1
|
Yang X, Chen X, Gu P, Hu Z, Zhang X, Sun Z, Lu L, Zu G, Huang J. Stretchable semiconducting polymer aerogel transistors for high-performance biosensors and artificial synapses. Biomaterials 2025; 322:123416. [PMID: 40383088 DOI: 10.1016/j.biomaterials.2025.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/24/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Stretchable organic electrochemical transistors (OECTs) are attractive for high-performance flexible electronics. Poly(3-hexylthiophene) (P3HT) and poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPPDTT) are commonly used for OECTs because of their excellent semiconducting properties. However, it is challenging to achieve stretchable and high-performance OECTs based on hydrophobic P3HT and DPPDTT because of their limited ion penetration. Here, unprecedented stretchable high-performance OECTs based on P3HT and DPPDTT aerogels with crimpled porous structures are developed. They are achieved by a pre-stretching strategy combined with sol-gel and template methods. The porous structures of the aerogels with high porosities facilitate ion penetration and transport, leading to the enhanced transconductance of the aerogel-based OECTs compared with those of the dense counterparts. The crimpled porous structures endow the aerogels and OECTs with good stretchability and stretching stability. The stretchable OECT-based biosensors can detect trace amounts of ascorbic acid in complex samples such as sweat, saliva, serum, and fruit juice in real time. Besides, the OECTs can be applied as stretchable artificial synapses for neuromorphic simulation. This work provides a powerful strategy toward stretchable high-performance transistors and flexible electronics.
Collapse
Affiliation(s)
- Xiao Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Xu Chen
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Puzhong Gu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Zhenyu Hu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Xiaoyu Zhang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Zejun Sun
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Linlin Lu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Guoqing Zu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China.
| | - Jia Huang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China.
| |
Collapse
|
2
|
Volkert C, Brzezinski M, Argudo PG, Colucci R, Parekh SH, Besenius P, Michels JJ, Kraft U. Enhanced Electrical Performance and Stretchability by Plasticizer-Facilitated PEDOT:PSS Self-Alignment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502853. [PMID: 40344611 DOI: 10.1002/advs.202502853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/05/2025] [Indexed: 05/11/2025]
Abstract
Stretchable, soft electronics have high potential for wearable healthcare applications and biointerfacing. One approach to render inherently brittle conductive polymers such as poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) stretchable are organic plasticizers. However, little is known on how they affect the morphology and in result the electrical properties of conductive thin-films. This study fundamentally explores this relationship using a bilayer model of transfer-printed PEDOT:PSS on stretchable, biocompatible poly(vinyl alcohol) substrates infused with glycerol (15-55 wt.%). The diffusion of the plasticizer leads to a reorganization of PEDOT and PSS, which is investigated using a multicomponent diffusion model. This approach correctly predicts the (plasticizer-dependent) increase in conductivity that followed plasticizer diffusion and is attributed to the reorganization toward more interconnected PEDOT domains. In result, the system shows an improved electrical response to strain as well as crack-free elongation. Simultaneously, the electrical resistance decreases to one-fifth of its initial value, which is attributed to chain-alignment upon strain.
Collapse
Affiliation(s)
- Carla Volkert
- Organic Bioelectronics Research Group, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Mateusz Brzezinski
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Pablo Gomez Argudo
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Renan Colucci
- Organic Bioelectronics Research Group, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Sapun H Parekh
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Department of Biomedical Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Jasper J Michels
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Ulrike Kraft
- Organic Bioelectronics Research Group, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| |
Collapse
|
3
|
Lu L, Liu X, Gu P, Hu Z, Liang X, Deng Z, Sun Z, Zhang X, Yang X, Yang J, Zu G, Huang J. Stretchable all-gel organic electrochemical transistors. Nat Commun 2025; 16:3831. [PMID: 40268969 PMCID: PMC12019246 DOI: 10.1038/s41467-025-59240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
Stretchable organic electrochemical transistors (OECTs) are promising for flexible electronics. However, the balance between stretchability and electrical properties is a great challenge for OECTs. Here, high-performance stretchable all-gel OECTs based on semiconducting polymer gel active layers and poly(ionic liquid) ionogel electrolytes are developed. The all-gel network structures effectively promote ion penetration/transport and endows the OECTs with high stretchability. The resulting OECTs exhibit an excellent combination of ultra-high transconductance of 86.4 mS, on/off ratio of 1.2 × 105, stretchability up to 50%, and high stretching stability up to 10000 cycles under 30% strain. We demonstrate that the all-gel OECTs can be used as stretchable pressure-sensitive electronic skins with a low detection limit for tactile perception of robotic hands. In addition, the all-gel OECTs can be applied as stretchable artificial synapses for neuromorphic simulation and highly sensitive stretchable gas sensors for simulating olfactory perception process and monitoring food quality. This work provides a general all-gel strategy toward high-performance flexible electronics.
Collapse
Affiliation(s)
- Linlin Lu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Xu Liu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Puzhong Gu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Zhenyu Hu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Xing Liang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Zhiying Deng
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Zejun Sun
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Xiaoyu Zhang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Xiao Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China
| | - Jie Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China.
| | - Guoqing Zu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China.
| | - Jia Huang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, PR China.
| |
Collapse
|
4
|
Coquart P, El Haddad A, Koutsouras DA, Bolander J. Organic Bioelectronics in Microphysiological Systems: Bridging the Gap Between Biological Systems and Electronic Technologies. BIOSENSORS 2025; 15:253. [PMID: 40277566 PMCID: PMC12025328 DOI: 10.3390/bios15040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025]
Abstract
The growing burden of degenerative, cardiovascular, neurodegenerative, and cancerous diseases necessitates innovative approaches to improve our pathophysiological understanding and ability to modulate biological processes. Organic bioelectronics has emerged as a powerful tool in this pursuit, offering a unique ability to interact with biology due to the mixed ionic-electronic conduction and tissue-mimetic mechanical properties of conducting polymers (CPs). These materials enable seamless integration with biological systems across different levels of complexity, from monolayers to complex 3D models, microfluidic chips, and even clinical applications. CPs can be processed into diverse formats, including thin films, hydrogels, 3D scaffolds, and electrospun fibers, allowing the fabrication of advanced bioelectronic devices such as multi-electrode arrays, transistors (EGOFETs, OECTs), ion pumps, and photoactuators. This review examines the integration of CP-based bioelectronics in vivo and in in vitro microphysiological systems, focusing on their ability to monitor key biological events, including electrical activity, metabolic changes, and biomarker concentrations, as well as their potential for electrical, mechanical, and chemical stimulation. We highlight the versatility and biocompatibility of CPs and their role in advancing personalized medicine and regenerative therapies and discuss future directions for organic bioelectronics to bridge the gap between biological systems and electronic technologies.
Collapse
Affiliation(s)
- Pauline Coquart
- Research Unit ‘Soft Matter and Biophysics’, Department ‘Physics and Astronomy’, KU Leuven, B-3000 Leuven, Belgium;
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;
| | - Andrea El Haddad
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;
- Research Unit ’Assiocated Division ESAT-INSYS (INSYS), Integrated Systems’, Department ‘Electrical Engineering (ESAT)’, KU Leuven, B-3000 Leuven, Belgium
| | - Dimitrios A. Koutsouras
- IMEC NL, 5656 AE Eindhoven, The Netherlands
- Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Centre for Bioengineering & Biomedical Technologies (CBio), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Johanna Bolander
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;
- Berlin Institute of Health Center for Regenerative Therapied (BCRT), Berlin Institute of Health at Charité—Universitätmedizin Berlin, 13353 Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
5
|
Gong M, Wang X, An H, Wu Y, Zhang L, Lin X, Gao F, Wu Z, Wang D. Supramolecular Zwitterionic Network Enabling Environment-Tolerant, Transparent, Adhesive, and Biocompatible Organogel for Epidermal Electronics. ACS Macro Lett 2025; 14:448-457. [PMID: 40114356 DOI: 10.1021/acsmacrolett.5c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Ionic hydrogels are ideal for soft bioelectronics due to their softness, stretchability, and ion-mediated signal transduction. However, traditional hydrogels face dehydration and freezing issues. Inspired by natural skin, this study creates a supramolecular ionic organogel using silk fibroin, zwitterionic polymers, Ca2+, and ethylene glycol (EG). The organogel is conductive, highly stretchable, adhesive, environmentally stable, and biocompatible. Theoretical calculations reveal that interactions among Ca2+, zwitterionic groups, EG, and water are stronger than water-water interactions, converting "free" water into "locked" water. This mechanism allows the organogel to retain over 90% of its weight after 30 days at 25 °C and 60% relative humidity, while also resisting freezing by disrupting ice formation. Its conductivity, adhesion, and biocompatibility enable applications in on-skin strain sensors and electrodes for monitoring motion and recording electrophysiological signals. This work elucidates molecular interactions in organogel networks, provides a design framework for environmentally tolerant organogel, and advances ion-conductive bioelectronics.
Collapse
Affiliation(s)
- Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaobo Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Heng An
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - You Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiang Lin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengxian Gao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhen Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongrui Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Meng X, Yi Z, Liu X, Wu Y, Fang C, Ge Z, He Y, Li S, Xie X, Zhang L, Xie Z. Engineering 3D microtip gates of all-polymer organic electrochemical transistors for rapid femtomolar nucleic-acid-based saliva testing. Biosens Bioelectron 2025; 273:117170. [PMID: 39826271 DOI: 10.1016/j.bios.2025.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Point-of-care testing (POCT) of trace amount of biomarkers in biofluids is critical towards health monitoring and early diagnosis. In particular, to facilitate non-invasive saliva testing, the development of low-cost, lightweight and disposable biosensors is in urgent need, while the ultrahigh sensitivity beyond conventional clinical tests remains a great challenge. Herein, we demonstrate a simple and fully printable all-polymer organic electrochemical transistor (OECT) biosensor to detect femtomolar (fM)-level biomolecules in saliva within a few minutes by employing highly conducting lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) serving as both the channel and gate. A 3D microtip-shaped and Au nanoparticle-decorated multiscale gate interface facilitates the sub-fM-level sensing of female hormones (e.g., progesterone) and oligonucleotide cancer biomarkers by aptamers and DNA probes, respectively. Compared to a planar gate, the micro-engineered interface endows the OECT biosensor with significantly lower detection limit by 10-100 times down to <0.1 fM and faster response of <5 min, accomplishing unprecedentedly high sensitivity while maintaining outstanding mechanical flexibility. Consequently, such microtip-gate all-polymer OECT (MAOECT) enables POCT directly in 1000-fold diluted human saliva samples without centrifugation or redox probes, benefiting female fertility monitoring and oral cancer diagnosis as proof-of-concept demonstrations. This straightforward approach presents great potentials in low-cost wearable health management, at-home monitoring and personalized medicine.
Collapse
Affiliation(s)
- Xingyu Meng
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhenkai Yi
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xuanxuan Liu
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yaoyao Wu
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chuyao Fang
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhaolin Ge
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yifei He
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Sina Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Limei Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China.
| | - Zhuang Xie
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
7
|
Liang Y, Li H, Tang H, Zhang C, Men D, Mayer D. Bioinspired Electrolyte-Gated Organic Synaptic Transistors: From Fundamental Requirements to Applications. NANO-MICRO LETTERS 2025; 17:198. [PMID: 40122950 PMCID: PMC11930914 DOI: 10.1007/s40820-025-01708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Rapid development of artificial intelligence requires the implementation of hardware systems with bioinspired parallel information processing and presentation and energy efficiency. Electrolyte-gated organic transistors (EGOTs) offer significant advantages as neuromorphic devices due to their ultra-low operation voltages, minimal hardwired connectivity, and similar operation environment as electrophysiology. Meanwhile, ionic-electronic coupling and the relatively low elastic moduli of organic channel materials make EGOTs suitable for interfacing with biology. This review presents an overview of the device architectures based on organic electrochemical transistors and organic field-effect transistors. Furthermore, we review the requirements of low energy consumption and tunable synaptic plasticity of EGOTs in emulating biological synapses and how they are affected by the organic materials, electrolyte, architecture, and operation mechanism. In addition, we summarize the basic operation principle of biological sensory systems and the recent progress of EGOTs as a building block in artificial systems. Finally, the current challenges and future development of the organic neuromorphic devices are discussed.
Collapse
Affiliation(s)
- Yuanying Liang
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, 510335, People's Republic of China.
| | - Hangyu Li
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Hu Tang
- Guangzhou Liby Group Co., Ltd, Guangzhou, 510370, People's Republic of China
| | - Chunyang Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Dong Men
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
8
|
Peng Y, Gao L, Liu C, Guo H, Huang W, Zheng D. Gel-Based Electrolytes for Organic Electrochemical Transistors: Mechanisms, Applications, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409384. [PMID: 39901575 DOI: 10.1002/smll.202409384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Indexed: 02/05/2025]
Abstract
Organic electrochemical transistors (OECTs) have emerged as the core component of specialized bioelectronic technologies due to their high signal amplification capability, low operating voltage (<1 V), and biocompatibility. Under a gate bias, OECTs modulate device operation via ionic drift between the electrolyte and the channel. Compared to common electrolytes with a fluid nature (including salt aqueous solutions and ion liquids), gel electrolytes, with an intriguing structure consisting of a physically and/or chemically crosslinked polymer network where the interstitial spaces between polymers are filled with liquid electrolytes or mobile ion species, are promising candidates for quasi-solid electrolytes. Due to relatively high ionic conductivity, the potential for large-scale integration, and the capability to suppress channel swelling, gel electrolytes have been a research highlight in OECTs in recent years. This review summarizes recent progress on OECTs with gel electrolytes that demonstrate good mechanical as well as physical and chemical stabilities. Moreover, various components in forming gel electrolytes, including different mobile liquid phases and polymer components, are introduced. Furthermore, applications of these OECTs in the areas of sensors, neuromorphics, and organic circuits, are discussed. Last, future perspectives of OECTs based on gel electrolytes are discussed along with possible solutions for existing challenges.
Collapse
Affiliation(s)
- Yujie Peng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Lin Gao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Changjian Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Haihong Guo
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Wei Huang
- School of Automation Engineering, UESTC, Chengdu, 611731, P. R. China
| | - Ding Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| |
Collapse
|
9
|
Granelli R, Kovács-Vajna ZM, Torricelli F. Additive Manufacturing of Organic Electrochemical Transistors: Methods, Device Architectures, and Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410499. [PMID: 39945058 PMCID: PMC11922034 DOI: 10.1002/smll.202410499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Organic electrochemical transistors (OECTs) are key devices in a large set of application fields including bioelectronics, neuromorphics, sensing, and flexible electronics. This review explores the advancements in additive manufacturing techniques accounting for printing technologies, device architectures, and emerging applications. The promising applications of printed OECTs, ranging from biochemical sensors to neuromorphic computing are examined, showcasing their versatility. Despite significant advancements, ongoing challenges persist, such as material-related issues, inconsistencies in film homogeneity, and the scalability of integration processes. This review identifies these critical obstacles and offers targeted solutions and future research directions aimed at enhancing the performance and reliability of fully-printed OECTs. By addressing these challenges, the aim of this study is to facilitate the development of next-generation OECTs that can meet the demands of emerging applications in sustainable and intelligent electronic and bioelectronic systems.
Collapse
Affiliation(s)
- Roberto Granelli
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Zsolt M Kovács-Vajna
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| |
Collapse
|
10
|
Zhu Z, Pang Y, Li Y, Gu Y, Wang X, Yu A, Liu B, Liu S, Huang W, Zhao Q. The Rising of Flexible Organic Electrochemical Transistors in Sensors and Intelligent Circuits. ACS NANO 2025; 19:4084-4120. [PMID: 39829276 DOI: 10.1021/acsnano.4c12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Flexible electronic devices in biomedicine, environmental monitoring, and brain-like computing have garnered significant attention. Among these, organic electrochemical transistors (OECTs) have been spotlighted in flexible sensors and neuromorphic circuits for their low power consumption, high signal amplification, excellent biocompatibility, chemical stability, stretchability, and flexibility. However, OECTs will also face some challenges on the way to commercialized applications, including the need for improved long-term stability, enhanced performance of N-type materials, integration with existing technologies, and cost-effective manufacturing processes. This review presents the device physics of OECTs in detail, including the evaluation of their various properties and the introduction of different configurations of the aforementioned OECTs. Subsequently, the components of this device and their roles are explained in depth, and the main ways to design and fabricate flexible OECTs are summarized. Following this, we summarize and analyze the principles and applications of OECTs for electrophysiological signal sensing, chemical sensing, biosensing, and sensor arrays. In addition, the concepts of OECT-based digital and neuromorphic circuits and their applications are presented. Finally, the paper summarizes the opportunities and challenges of OECT-based flexible electronics.
Collapse
Affiliation(s)
- Zihan Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yuncong Pang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yang Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Yuzhe Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Xiaotian Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Aoxi Yu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Baoguang Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
| |
Collapse
|
11
|
Li H, Cao J, Wan R, Feig VR, Tringides CM, Xu J, Yuk H, Lu B. PEDOTs-Based Conductive Hydrogels: Design, Fabrications, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415151. [PMID: 39711276 DOI: 10.1002/adma.202415151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Conductive hydrogels combine the benefits of soft hydrogels with electrical conductivity and have gained significant attention over the past decade. These innovative materials, including poly(3,4-ethylenedioxythiophene) (PEDOTs)-based conductive hydrogels (P-CHs), are promising for flexible electronics and biological applications due to their tunable flexibility, biocompatibility, and hydrophilicity. Despite the recent advances, the intrinsic correlation between the design, fabrications, and applications of P-CHs has been mostly based on trial-and-error-based Edisonian approaches, significantly limiting their further development. This review comprehensively examines the design strategies, fabrication technologies, and diverse applications of P-CHs. By summarizing design strategies, such as molecular, network, phase, and structural engineering, and exploring both 2D and 3D fabrication techniques, this review offers a comprehensive overview of P-CHs applications in diverse fields including bioelectronics, soft actuators, energy devices, and solar evaporators. Establishing this critical internal connection between design, fabrication, and application aims to guide future research and stimulate innovation in the field of functional P-CHs, offering broad benefits to multidisciplinary researchers.
Collapse
Affiliation(s)
- Hai Li
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Jie Cao
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Rongtai Wan
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Vivian Rachel Feig
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Christina M Tringides
- Department of Materials Science and Nanoengineering, Neuroengineering Initiative (NEl), Rice University, Houston, TX, 77005, USA
| | - Jingkun Xu
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, P. R. China
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Baoyang Lu
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| |
Collapse
|
12
|
Meng X, Li Z, Yue W, Zhang L, Xie Z. Toward At-Home and Wearable Monitoring of Female Hormones: Emerging Nanotechnologies and Clinical Prospects. ACS Sens 2025; 10:54-75. [PMID: 39761986 DOI: 10.1021/acssensors.4c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Steroid hormones, especially progesterone (P4), estradiol (E2), and testosterone (T), are key bioactive regulators in various female physiological processes, including growth and development, ovulation, and the reproductive cycle, as well as metabolism and mental health. As lipophilic molecules produced in sex glands, these steroid female hormones can be transported through blood vessels into various body fluids such as saliva, sweat, and urine. However, the ultralow concentration of steroid hormones down to picomolar (pM) level necessitates great demands for ultrasensitive but low-cost analytic tools to implement accurate, point-of-care or even continuous monitoring in a user-friendly fashion. This review focuses on the latest advances in materials and nanotechnologies to allow the rapid detection of female hormones at the pM level or below and the potentials in at-home and wearable hormone monitoring. We specifically summarize the optical and electrochemical strategies in this category, particularly those affording low cost and portable signal readout for at-home use. Furthermore, emerging flexible/wearable innovations are highlighted, which allow the continuous hormone cycle tracking in a noninvasive manner. The potential of these techniques is discussed to address the need for real-time acquisition of the hormone fluctuation, facilitating health monitoring at home. Lastly, we provide a comprehensive introduction to the prospects of female hormone monitoring in clinical diagnosis and treatment, from the perspective of gynecology and reproductive medicine clinicians.
Collapse
Affiliation(s)
- Xingyu Meng
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhaoxian Li
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Wan Yue
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Limei Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Zhuang Xie
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
13
|
Liu R, He Y, Zhu X, Duan J, Liu C, Xie Z, McCulloch I, Yue W. Hardware-Feasible and Efficient N-Type Organic Neuromorphic Signal Recognition via Reservoir Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409258. [PMID: 39578330 DOI: 10.1002/adma.202409258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Organic electrochemical synaptic transistors (OESTs), inspired by the biological nervous system, have garnered increasing attention due to their multifunctional applications in neuromorphic computing. However, the practical implementation of OESTs for signal recognition-particularly those utilizing n-type organic mixed ionic-electronic conductors (OMIECs)-still faces significant challenges at the hardware level. Here, a state-of-the-art small-molecule n-type OEST integrated within a physically simple and hardware feasible reservoir-computing (RC) framework for practical temporal signal recognition is presented. This integration is achieved by leveraging the adjustable synaptic properties of the n-OEST, which exhibits tunable nonlinear short-term memory, transitioning from volatility to nonvolatility, and demonstrating adaptive temporal specificity. Additionally, the nonvolatile OEST offers 256 conductance levels and a wide dynamic range (≈147) in long-term potentiation/depression (LTP/LTD), surpassing previously reported n-OESTs. By combining volatile n-OESTs as reservoirs with a single-layer perceptron readout composed of nonvolatile n-OEST networks, this physical RC system achieves substantial recognition accuracy for both handwritten-digit images (94.9%) and spoken digit (90.7%), along with ultrahigh weight efficiency. Furthermore, this system demonstrates outstanding accuracy (98.0%) by grouped RC in practical sleep monitoring, specifically in snoring recognition. Here, a reliable pathway for OMIEC-driven computing is presented to advance bioinspired hardware-based neuromorphic computing in the physical world.
Collapse
Affiliation(s)
- Riping Liu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yifei He
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiuyuan Zhu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiayao Duan
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhuang Xie
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Iain McCulloch
- Andlinger Center for Energy and the Environment, Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
14
|
Dai S, Zhang X, Liu X, Tian X, Cui B, Pang I, Luo H, Liu D, He X, Chen X, Zhang J, Wang Z, Huang J, Zhang S. Vertical-Structure Overcomes the Strain Limit of Stretchable Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413951. [PMID: 39582297 DOI: 10.1002/adma.202413951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Intrinsically stretchable organic electrochemical transistors (IS-OECTs), utilizing organic mixed ionic-electronic conductors (OMIECs) as their channel materials, have drawn great attention recently because of their potential to enable seamless integration between bioelectronic devices and living systems. However, the fabrication of IS-OECTs presents challenges due to the limited availability of OMIEC materials that possess the desired combination of mechanical and electrical properties. In this work, 1) we report the first successful fabrication of a vertical intrinsically stretchable OECT (VIS-OECT), achieved by using elastoadhesive electrodes; 2) we experimentally proved that vertical architecture can push the strain limit of an IS-OECT from 20% to 50%; and 3) the above finding introduces an unconventional design concept: the strain limit of an IS-OECT can surpass the intrinsic stretchability of the constituent OMIECs by employing vertical structure.
Collapse
Affiliation(s)
- Shilei Dai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xinran Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xinyu Tian
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Binbin Cui
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ivo Pang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Haixuan Luo
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Dingyao Liu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xuecheng He
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xiaonan Chen
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Junyao Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jia Huang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
15
|
Li W, Li Y, Song Z, Wang YX, Hu W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem Soc Rev 2024; 53:10575-10603. [PMID: 39254255 DOI: 10.1039/d4cs00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The rapid development of wearable and implantable electronics has enabled the real-time transmission of electrophysiological signals in situ, thus allowing the precise monitoring and regulation of biological functions. Devices based on organic materials tend to have low moduli and intrinsic stretchability, making them ideal choices for the construction of seamless bioelectronic interfaces. In this case, as an organic ionic-electronic conductor, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has low impedance to offer a high signal-to-noise ratio for monitoring bioelectrical signals, which has become one of the most promising conductive polymers. However, the initial conductivity and stretchability of pristine PEDOT:PSS are insufficient to meet the application requirements, and there is a trade-off between their improvement. In addition, PEDOT:PSS has poor stability in aqueous environments due to the hygroscopicity of the PSS chains, which severely limits its long-term applications in water-rich bioelectronic interfaces. Considering the growing demands of multi-function integration, the high-resolution fabrication of electronic devices is urgent. It is a great challenge to maintain both electrical and mechanical performance after miniaturization, particularly at feature sizes below 100 μm. In this review, we focus on the combined improvement in the conductivity and stretchability of PEDOT:PSS, as well as the corresponding mechanisms in detail. Also, we summarize the effective strategies to improve the stability of PEDOT:PSS in aqueous environments, which plays a vital role in long-term applications. Finally, we introduce the reliable micropatterning technologies and PEDOT:PSS-based stretchable optoelectronic devices applied at bio-interfaces.
Collapse
Affiliation(s)
- Weizhen Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiming Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ziyu Song
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yi-Xuan Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
16
|
Tang CG, Wu R, Chen Y, Zhou Z, He Q, Li T, Wu X, Hou K, Kousseff CJ, McCulloch I, Leong WL. A Universal Biocompatible and Multifunctional Solid Electrolyte in p-Type and n-Type Organic Electrochemical Transistors for Complementary Circuits and Bioelectronic Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405556. [PMID: 39021303 DOI: 10.1002/adma.202405556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Indexed: 07/20/2024]
Abstract
The development of soft and flexible devices for collection of bioelectrical signals is gaining momentum for wearable and implantable applications. Among these devices, organic electrochemical transistors (OECTs) stand out due to their low operating voltage and large signal amplification capable of transducing weak biological signals. While liquid electrolytes have demonstrated efficacy in OECTs, they limit its operating temperature and pose challenges for electronic packaging due to potential leakage. Conversely, solid electrolytes offer advantages such as mechanical flexibility, robustness against environmental factors, and ability to bridge the interface between rigid dry electronics systems and soft wet biological tissues. However, few systems have demonstrated generality and compatibility with a wide range of state-of-the-art organic mixed ionic-electronic conductors (OMIECs). This paper introduces a highly stretchable, flexible, biocompatible, self-healable gelatin-based solid-state electrolyte, compatible with both p- and n-type OMIEC channels while maintaining high performance and excellent stability. Furthermore, this nonvolatile electrolyte is stable up to 120 °C and exhibits high ionic conductivity even in dry environment. Additionally, an OECT-based complementary inverter with a record-high normalized-gain of 228 V-1 and a corresponding ultralow static power consumption of 1 nW is demonstrated. These advancements pave the way for versatile applications ranging from bioelectronics to power-efficient implants.
Collapse
Affiliation(s)
- Cindy G Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ruhua Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yingjun Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qiang He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kunqi Hou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | | | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Andlinger Center for Energy and the Environment, and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
17
|
Zhao C, Yang J, Ma W. Transient Response and Ionic Dynamics in Organic Electrochemical Transistors. NANO-MICRO LETTERS 2024; 16:233. [PMID: 38954272 PMCID: PMC11219702 DOI: 10.1007/s40820-024-01452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jintao Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
18
|
Gregorio T, Mombrú D, Romero M, Faccio R, Mombrú ÁW. Exploring Mixed Ionic-Electronic-Conducting PVA/PEDOT:PSS Hydrogels as Channel Materials for Organic Electrochemical Transistors. Polymers (Basel) 2024; 16:1478. [PMID: 38891425 PMCID: PMC11174747 DOI: 10.3390/polym16111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Here, we report the preparation and evaluation of PVA/PEDOT:PSS-conducting hydrogels working as channel materials for OECT applications, focusing on the understanding of their charge transport and transfer properties. Our conducting hydrogels are based on crosslinked PVA with PEDOT:PSS interacting via hydrogen bonding and exhibit an excellent swelling ratio of ~180-200% w/w. Our electrochemical impedance studies indicate that the charge transport and transfer processes at the channel material based on conducting hydrogels are not trivial compared to conducting polymeric films. The most relevant feature is that the ionic transport through the swollen hydrogel is clearly different from the transport through the solution, and the charge transfer and diffusion processes govern the low-frequency regime. In addition, we have performed in operando Raman spectroscopy analyses in the OECT devices supported by first-principle computational simulations corroborating the doping/de-doping processes under different applied gate voltages. The maximum transconductance (gm~1.05 μS) and maximum volumetric capacitance (C*~2.3 F.cm-3) values indicate that these conducting hydrogels can be promising candidates as channel materials for OECT devices.
Collapse
Affiliation(s)
| | - Dominique Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay; (T.G.); (R.F.)
| | - Mariano Romero
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay; (T.G.); (R.F.)
| | | | - Álvaro W. Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay; (T.G.); (R.F.)
| |
Collapse
|
19
|
Yuan C, Wu Q, Xu KX, Liu XS, Lou H, Xu YT, Li Z, Meng Y, Li T, Ban R, Chen G, Zhao WW. Metal-organic polymer enables efficient organic photoelectrochemical transistor biosensing. Biosens Bioelectron 2024; 257:116346. [PMID: 38688230 DOI: 10.1016/j.bios.2024.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The field of organic photoelectrochemical transistor (OPECT) is newly emerged, with increasing efforts attempting to utilize its properties in biological sensing. Advanced materials with new physicochemical properties have proven important to this end. Herein, we report a metal-organic polymers-gated OPECT biosensing exemplified by CuⅠ-arylacetylide polymers (CuAs)-modulated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel. Both the photoelectrochemical properties and gating capability of CuAs are explored and optimized for high-efficacy photogating. Morever, based on its inherent structure, the specific reaction between CuAs and sulfur ions (S2-) is revealed and S2--mediated microRNA-21 detection is realized by linking with nucleic acid amplification and alkaline phosphatase catalytic chemistry. This work introduces metal-organic polymers as gating materials for OPECT biosensing.
Collapse
Affiliation(s)
- Cheng Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Qiqi Wu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Ke-Xin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Xing-Shi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Hao Lou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yuanyuan Meng
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030002, PR China
| | - Tan Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China.
| | - Rui Ban
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang, 550018, PR China.
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
20
|
Paleti SHK, Kim Y, Kimpel J, Craighero M, Haraguchi S, Müller C. Impact of doping on the mechanical properties of conjugated polymers. Chem Soc Rev 2024; 53:1702-1729. [PMID: 38265833 PMCID: PMC10876084 DOI: 10.1039/d3cs00833a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 01/25/2024]
Abstract
Conjugated polymers exhibit a unique portfolio of electrical and electrochemical behavior, which - paired with the mechanical properties that are typical for macromolecules - make them intriguing candidates for a wide range of application areas from wearable electronics to bioelectronics. However, the degree of oxidation or reduction of the polymer can strongly impact the mechanical response and thus must be considered when designing flexible or stretchable devices. This tutorial review first explores how the chain architecture, processing as well as the resulting nano- and microstructure impact the rheological and mechanical properties. In addition, different methods for the mechanical characterization of thin films and bulk materials such as fibers are summarized. Then, the review discusses how chemical and electrochemical doping alter the mechanical properties in terms of stiffness and ductility. Finally, the mechanical response of (doped) conjugated polymers is discussed in the context of (1) organic photovoltaics, representing thin-film devices with a relatively low charge-carrier density, (2) organic thermoelectrics, where chemical doping is used to realize thin films or bulk materials with a high doping level, and (3) organic electrochemical transistors, where electrochemical doping allows high charge-carrier densities to be reached, albeit accompanied by significant swelling. In the future, chemical and electrochemical doping may not only allow modulation and optimization of the electrical and electrochemical behavior of conjugated polymers, but also facilitate the design of materials with a tunable mechanical response.
Collapse
Affiliation(s)
- Sri Harish Kumar Paleti
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Mariavittoria Craighero
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Shuichi Haraguchi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 41296 Göteborg, Sweden.
| |
Collapse
|
21
|
Liu R, Zhu X, Duan J, Chen J, Xie Z, Chen C, Xie X, Zhang Y, Yue W. Versatile Neuromorphic Modulation and Biosensing based on N-type Small-molecule Organic Mixed Ionic-Electronic Conductors. Angew Chem Int Ed Engl 2023:e202315537. [PMID: 38081781 DOI: 10.1002/anie.202315537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 12/23/2023]
Abstract
The ion/chemical-based modulation feature of organic mixed ionic-electronic conductors (OMIECs) are critical to advancing next generation bio-integrated neuromorphic hardware. Despite achievements with polymeric OMIECs in organic electrochemical neuronal synapse (OENS). However, small molecule OMIECs based OENS has not yet been realized. Here, for the first time, we demonstrate an effective materials design concept of combining n-type fused all-acceptor small molecule OMIECs with subtle side chain optimization that enables robustly and flexibly modulating versatile synaptic behavior and sensing neurotransmitter in solid or aqueous electrolyte, operating in accumulation modes. By judicious tuning the ending side chains, the linear oligoether and butyl chain derivative gNR-Bu exhibits higher recognition accuracy for a model artificial neural network (ANN) simulation, higher steady conductance states and more outstanding ambient stability, which is superior to the state-of-art n-type OMIECs based OENS. These superior artificial synapse characteristics of gNR-Bu can be attributed to its higher crystallinity with stronger ion bonding capacities. More impressively, we unprecedentedly realized n-type small-molecule OMIECs based OENS as a neuromorphic biosensor enabling to respond synaptic communication signals of dopamine even at sub-μM level in aqueous electrolyte. This work may open a new path of small-molecule ion-electron conductors for next-generation ANN and bioelectronics.
Collapse
Affiliation(s)
- Riping Liu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Xiuyuan Zhu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Jiayao Duan
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Junxin Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zhuang Xie
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Chaoyue Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Xi Xie
- Institute of Precision Medicine, The First Affiliated Hospital Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510006, Guangzhou, P. R. China
| | - Yanxi Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, 361005, Xiamen, Fujian, China
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| |
Collapse
|
22
|
Li Z, Chen F, Zhu N, Zhang L, Xie Z. Tip-Enhanced Sub-Femtomolar Steroid Immunosensing via Micropyramidal Flexible Conducting Polymer Electrodes for At-Home Monitoring of Salivary Sex Hormones. ACS NANO 2023; 17:21935-21946. [PMID: 37922489 DOI: 10.1021/acsnano.3c08315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Noninvasive testing and continuous monitoring of ultralow-concentration hormones in biofluids have attracted increasing interest for health management and personalized medicine, in which saliva could fulfill the demand. Steroid sex hormones such as progesterone (P4) and β-estradiol (E2) are crucial for female wellness and reproduction; however, their concentrations in saliva can vary down to sub-pM and constantly fluctuate over several orders of magnitude. This remains a major obstacle toward user-friendly and reliable monitoring at home with low-cost flexible biosensors. Herein we introduce a 3D micropyramidal electrode architecture to address such challenges and achieve an ultrasensitive flexible electrochemical immunosensor with sub-fM-level detection capability of salivary sex hormones within a few minutes. This is enabled by micropyramidal electrode arrays consisting of a poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) thin film as the coating layer and electrochemically decorated gold nanoparticles (AuNPs) to improve the antibody immobilization. The enhanced mass transport around the 3D tips provided by the micropyramidal architecture is discovered to improve the detection limit by 3 orders of magnitude, pushing it to as low as ∼100 aM for P4 and ∼20 aM for E2, along with a wide linear range up to μM. Accordingly, these hormones down to sub-fM in >1000-fold-diluted saliva samples can be accurately measured by the printed soft immunosensors, thus allowing at-home testing through simple saliva dilution to minimize the interfering substances instead of centrifugation. Finally, monitoring of the female ovarian hormone cycle of both P4 and E2 is successfully demonstrated based on the centrifuge-free saliva testing during a period of 4 weeks. This ultrasensitive and soft 3D microarchitected electrode design is believed to provide a universal platform for a diverse variety of applications spanning from accurate clinical diagnostics and counselling and in vivo detection of bioactive species to environmental and food quality tracing.
Collapse
Affiliation(s)
- Zhaoxian Li
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Fubin Chen
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Limei Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zhuang Xie
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
23
|
Zhu H, Cheng Y, Li S, Xu M, Yang X, Li T, Du Y, Liu Y, Song H. Stretchable and recyclable gelatin Ionogel based ionic skin with extensive temperature tolerant, self-healing, UV-shielding, and sensing capabilities. Int J Biol Macromol 2023:125417. [PMID: 37331536 DOI: 10.1016/j.ijbiomac.2023.125417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Fabricating sustainable ionic skin with multi-functional outstanding performances using biocompatible natural polymer-based ionogel is highly desired but remains a great challenge up to now. Herein, a green and recyclable ionogel has been fabricated by in-situ cross-linking of gelatin with a green bio-based multifunctional cross-linker of Triglycidyl Naringenin in ionic liquid. Benefiting from the unique multifunctional chemical crosslinking networks along with multiple reversible non-covalent interactions, the as-prepared ionogels exhibit high stretchability (>1000 %), excellent elasticity, fast room-temperature self-healability (>98 % healing efficiency at 6 min), and good recyclability. These ionogels are also highly conductive (up to 30.7 mS/cm at 150 °C), and exhibit extensive temperature tolerance (-23 to 252 °C) and outstanding UV-shielding ability. As a result, the as-prepared ionogel can easily be applied as stretchable ionic skin for wearable sensors, which exhibits high sensitivity, fast response time (102 ms), excellent temperature tolerance, and stability over 5000 stretching-relaxing cycles. More importantly, the gelatin-based sensor can be used in signal monitor system for various human motion real-time detection. This sustainable and multifunctional ionogel provides a new idea for easy and green preparation of advanced ionic skins.
Collapse
Affiliation(s)
- Hongnan Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Yan Cheng
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Shuaijie Li
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Min Xu
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Xuemeng Yang
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Tianci Li
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Yonggang Du
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei Province 050043, PR China.
| | - Yanfang Liu
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Hongzan Song
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China.
| |
Collapse
|
24
|
Kim CH, Azimi M, Fan J, Nagarajan H, Wang M, Cicoira F. All-printed and stretchable organic electrochemical transistors using a hydrogel electrolyte. NANOSCALE 2023; 15:3263-3272. [PMID: 36722914 DOI: 10.1039/d2nr06731e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stretchable electronic devices are expected to play an important role in wearable electronics. Solution-processable conducting materials are desirable because of their versatile processing. Herein, we report the fabrication of fully stretchable organic electrochemical transistors (OECTs) by printing all components of the device. To achieve the stretchability of the whole body of the devices, a printed planar gate electrode and polyvinyl alcohol (PVA) hydrogel electrolyte were employed. Stretchable silver paste provided a soft feature to drain/source, gate and interconnect, without any additional strategies needed to improve the stretchability of the metallic components. The resulting OECTs showed a performance comparable to inkjet or screen-printed OECTs. The maximum transconductance and on/off ratio were 1.04 ± 0.13 mS and 830, respectively. The device was stable for 50 days and stretched up to 110% tensile strain, which makes it suitable for withstanding the mechanical deformation expected in wearable electronics. This work paves the way for all-printed and stretchable transistors in wearable bioelectronics.
Collapse
Affiliation(s)
- Chi-Hyeong Kim
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Mona Azimi
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Jiaxin Fan
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Harini Nagarajan
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Meijing Wang
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
25
|
Wang Z, Ding J, Guo R. Printable All-Paper Pressure Sensors with High Sensitivity and Wide Sensing Range. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4789-4798. [PMID: 36648209 DOI: 10.1021/acsami.2c19100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the rapid development of flexible electronics, a large amount of electronic waste is becoming a global concern. Because of the biodegradable and environment-friendly properties, cellulose paper as flexible substrates is an alternative pathway to effectively address the electronic pollution. Recently, paper-based piezoresistive pressure sensors with a simple structure and easy signal detection have been widely used in health monitoring, soft robots, and so forth. However, the low sensitivity and narrow working range of paper-based sensors limit their practical applications. Here, an all paper-based piezoresistive pressure sensor is successfully constructed by assembling a bottom electrode with a screen-printed interdigital Cu electrode on paper and a top sensing electrode. The top electrode is simply fabricated using a one-step impregnation method to coat a thin poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer on air-laid paper. The constructed all-paper sensor displays a maximum sensitivity of 768.07 kPa-1, a wide detection range (up to 250 kPa), and excellent cycle stability (5000 cycles). Furthermore, the sensor can clearly respond from low pressure (such as wrist pulse) to high pressure (finger tapping). The outstanding performance can be attributed to the surface and interface design of rough and fiber-structured paper and the high conductivity of copper and PEDOT:PSS. Finally, based on the printing technology, array sensors are fabricated to identify spatial pressure distributions, demonstrating the capability of low-cost and large-area fabrication for the practical production applications. This printable all-paper sensor with excellent sensing performance exhibits great potential for use in new-generation green and portable electronics.
Collapse
Affiliation(s)
- Zheng Wang
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, Xi'an Shiyou University, Xi'an 710065, China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Jijun Ding
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, Xi'an Shiyou University, Xi'an 710065, China
| | - Ruisheng Guo
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, Shandong 264006, China
| |
Collapse
|
26
|
Zeng J, Zhao J, Bu T, Liu G, Qi Y, Zhou H, Dong S, Zhang C. A Flexible Tribotronic Artificial Synapse with Bioinspired Neurosensory Behavior. NANO-MICRO LETTERS 2022; 15:18. [PMID: 36580114 PMCID: PMC9800681 DOI: 10.1007/s40820-022-00989-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
As key components of artificial afferent nervous systems, synaptic devices can mimic the physiological synaptic behaviors, which have attracted extensive attentions. Here, a flexible tribotronic artificial synapse (TAS) with bioinspired neurosensory behavior is developed. The triboelectric potential generated by the external contact electrification is used as the ion-gel-gate voltage of the organic thin film transistor, which can tune the carriers transport through the migration/accumulation of ions. The TAS successfully demonstrates a series of synaptic behaviors by external stimuli, such as excitatory postsynaptic current, paired-pulse facilitation, and the hierarchical memory process from sensory memory to short-term memory and long-term memory. Moreover, the synaptic behaviors remained stable under the strain condition with a bending radius of 20 mm, and the TAS still exhibits excellent durability after 1000 bending cycles. Finally, Pavlovian conditioning has been successfully mimicked by applying force and vibration as food and bell, respectively. This work demonstrates a bioinspired flexible artificial synapse that will help to facilitate the development of artificial afferent nervous systems, which is great significance to the practical application of artificial limbs, robotics, and bionics in future.
Collapse
Affiliation(s)
- Jianhua Zeng
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Junqing Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tianzhao Bu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Youchao Qi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Zhou
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | - Sicheng Dong
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
27
|
Lee M, Kim TW, Park CY, Lee K, Taniguchi T, Watanabe K, Kim MG, Hwang DK, Lee YT. Graphene Bridge Heterostructure Devices for Negative Differential Transconductance Circuit Applications. NANO-MICRO LETTERS 2022; 15:22. [PMID: 36580180 PMCID: PMC9800667 DOI: 10.1007/s40820-022-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional van der Waals (2D vdW) material-based heterostructure devices have been widely studied for high-end electronic applications owing to their heterojunction properties. In this study, we demonstrate graphene (Gr)-bridge heterostructure devices consisting of laterally series-connected ambipolar semiconductor/Gr-bridge/n-type molybdenum disulfide as a channel material for field-effect transistors (FET). Unlike conventional FET operation, our Gr-bridge devices exhibit non-classical transfer characteristics (humped transfer curve), thus possessing a negative differential transconductance. These phenomena are interpreted as the operating behavior in two series-connected FETs, and they result from the gate-tunable contact capacity of the Gr-bridge layer. Multi-value logic inverters and frequency tripler circuits are successfully demonstrated using ambipolar semiconductors with narrow- and wide-bandgap materials as more advanced circuit applications based on non-classical transfer characteristics. Thus, we believe that our innovative and straightforward device structure engineering will be a promising technique for future multi-functional circuit applications of 2D nanoelectronics.
Collapse
Affiliation(s)
- Minjong Lee
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Republic of Korea
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Tae Wook Kim
- Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chang Yong Park
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Kimoon Lee
- Department of Physics, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Takashi Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Kenji Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Min-Gu Kim
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Information and Communication Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Do Kyung Hwang
- Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| | - Young Tack Lee
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Electronic Engineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|