Information Technology Shenzhen 518172 China
| | - Maolin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University Kunming 650504 China
- School of Materials Science and Engineering, Anhui University of Science and Technology Huainan 232001 China
| | - Nianpeng Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University Kunming 650504 China
| | - Lei Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology Huainan 232001 China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University Chengdu 610106 China
| | - Xinzhong Wang
- Institute of Information Technology, Shenzhen Institute of Information Technology Shenzhen 518172 China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University Kunming 650504 China
| |
Collapse
|
4
|
Wagh NK, Shinde SS, Lee JH. Atomically modulated Cu single-atom catalysts for oxygen reduction reactions towards high-power density Zn- and Al-air batteries. Chem Commun (Camb) 2024; 60:15015-15018. [PMID: 39601424 DOI: 10.1039/d4cc05217j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Herein, Cu single-atom-encapsulated hollow carbon-nitrogen spheres (CuSA@CNS) are fabricated through a solution process, confining optimal electronic structures reinforcing Cu-N4 active sites. CuSA@CNS demonstrate a remarkable half-wave potential of 0.95 V, mass activity, and a durability of 5000 cycles. Accordingly, CuSA@CNS present record-high power densities of 371 and 289 mW cm-2 for Zn- and Al-air batteries. The rechargeable Zn-air battery demonstrates an unprecedented small charge-discharge voltage and stable cycling for harsh operations at 50 mA cm-2, outperforming Pt/C.
Collapse
Affiliation(s)
- Nayantara K Wagh
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| | - Sambhaji S Shinde
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| | - Jung-Ho Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
5
|
Kim JY, Hong WT, Phu TKC, Cho SC, Kim B, Baeck U, Oh H, Koh JH, Yu X, Choi CH, Park J, Lee SU, Chung C, Kim JK. Proton-Coupled Electron Transfer on Cu 2O/Ti 3C 2T x MXene for Propane (C 3H 8) Synthesis from Electrochemical CO 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405154. [PMID: 39159072 PMCID: PMC11497005 DOI: 10.1002/advs.202405154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) to produce value-added multi-carbon chemicals has been an appealing approach to achieving environmentally friendly carbon neutrality in recent years. Despite extensive research focusing on the use of CO2 to produce high-value chemicals like high-energy-density hydrocarbons, there have been few reports on the production of propane (C3H8), which requires carbon chain elongation and protonation. A rationally designed 0D/2D hybrid Cu2O anchored-Ti3C2Tx MXene catalyst (Cu2O/MXene) is demonstrated with efficient CO2RR activity in an aqueous electrolyte to produce C3H8. As a result, a significantly high Faradaic efficiency (FE) of 3.3% is achieved for the synthesis of C3H8 via the CO2RR with Cu2O/MXene, which is ≈26 times higher than that of Cu/MXene prepared by the same hydrothermal process without NH4OH solution. Based on in-situ attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and density functional theory (DFT) calculations, it is proposed that the significant electrocatalytic conversion originated from the synergistic behavior of the Cu2O nanoparticles, which bound the *C2 intermediates, and the MXene that bound the *CO coupling to the C3 intermediate. The results disclose that the rationally designed MXene-based hybrid catalyst facilitates multi-carbon coupling as well as protonation, thereby manipulating the CO2RR pathway.
Collapse
Affiliation(s)
- Jun Young Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Won Tae Hong
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Thi Kim Cuong Phu
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Seong Chan Cho
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Byeongkyu Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Unbeom Baeck
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyung‐Suk Oh
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Hwarang‐ro 14‐gil 5, Seongbuk‐guSeoul02792Republic of Korea
| | - Jai Hyun Koh
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Hwarang‐ro 14‐gil 5, Seongbuk‐guSeoul02792Republic of Korea
| | - Xu Yu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Chang Hyuck Choi
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Institute of Convergence Research and Education in Advanced Technology (I‐CREATE)Yonsei UniversitySeoul03722Republic of Korea
| | - Jongwook Park
- Integrated EngineeringDepartment of Chemical EngineeringKyung Hee UniversityGyeonggi17104South Korea
| | - Sang Uck Lee
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Chan‐Hwa Chung
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Jung Kyu Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT)Sungkyunkwan University2066 Seobu‐roSuwon16419Republic of Korea
| |
Collapse
|
6
|
Guo M, Wang L, Huang Z, Li H, Isimjan TT, Yang X. Modulating the Energy Barrier via the Synergism of Cu 3P and CoP to Accelerate Kinetics for Bolstering Oxygen Electrocatalysis in Zn-Air Batteries. ACS NANO 2024; 18:17901-17912. [PMID: 38913650 DOI: 10.1021/acsnano.4c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Modulating the energy barrier of reaction intermediates to surmount sluggish kinetics is an utterly intriguing strategy for amplifying the oxygen reduction reaction. Herein, a Cu3P/CoP hybrid is incorporated on hollow porous N-doped carbon nanospheres via dopamine self-polymerization and high-temperature treatment. The resultant Cu3P/CoP@NC showcases a favorable mass activity of 4.41 mA mg-1 and a kinetic current density of 2.38 mA cm-2. Strikingly, the catalyst endows the aqueous Zn-air battery (ZAB) with a large power density of 209.0 mW cm-2, superb cyclability over 317 h, and promising application prospects in flexible ZAB. Theoretical simulations reveal that Cu functions as a modulator to modify the free energy of intermediates and adsorbs the O2 on the Co sites, hence rushing the reaction kinetics. The open and hydrophilic hollow spherical mesoporous structure provides unimpeded channels for reactant diffusion and electrolyte penetration, whereas the exposed inner and outer surfaces can confer a plethora of accessible actives sites. This research establishes a feasible design concept to tune catalytic activity for non-noble metal materials by construction of a rational nanoframework.
Collapse
Affiliation(s)
- Man Guo
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhiyang Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huatong Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
7
|
Fu Q, Xu T, He C, Wang D, Liu M, Liu C. Machine Learning-Assisted Study of REN xC 6-x-Doped Graphene as Potential Electrocatalysts for Oxygen Electrode Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10726-10736. [PMID: 38717961 DOI: 10.1021/acs.langmuir.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In the application of renewable energy, the oxidation-reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial reactions. Single-atom catalysts (SACs) based on metal-doped graphene have been widely employed due to their high activity and high atom utilization efficiency. However, the catalytic activity is significantly influenced by different metals and local coordination, making it challenging to efficiently screen through either experimental or density functional theory (DFT) calculations. To address this issue, this study employed a combination of DFT calculations and machine learning (DFT-ML) to investigate rare earth-modified carbon-based (RENxC6-x) electrocatalysts. Based on computational data from 75 catalysts, we trained two ML models to capture the underlying patterns of physical properties and overpotential. Subsequently, the candidate catalysts were screened, leading to the discovery of four ORR catalysts, nine OER catalysts, and five bifunctional electrocatalysts, all of which were thoroughly validated for their stability. Lastly, by integrating the ML models with the SHAP analysis framework, we revealed the influence of atomic radius, Pauling electronegativity, and other features on the catalytic activity. Additionally, we analyzed the physicochemical properties of potential catalysts through DFT calculations. The revolutionary DFT-ML approach provides a crucial driving force for the design and synthesis of potential catalysts in subsequent studies.
Collapse
Affiliation(s)
- Qiming Fu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Tao Xu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Chenggong He
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Daomiao Wang
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Meiling Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Chao Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
8
|
Shinde SS, Wagh NK, Kim S, Lee J. Li, Na, K, Mg, Zn, Al, and Ca Anode Interface Chemistries Developed by Solid-State Electrolytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304235. [PMID: 37743719 PMCID: PMC10646287 DOI: 10.1002/advs.202304235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Indexed: 09/26/2023]
Abstract
Solid-state batteries (SSBs) have received significant attention due to their high energy density, reversible cycle life, and safe operations relative to commercial Li-ion batteries using flammable liquid electrolytes. This review presents the fundamentals, structures, thermodynamics, chemistries, and electrochemical kinetics of desirable solid electrolyte interphase (SEI) required to meet the practical requirements of reversible anodes. Theoretical and experimental insights for metal nucleation, deposition, and stripping for the reversible cycling of metal anodes are provided. Ion transport mechanisms and state-of-the-art solid-state electrolytes (SEs) are discussed for realizing high-performance cells. The interface challenges and strategies are also concerned with the integration of SEs, anodes, and cathodes for large-scale SSBs in terms of physical/chemical contacts, space-charge layer, interdiffusion, lattice-mismatch, dendritic growth, chemical reactivity of SEI, current collectors, and thermal instability. The recent innovations for anode interface chemistries developed by SEs are highlighted with monovalent (lithium (Li+ ), sodium (Na+ ), potassium (K+ )) and multivalent (magnesium (Mg2+ ), zinc (Zn2+ ), aluminum (Al3+ ), calcium (Ca2+ )) cation carriers (i.e., lithium-metal, lithium-sulfur, sodium-metal, potassium-ion, magnesium-ion, zinc-metal, aluminum-ion, and calcium-ion batteries) compared to those of liquid counterparts.
Collapse
Affiliation(s)
- Sambhaji S. Shinde
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Nayantara K. Wagh
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Sung‐Hae Kim
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Jung‐Ho Lee
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| |
Collapse
|
9
|
Wagh NK, Kim DH, Lee CH, Kim SH, Um HD, Kwon JSI, Shinde SS, Lee SU, Lee JH. Heterointerface promoted trifunctional electrocatalysts for all temperature high-performance rechargeable Zn-air batteries. NANOSCALE HORIZONS 2023. [PMID: 37183764 DOI: 10.1039/d3nh00108c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The rational design of wide-temperature operating Zn-air batteries is crucial for their practical applications. However, the fundamental challenges remain; the limitation of the sluggish oxygen redox kinetics, insufficient active sites, and poor efficiency/cycle lifespan. Here we present heterointerface-promoted sulfur-deficient cobalt-tin-sulfur (CoS1-δ/SnS2-δ) trifunctional electrocatalysts by a facile solvothermal solution-phase approach. The CoS1-δ/SnS2-δ displays superb trifunctional activities, precisely a record-level oxygen bifunctional activity of 0.57 V (E1/2 = 0.90 V and Ej=10 = 1.47 V) and a hydrogen evolution overpotential (41 mV), outperforming those of Pt/C and RuO2. Theoretical calculations reveal the modulation of the electronic structures and d-band centers that endorse fast electron/proton transport for the hetero-interface and avoid the strong adsorption of intermediate species. The alkaline Zn-air batteries with CoS1-δ/SnS2-δ manifest record-high power density of 249 mW cm-2 and long-cycle life for >1000 cycles under harsh operations of 20 mA cm-2, surpassing those of Pt/C + RuO2 and previous state-of-the-art catalysts. Furthermore, the solid-state flexible Zn-air battery also displays remarkable performance with an energy density of 1077 Wh kg-1, >690 cycles for 50 mA cm-2, and a wide operating temperature from +80 to -40 °C with 85% capacity retention, which provides insights for practical Zn-air batteries.
Collapse
Affiliation(s)
- Nayantara K Wagh
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| | - Dong-Hyung Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| | - Chi Ho Lee
- Artie McFerrin Department of Chemical Engineering, Texas A&M Energy Institute, College Station, Texas 77843, USA
| | - Sung-Hae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| | - Han-Don Um
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Joseph Sang-Il Kwon
- Artie McFerrin Department of Chemical Engineering, Texas A&M Energy Institute, College Station, Texas 77843, USA
| | - Sambhaji S Shinde
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| | - Sang Uck Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung-Ho Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
10
|
Liu N, Liang Z, Yang F, Wang X, Zhong J, Gui X, Yang G, Zeng Z, Yu D. Flexible Solid-State Metal-Air Batteries: The Booming of Portable Energy Supplies. CHEMSUSCHEM 2023; 16:e202202192. [PMID: 36567256 DOI: 10.1002/cssc.202202192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The rapid development of portable and wearable electronics has given rise to new challenges and provoked research in flexible, lightweight, and affordable energy storage devices. Flexible solid-state metal-air batteries (FSSMABs) are considered promising candidates, owing to their large energy density, mechanical flexibility, and durability. However, the practical applications of FSSMABs require further improvement to meet the demands of long-term stability, high power density, and large operating voltage. This Review presents a detailed discussion of innovative electrocatalysts for the air cathode, followed by a sequential overview of high-performance solid-state electrolytes and metal anodes, and a summary of the current challenges and future perspectives of FSSMABs to promote practical application and large-scale commercialization in the near future.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhanhao Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Fan Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 528478, P. R. China
| | - Xiaotong Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Junjie Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
11
|
Shi J, Mao K, Zhang Q, Liu Z, Long F, Wen L, Hou Y, Li X, Ma Y, Yue Y, Li L, Zhi C, Gao Y. An Air-Rechargeable Zn Battery Enabled by Organic-Inorganic Hybrid Cathode. NANO-MICRO LETTERS 2023; 15:53. [PMID: 36795246 PMCID: PMC9935787 DOI: 10.1007/s40820-023-01023-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/01/2023] [Indexed: 06/18/2023]
Abstract
Self-charging power systems collecting energy harvesting technology and batteries are attracting extensive attention. To solve the disadvantages of the traditional integrated system, such as highly dependent on energy supply and complex structure, an air-rechargeable Zn battery based on MoS2/PANI cathode is reported. Benefited from the excellent conductivity desolvation shield of PANI, the MoS2/PANI cathode exhibits ultra-high capacity (304.98 mAh g-1 in N2 and 351.25 mAh g-1 in air). In particular, this battery has the ability to collect, convert and store energy simultaneously by an air-rechargeable process of the spontaneous redox reaction between the discharged cathode and O2 from air. The air-rechargeable Zn batteries display a high open-circuit voltage (1.15 V), an unforgettable discharge capacity (316.09 mAh g-1 and the air-rechargeable depth is 89.99%) and good air-recharging stability (291.22 mAh g-1 after 50 air recharging/galvanostatic current discharge cycle). Most importantly, both our quasi-solid zinc ion batteries and batteries modules have excellent performance and practicability. This work will provide a promising research direction for the material design and device assembly of the next-generation self-powered system.
Collapse
Affiliation(s)
- Junjie Shi
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Ke Mao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Qixiang Zhang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Zunyu Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Fei Long
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Li Wen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Yixin Hou
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Xinliang Li
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, People's Republic of China
| | - Yanan Ma
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China
| | - Yang Yue
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, People's Republic of China.
| | - Luying Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Chunyi Zhi
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, People's Republic of China
| | - Yihua Gao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| |
Collapse
|