1
|
Li X, Sánchez Del Río Sáez J, Liu Y, Du S, Cruz C, Wei G, Wang DY. Carboxymethyl chitosan-based composite film for fire warning under high humidity conditions with wireless signal transmission. Int J Biol Macromol 2025; 316:144540. [PMID: 40409613 DOI: 10.1016/j.ijbiomac.2025.144540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/12/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Biomass carboxymethyl chitosan (CMC) is one desirable material for early fire warning, especially on high-humid days, due to its thermosensitivity and water absorption features, which make it suitable for application on surfaces of electronic devices. Herein, a strategy for CMC-based composite films with sodium acetate (NaOAc) and glycerol modification is developed, and the structural, thermal, and fire-warning properties of the composite films are analyzed. CMC-based composite films show good transparency and modest toughness. The NaOAc content affects the fire-warning performance of composite films. Specifically, the CMCG/NaOAc-5 film containing 5 wt% of NaOAc shows a high electric current response under thermal driven, as well as water absorption and repeatable fire-warning ability. Accordingly, CMCG/NaOAc-5 film embedded in an early fire warning systems with wireless signal transmission exhibits an intelligent warning behavior of 1 s response to a fire under a simulated high-humid condition. This work provides a high humid adaptive thermal management technology to cope with potential fire hazards under high-humid conditions.
Collapse
Affiliation(s)
- Xiaolu Li
- College of (.)Materials and Chemistry, China Jiliang University, 310018 Hangzhou, China; IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain
| | - José Sánchez Del Río Sáez
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; Applied Physics, Automated, Electronics and Electrical Engineering Department, Industrial and Design Engineering Technical School (ETSIDI), Madrid Politechnique University/Universidad Politécnica de Madrid, Str. Ronda de Valencia 3, 28012, Madrid, Spain
| | - Yunhuan Liu
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040 Madrid, Spain
| | - Shuanglan Du
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040 Madrid, Spain
| | - Carlos Cruz
- University of Alcala, Department of Electronics, Alcala de Henares, 28871 Madrid, Spain
| | - Guoying Wei
- College of (.)Materials and Chemistry, China Jiliang University, 310018 Hangzhou, China
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1, 800, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
2
|
Pan Q, Sang N, Zhou T, Wu C, Si T, Huang F, Zhu Z. Array-structured microcapsule fibers for efficient fire extinguishing in confined spaces. LAB ON A CHIP 2025; 25:2193-2204. [PMID: 40231960 DOI: 10.1039/d4lc00802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Fire incidents in confined spaces pose significant risks to human lives and property. In such scenarios, achieving structural encapsulation and design of fire extinguishing agents is crucial. However, there is still a significant knowledge gap in the rational structural design and understanding of fire extinguishing mechanisms. Herein, we have developed a fire extinguishing material with a hemispherical knotted microfiber structure by microfluidic spinning and achieved directed multiple-fire extinguishing in a confined space. Fire-extinguishing microfibers (FEMFs) are uniformly distributed with perfluorohexanone (PFH)-embedded knots, each of which acts as an independent fire-extinguishing unit. The rational design of fiber microstructure can achieve a variety of dosage ratios of extinguishing agents that activate at a fire extinguishing temperature of 120 °C. Through high-speed imaging and simulation calculations, we found that FEMFs containing only 0.2 g PFH can generate up to 207 directional jets to extinguish fires. Fire-extinguishing patches (FEPs) made from FEMFs have a uniform distribution of the extinguishing agent and exhibit excellent fire extinguishing performance in electrical junction boxes. This new fire extinguishing material is believed to have broad applications in enhancing fire safety within confined spaces.
Collapse
Affiliation(s)
- Qiaosheng Pan
- School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei, Anhui 230026, China
| | - Ning Sang
- School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei, Anhui 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui 230088, China.
| | - Tianpei Zhou
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fangsheng Huang
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui 230088, China.
| | - Zhiqiang Zhu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Xu YJ, Zhang KT, Wang JR, Wang YZ. Biopolymer-Based Flame Retardants and Flame-Retardant Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414880. [PMID: 39780556 DOI: 10.1002/adma.202414880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Polymeric materials featuring excellent flame retardancy are essential for applications requiring high levels of fire safety, while those based on biopolymers are highly favored due to their eco-friendly nature, sustainable characteristics, and abundant availability. This review first outlines the pyrolysis behaviors of biopolymers, with particular emphasis on naturally occurring ones derived from non-food sources such as cellulose, chitin/chitosan, alginate, and lignin. Then, the strategies for chemical modifications of biopolymers for flame-retardant purposes through covalent, ionic, and coordination bonds are presented and compared. The emphasis is placed on advanced methods for introducing biopolymer-based flame retardants into polymeric matrices and fabricating biopolymer-based flame-retardant materials. Finally, the challenges for sustaining the current momentum in the utilization of biopolymers for flame-retardant purposes are further discussed.
Collapse
Affiliation(s)
- Ying-Jun Xu
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, National Engineering Research Center for Advanced Fire-Safety Materials D&A (Shandong), State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Kai-Tao Zhang
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, National Engineering Research Center for Advanced Fire-Safety Materials D&A (Shandong), State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Ji-Rong Wang
- Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, National Engineering Research Center for Advanced Fire-Safety Materials D&A (Shandong), State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
4
|
Pendashteh A, Mikhalchan A, Blanco Varela T, Vilatela JJ. Opportunities for nanomaterials in more sustainable aviation. DISCOVER NANO 2024; 19:208. [PMID: 39690347 DOI: 10.1186/s11671-024-04087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/21/2024] [Indexed: 12/19/2024]
Abstract
New materials for electrical conductors, energy storage, thermal management, and structural elements are required for increased electrification and non-fossil fuel use in transport. Appropriately assembled as macrostructures, nanomaterials can fill these gaps. Here, we critically review the materials science challenges to bridge the scale between the nanomaterials and the large-area components required for applications. We introduce a helpful classification based on three main macroscopic formats (fillers in a matrix, random sheets or aligned fibres) of high-aspect ratio nanoparticles, and the corresponding range of bulk properties from the commodity polymer to the high-performance fibre range. We review progress over two decades on macroscopic solids of nanomaterials (CNTs, graphene, nanowires, etc.), providing a framework to rationalise the transfer of their molecular-scale properties to the scale of engineering components and discussing strategies that overcome the envelope of current aerospace materials. Macroscopic materials in the form of organised networks of high aspect ratio nanomaterials have higher energy density than regular electrodes, superior mechanical properties to the best carbon fibres, and electrical and thermal conductivity above metals. Discussion on extended electrical properties focuses on nanocarbon-based materials (e.g., doped or metal-hybridised) as power or protective conductors and on conductive nanoinks for integrated conductors. Nanocomposite electrodes are enablers of hybrid/electric propulsion by eliminating electrical transport limitations, stabilising emerging high energy density battery electrodes, through high-power pseudocapacitive nanostructured networks, or downsizing Pt-free catalysts in flying fuel cells. Thermal management required in electrified aircraft calls for nanofluids and loop heat pipes of nanoporous conductors. Semi-industrial interlaminar reinforcement using nanomaterials addresses present structural components. Estimated improvements for mid-range aircraft include > 1 tonne weight reduction, eliminating hundreds of CO2 tonnes released per year and supporting hybrid/electric propulsion by 2035.
Collapse
Affiliation(s)
- Afshin Pendashteh
- IMDEA Materials Institute, C/Eric Kandel 2, 28906, Getafe, Madrid, Spain
| | | | | | - Juan J Vilatela
- IMDEA Materials Institute, C/Eric Kandel 2, 28906, Getafe, Madrid, Spain.
| |
Collapse
|
5
|
Jia S, Ma H, Gao S, Yang L, Sun Q. Thermoelectric Materials and Devices for Advanced Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405019. [PMID: 39392147 DOI: 10.1002/smll.202405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Thermoelectrics (TEs), enabling the direct conversion between heat and electrical energy, have demonstrated extensive application potential in biomedical fields. Herein, the mechanism of the TE effect, recent developments in TE materials, and the biocompatibility assessment of TE materials are provided. In addition to the fundamentals of TEs, a timely and comprehensive review of the recent progress of advanced TE materials and their applications is presented, including wearable power generation, personal thermal management, and biosensing. In addition, the new-emerged medical applications of TE materials in wound healing, disease treatment, antimicrobial therapy, and anti-cancer therapy are thoroughly reviewed. Finally, the main challenges and future possibilities are outlined for TEs in biomedical fields, as well as their material selection criteria for specific application scenarios. Together, these advancements can provide innovative insights into the development of TEs for broader applications in biomedical fields.
Collapse
Affiliation(s)
- Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610017, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
6
|
He X, Xu Y, Wang Y, Wu L, Chen FF, Yu Y. Synergistic Effect of GO and MXene Enables Ultrasensitive, Reversible, and Self-Powered Fire Warning of a GO/MXene/Chitosan Aerogel. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59346-59357. [PMID: 39410792 DOI: 10.1021/acsami.4c13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Graphene oxide (GO)-based fire alarm materials have garnered extensive attention because the thermal reduction of GO to reduced GO (RGO) enables rapid fire warning. However, they suffer from poor flame retardancy, irreversible fire warning, and dependence on an external power supply. Herein, a GO/MXene/chitosan aerogel with a low density of 0.018 g cm-3 and good compressibility has been developed. The experimental results demonstrate that (i) MXene effectively reduces the peak and mean heat release rate of GO, while RGO nanosheets compensate for the structural instability of MXene in the flame due to thermal oxidation into TiO2; as such, long-lasting fire warning (>120 s) has been achieved; (ii) the reducibility and conductivity of MXene contribute to the ultrasensitive response of GO, with a fire response time of 1 s; and (iii) notably, the thermoelectric effect of MXene enables the reversible and self-powered fire warning of the GO/MXene/CS aerogel without an external power supply. Compared to pure MXene/CS aerogel, the presence of GO improves the sensitivity and stability of self-powered fire warning, owing to the formation of the highly conductive RGO nanosheets. The results of this work highlight the cooperation between GO and MXene in realizing ultrasensitive, long-lasting, reversible, and self-powered fire warning.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yaozheng Xu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuan Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Linhan Wu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Fei-Fei Chen
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| |
Collapse
|
7
|
Ding Z, Li G, Wang Y, Du C, Ye Z, Liang L, Tang LC, Chen G. Ultrafast Response and Threshold Adjustable Intelligent Thermoelectric Systems for Next-Generation Self-Powered Remote IoT Fire Warning. NANO-MICRO LETTERS 2024; 16:242. [PMID: 38985378 PMCID: PMC11236834 DOI: 10.1007/s40820-024-01453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Fire warning is vital to human life, economy and ecology. However, the development of effective warning systems faces great challenges of fast response, adjustable threshold and remote detecting. Here, we propose an intelligent self-powered remote IoT fire warning system, by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films. The flexible films, prepared by a convenient solution mixing, display p-type characteristic with excellent high-temperature stability, flame retardancy and TE (power factor of 239.7 ± 15.8 μW m-1 K-2) performances. The comprehensive morphology and structural analyses shed light on the underlying mechanisms. And the assembled TE devices (TEDs) exhibit fast fire warning with adjustable warning threshold voltages (1-10 mV). Excitingly, an ultrafast fire warning response time of ~ 0.1 s at 1 mV threshold voltage is achieved, rivaling many state-of-the-art systems. Furthermore, TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure. Finally, a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier, analog-to-digital converter and Bluetooth module. By combining TE characteristics, high-temperature stability and flame retardancy with wireless IoT signal transmission, TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.
Collapse
Affiliation(s)
- Zhaofu Ding
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Gang Li
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Yejun Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Chunyu Du
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Zhenqiang Ye
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Lirong Liang
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| | - Guangming Chen
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
8
|
Fang Y, Qi D, Wu L. Flame retardant cotton fabrics with ultra-fast and long-term fire early warning response. Int J Biol Macromol 2024; 271:132673. [PMID: 38821804 DOI: 10.1016/j.ijbiomac.2024.132673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Smart textiles with flame retardant and fire-warning functions have received more and more attention. However, improving the fire-warning response sensitivity and long-term responsiveness of the smart textiles is a top priority. In this research, flame retardant and fire-warning cotton fabrics were prepared by layer-by-layer assembly composite coating consisting of bio-based flame retardants composed of chitosan (CS) and phytic acid (PA) and carbon-based nanomaterials composed of carbon nanotubes (CNTs) and graphene oxide (GO). The PA-GO/CS-CNTs coated cotton fabric showed excellent flame retardancy with a limiting oxygen index (LOI) value of 31 %, and the coated fabrics could self-extinguish rapidly when the flame was removed. The fire hazard of the coated fabric was significantly reduced by reducing the 45.77 % of peak heat release rate, 29.69 % of total heat release and 81.9 % of total smoke production. The PA-GO/CS-CNTs coated cotton fabric showed ultra-fast fire warning response with the response time of 1.0 s. And the fire-warning response time of the coated cotton fabric could last longer than 600 s revealing it possessed the continuous fire warning response property. This research provides a new strategy to prepare the smart fireproof textiles with flame retardant and fire-warning functions to broaden its application in early fire-warning.
Collapse
Affiliation(s)
- Yinchun Fang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China.
| | - Daojun Qi
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Lingshuang Wu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
9
|
Supian ABM, Asyraf MRM, Syamsir A, Najeeb MI, Alhayek A, Al-Dala’ien RN, Manar G, Atiqah A. Thermochromic Polymer Nanocomposites for the Heat Detection System: Recent Progress on Properties, Applications, and Challenges. Polymers (Basel) 2024; 16:1545. [PMID: 38891491 PMCID: PMC11174980 DOI: 10.3390/polym16111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Reversible thermochromic polymers have emerged as compelling candidates in recent years, captivating attention for their application in heat detection systems. This comprehensive review navigates through the multifaceted landscape, intricately exploring both the virtues and hurdles inherent in their integration within these systems. Their innate capacity to change colour in response to temperature fluctuations renders reversible thermochromic nanocomposites promising assets for heat detection technologies. However, despite their inherent potential, certain barriers hinder their widespread adoption. Factors such as a restricted colour spectrum, reliance on external triggers, and cost considerations have restrained their pervasive use. For instance, these polymer-based materials exhibit utility in the domain of building insulation, where their colour-changing ability serves as a beacon, flagging areas of heat loss or inadequate insulation, thus alerting building managers and homeowners to potential energy inefficiencies. Nevertheless, the limited range of discernible colours may impede precise temperature differentiation. Additionally, dependency on external stimuli, such as electricity or UV light, can complicate implementation and inflate costs. Realising the full potential of these polymer-based materials in heat detection systems necessitates addressing these challenges head-on. Continuous research endeavours aimed at augmenting colour diversity and diminishing reliance on external stimuli offer promising avenues to enhance their efficacy. Hence, this review aims to delve into the intricate nuances surrounding reversible thermochromic nanocomposites, highlighting their transformative potential in heat detection and sensing. By exploring their mechanisms, properties, and current applications, this manuscript endeavours to shed light on their significance, providing insights crucial for further research and potential applications.
Collapse
Affiliation(s)
- A. B. M. Supian
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
- Centre for Defence Research and Technology (CODRAT), Universiti Pertahanan National Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - M. R. M. Asyraf
- Engineering Design Research Group (EDRG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Agusril Syamsir
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
- Civil Engineering Department, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.A.)
| | - M. I. Najeeb
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Abdulrahman Alhayek
- Civil Engineering Department, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.A.)
| | - Rayeh Nasr Al-Dala’ien
- Civil Engineering Department, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.A.)
| | - Gunasilan Manar
- Centre for Defence Research and Technology (CODRAT), Universiti Pertahanan National Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - A. Atiqah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
10
|
Xu D, Gao C, Ge C, Liu Y, Yang L, Peng Z, Ye C, Chen Z, Liu K, Zhang Q, Xu W, Fang J. Integrated Firefighting Textile with Temperature and Pressure Monitoring for Personal Defense. ACS Sens 2024; 9:2575-2584. [PMID: 38695880 DOI: 10.1021/acssensors.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Although electronic textiles that can detect external stimuli show great promise for fire rescue, existing firefighting clothing is still scarce for simultaneously integrating reliable early fire warning and real-time motion sensing, hardly providing intelligent personal protection under complex high-temperature conditions. Herein, we introduce an "all-in-one" hierarchically sandwiched fabric (HSF) sensor with a simultaneous temperature and pressure stimulus response for developing intelligent personal protection. A cross-arranged structure design has been proposed to tackle the serious mutual interference challenge during multimode sensing using two separate sets of core-sheath composite yarns and arrayed graphene-coated aerogels. The functional design of the HSF sensor not only possesses wide-range temperature sensing from 25 to 400 °C without pressure disturbance but also enables highly sensitive pressure response with good thermal adaptability (up to 400 °C) and wide pressure detection range (up to 120 kPa). As a proof of concept, we integrate large-scalable HSF sensors onto conventional firefighting clothing for passive/active fire warning and also detecting spatial pressure and temperature distribution when a firefighter is exposed to high-temperature flames, which may provide a useful design strategy for the application of intelligent firefighting protective clothing.
Collapse
Affiliation(s)
- Duo Xu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P R China
| | - Chong Gao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P R China
| | - Can Ge
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P R China
| | - Yingcun Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P R China
| | - Likun Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Zhiyong Peng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P R China
| | - Chenchen Ye
- School of Electronic and Information Engineering, Soochow University, Suzhou 215123, P R China
| | - Ze Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P R China
| | - Keshuai Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P R China
| | - Qian Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P R China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P R China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P R China
| |
Collapse
|
11
|
Li G, Chen C, Liu Z, Sun Q, Liang L, Du C, Chen G. Distinguishing thermoelectric and photoelectric modes enables intelligent real-time detection of indoor electrical safety hazards. MATERIALS HORIZONS 2024; 11:1679-1688. [PMID: 38305351 DOI: 10.1039/d3mh02187d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Due to the prevalence of electronic devices, intelligent sensors have attracted much interest for the detecting and providing alarms with respect to indoor electrical safety. Nonetheless, how to effectively identify various indoor electrical safety hazards remains a challenge. In this study, we fabricated single-walled carbon nanotube/poly(3-hexylthiophene-2,5-diyl) (SWCNT/P3HT) composites with exceptional bifunctional thermoelectric and photoelectric responses. Through synergy of the thermo-/photoelectric effects, the composites yielded greatly enhanced output voltages compared with the use of thermoelectric effects alone. Interestingly, modes of heat transfer can be effectively distinguished using the nominal Seebeck coefficients. Based on the remarkable output voltages and deviations in the nominal Seebeck coefficients, we developed indoor intelligent sensors capable of effectively identifying and monitoring diverse indoor electrical conditions, including electrical overheating, fire, and air conditioning flow. This pioneering investigation proposes a novel avenue for designing intelligent sensors that can recognize heat transfer modes and hence effectively monitor indoor electrical safety hazards.
Collapse
Affiliation(s)
- Gang Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Chengzhi Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Zijian Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Qi Sun
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lirong Liang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Chunyu Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
| | - Guangming Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
12
|
Jin X, Zhang J, Wang B, Li X, Zeng J, Ma J, Zhao X, Wu W, Del Río Sáez JS, Zhang X, Wang DY, Wang R. Multifunctional polylactic acid sensing fabric based on biomass flame retardants for intelligent fire early-warning. Int J Biol Macromol 2024; 259:129158. [PMID: 38176481 DOI: 10.1016/j.ijbiomac.2023.129158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Today, building materials emit many hazardous gases in the event of a fire, causing great harm to human health and the environment. Therefore, it is of great significance to develop bio-based flame retardant materials and to realize preventive measures to reduce fires or their damage. In this work, we fabricated a novel multifunctional fire early-warning polylactic acid-based fabric (MFR-PBF) by coating MXene nanosheet, phytic acid @ furfurylamine (PA@FA) and ammonium polyphosphate (APP) via an eco-friendly layer-by-layer assembly method. MFR-PBF showed outstanding flame retardancy including a limiting oxygen index value of 35 % and better char formation capacity. More importantly, MFR-PBF exhibited sensitive fire early-warning capability (∼1 s) and excellent cyclic alarm stability (>15 cycles) due to the excellent semiconductor responsiveness (light and heat) and the significant catalytic char formation effect. Moreover, MFR-PBF is comfortable, flexible and strong enough to sew onto firefighter uniform to detect a variety of human motions, which can be monitored in the internet by using a LoRa emitter and a gateway. In addition, the controllable heating performance rendered MFR-PBF as a potential portable heater. This work provides new insights into the preparation and application of intelligent fire early-warning fabrics in the smart fire protection and Internet of Things.
Collapse
Affiliation(s)
- Xu Jin
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Jing Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Bin Wang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Xiaolu Li
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040 Madrid, Spain
| | - Jing Zeng
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Jiayu Ma
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Ximeng Zhao
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Wenqi Wu
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - José Sánchez Del Río Sáez
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; Departamento de Ingeniería Eléctrica, Electrónica Automática y Física Aplicada, ETSIDI, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Xiuqin Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain
| | - Rui Wang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| |
Collapse
|
13
|
Zhang J, Zhang HY, Xu WR, Zhang YC. Sustainable biomass-based composite biofilm: Sodium alginate, TEMPO-oxidized chitin nanocrystals, and MXene nanosheets for fire-resistant materials and next-generation sensors. J Colloid Interface Sci 2024; 654:795-804. [PMID: 37866051 DOI: 10.1016/j.jcis.2023.10.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Efficient utilization of natural biomass for the development of fireproof materials and next-generation sensors faces various challenges in the field of fire safety and prevention. In this study, renewable sodium alginate (SA), TEMPO-oxidized chitin nanocrystals (TOChNs), and MXene nanosheets were employed to fabricate a sustainable, flexible, and flame-retardant composite biofilm, donated as STM, utilizing a simple and environmentally friendly evaporation-induced self-assembly technique. The incorporation of SA, TOChNs, and MXene in a weight ratio of 50/10/40 led to improved mechanical properties of the resulting STM-40 films, as evidenced by increased tensile strength and Young's modulus values of approximately 36 MPa and 4 GPa, respectively. Notably, these values were approximately 3 and 11 times higher than those observed for the pure SA film. Moreover, the STM-40 films demonstrated highly sensitive fire alarm capabilities, exhibiting a superior flame alarm response time of 0.6 s and a continuous alarm time of approximately 492 s when exposed to flames. The STM exhibited exceptional flame retardancy due to the synergistic carbonization between MXene and SA/TOChNs, resulting in a limiting oxygen index of 45.0 %. Furthermore, its maximum heat release rate decreased by over 90.1 % during the test. This study presents a novel approach for designing and developing fire-retardant fire alarm sensors by utilizing natural biomass.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; Hainan Health Management College, Haikou 570228, China
| | - Hui-Yuan Zhang
- Heibei Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical Safety, North China Institute of Science and Technology, Langfang, Hebei 065201, China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
14
|
Li X, Sánchez Del Río Sáez J, Du S, Sánchez Díaz R, Ao X, Wang DY. Bio-based chitosan-based film as a bifunctional fire-warning and humidity sensor. Int J Biol Macromol 2023; 253:126466. [PMID: 37659494 DOI: 10.1016/j.ijbiomac.2023.126466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Early fire detection is an efficient method to mitigate disastrous fire loss. However, developing smart low-temperature fire-warning sensors that better diminish fire hazards, especially those caused by household appliances, is still challenging. Herein, a salts-modified chitosan (salts-modified CS) based sensor with integrated fire-warning and humidity-monitoring capability is proposed using an easy assembling method. This sensor can respond to temperatures as low as 50 °C and a flame within 2 s quickly and detect relative humidity (RH) range above 50 % at 50 °C and 75 °C sensitively. This system can be reusable for multiple ignitions and works in high-humidity environments (>50 %). Furthermore, the comparison between different salts-modified CS films is carried out to elucidate the mechanism of the formation of electric current under the joint driven by temperature and humidity. Moreover, real-time temperature and RH monitoring can be achieved with a wireless transmission section. This design shows a promising approach for multifunctional CS-based sensors and paves a path to developing a new generation of smart fire-warning detectors.
Collapse
Affiliation(s)
- Xiaolu Li
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040, Madrid, Spain
| | - José Sánchez Del Río Sáez
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; Departamento de Ingeniería Eléctrica, Electrónica Automática y Física Aplicada, ETSIDI, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012, Madrid, Spain
| | - Shuanglan Du
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040, Madrid, Spain
| | | | - Xiang Ao
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain; E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, Calle Profesor Aranguren 3, 28040, Madrid, Spain
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain.
| |
Collapse
|
15
|
Jung Y, Kim M, Kim T, Ahn J, Lee J, Ko SH. Functional Materials and Innovative Strategies for Wearable Thermal Management Applications. NANO-MICRO LETTERS 2023; 15:160. [PMID: 37386321 PMCID: PMC10310690 DOI: 10.1007/s40820-023-01126-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 07/01/2023]
Abstract
Highlights This article systematically reviews the thermal management wearables with a specific emphasis on materials and strategies to regulate the human body temperature. Thermal management wearables are subdivided into the active and passive thermal managing methods. The strength and weakness of each thermal regulatory wearables are discussed in details from the view point of practical usage in real-life. Abstract Thermal management is essential in our body as it affects various bodily functions, ranging from thermal discomfort to serious organ failures, as an example of the worst-case scenario. There have been extensive studies about wearable materials and devices that augment thermoregulatory functionalities in our body, employing diverse materials and systematic approaches to attaining thermal homeostasis. This paper reviews the recent progress of functional materials and devices that contribute to thermoregulatory wearables, particularly emphasizing the strategic methodology to regulate body temperature. There exist several methods to promote personal thermal management in a wearable form. For instance, we can impede heat transfer using a thermally insulating material with extremely low thermal conductivity or directly cool and heat the skin surface. Thus, we classify many studies into two branches, passive and active thermal management modes, which are further subdivided into specific strategies. Apart from discussing the strategies and their mechanisms, we also identify the weaknesses of each strategy and scrutinize its potential direction that studies should follow to make substantial contributions to future thermal regulatory wearable industries.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Taegyeom Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jiyong Ahn
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|