1
|
Wang K, Wu M, Zhang Y, Liao Y, Su Y, Yang S, Li H. Interfacial molybdate-enabled electric field deconfinement to passivate water oxidation for wide-potential biomass electrooxidation. J Colloid Interface Sci 2025; 691:137390. [PMID: 40132426 DOI: 10.1016/j.jcis.2025.137390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
The priority adsorption of OH- in the anodic refining process typically compromises the accessibility of organic reactants and propels their competing oxygen evolution reaction (OER), inevitably generating inactive areas of organics electrooxidation. In this work, an electric field deconfinement strategy enabled by self-originated MoO42- was unveiled to confine the mass diffusion of OH- over a Mo-modulated Ni-based electrode (NiMoOx/NF). The reconstructable NiMoOx/NF catalyst was high-efficiency for selective electrooxidation of various biomass derivatives, especially for electrocatalytic 5-hydroxymethylfurfural (HMF) oxidation reaction (e-HMFOR) to afford 2,5-furanedicarboxylic acid (FDCA, a versatile bioplastic monomer). In-situ tests and finite element analyses evidenced that NiOOH-MoO42- in-situ reconstructed from NiMoOx/NF is responsible for e-HMFOR, where the surface-adsorbed MoO42- can trigger a negative electric field to restrict OH- affinity by electrostatic repulsion but facilitate HMF adsorption, thereby leading to the deteriorated OER and enhanced e-HMFOR. Theoretical calculations further elaborated that introduced MoO42- boosts HMF adsorption to accelerate the reaction kinetics but elevates the energy barrier of O* coupling into OOH* to passivate OER. As a result, a wide potential interval (1.35-1.55 VRHE) was applicable to produce FDCA via e-HMFOR with admirable productivity (95.4-97.8% faradaic efficiencies), rivaling the state-of-the-art Ni-based electrodes. In addition, the established membrane electrode assembly electrolyzer could be operated stably for 40 h at least, with high efficiency in electrosynthesis of gram-grade FDCA. This study underlines the viability and criticality of electric field deconfinement for manipulating the OH- adsorption to facilitate organics electrooxidation and biorefinery while getting rid of competing reactions.
Collapse
Affiliation(s)
- Keping Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Mei Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Yan Zhang
- Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
| | - Yuhe Liao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 Guangdong, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Hu Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Gao W, Wang C, Wen W, Wang S, Zhang X, Yan D, Wang S. Electrochemical Hydrogen Production Coupling with the Upgrading of Organic and Inorganic Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503198. [PMID: 40395197 DOI: 10.1002/adma.202503198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/04/2025] [Indexed: 05/22/2025]
Abstract
Electrocatalytic water splitting powered by renewable energy is a green and sustainable method for producing high-purity H2. However, in conventional water electrolysis, the anodic oxygen evolution reaction (OER) involves a four-electron transfer process with inherently sluggish kinetics, which severely limits the overall efficiency of water splitting. Recently, replacing OER with thermodynamically favorable oxidation reactions, coupled with the hydrogen evolution reaction, has garnered significant attention and achieved remarkable progress. This strategy not only offers a promising route for energy-saving H₂ production but also enables the simultaneous synthesis of high-value-added products or the removal of pollutants at the anode. Researchers successfully demonstrate the upgrading of numerous organic and inorganic alternatives through this approach. In this review, the latest advances in the coupling of electrocatalytic H2 production and the upgrading of organic and inorganic alternative chemicals are summarized. What's more, the optimization strategy of catalysts, structure-performance relationship, and catalytic mechanism of various reactions are well discussed in each part. Finally, the current challenges and future prospects in this field are outlined, aiming to inspire further innovative breakthroughs in this exciting area of research.
Collapse
Affiliation(s)
- Wenqi Gao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Chen Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Wei Wen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Shengfu Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Xiuhua Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Dafeng Yan
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410081, China
| |
Collapse
|
3
|
Zeng H, Yoshioka S, Wang W, Han Z, Ivanov IG, Liang H, Darakchieva V, Sun J. Manipulating Electron Structure through Dual-Interface Engineering of 3C-SiC Photoanode for Enhanced Solar Water Splitting. J Am Chem Soc 2025; 147:14815-14823. [PMID: 40244657 PMCID: PMC12046598 DOI: 10.1021/jacs.5c04005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Interface engineering is crucial for enhancing the efficiency of semiconductor-based solar energy devices. In this work, we report a novel dual-interface engineering strategy by designing a Ni(OH)2/Co3O4/3C-SiC photoanode that achieves remarkable enhancements in photoelectrochemical (PEC) water splitting performance. The optimized photoanode delivers a photocurrent density of 1.68 mA cm-2 at 1.23 V vs the reversible hydrogen electrode (RHE), representing an 8-fold increase compared to pristine 3C-SiC, along with excellent operational stability. In this architecture, Co3O4 serves as a highly efficient hole-extraction layer and forms a p-n junction with 3C-SiC, enhancing the separation of photogenerated electron-hole pairs. At the Ni(OH)2/Co3O4 interface, the formation of Ni-O-Co bonds facilitates rapid charge transfer and accelerates oxygen evolution reaction (OER) kinetics. The microwave photoconductivity decay (μ-PCD) measurements confirm a prolonged minority carrier lifetime, demonstrating the critical role of electronic structure modulation in improving charge separation and reducing recombination. Using advanced synchrotron radiation and X-ray absorption spectroscopy, we unveil critical modifications to the interfacial electronic structure induced by the dual-interface engineering and their roles in enhancing PEC performance. These findings establish a clear relationship between electronic structure modulation, charge carrier dynamics, and PEC performance, providing new insights into interface design strategies for highly efficient solar-driven water splitting systems.
Collapse
Affiliation(s)
- Hui Zeng
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Satoru Yoshioka
- Department
of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Weimin Wang
- MAX
IV Laboratory, Fotongatan
2, Lund, SE-22484, Sweden
| | - Zhongyuan Han
- School
of Integrated Circuits, Dalian University
of Technology, Dalian 116024, China
| | - Ivan G. Ivanov
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Hongwei Liang
- School
of Integrated Circuits, Dalian University
of Technology, Dalian 116024, China
| | - Vanya Darakchieva
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
- NanoLund
and Solid State Physics, Lund University, S-22100 Lund, Sweden
| | - Jianwu Sun
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| |
Collapse
|
4
|
Park D, Yun JY, Koo HY, Kim Y. Enhancing Catalytic Performance with Ni Foam-Coated Porous Ni Particles via 1-Butene Hydrogenation. MATERIALS (BASEL, SWITZERLAND) 2025; 18:195. [PMID: 39795839 PMCID: PMC11721857 DOI: 10.3390/ma18010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
The efficient hydrogenation of 1-butene is an industrially significant reaction for producing fuels and value-added chemicals. However, achieving high catalytic efficiency and stability remains challenging, particularly for cost-effective materials, such as Ni. In this study, we developed a porous Ni-coated Ni foam catalyst by electrostatic spray deposition to address these challenges. The catalyst exhibited a turnover frequency approximately 10 times higher than that of either porous Ni or Ni foam alone. This enhancement was attributed to the formation of interfacial active sites, which facilitated improved reactant adsorption and activation during hydrogenation. The electrostatic spray deposition technique ensured a uniform and controlled coating, enabling precise engineering of the catalyst structure and interface. The post-deposition heat treatment was further optimized to enhance structural integrity and catalytic performance. This study highlights the importance of interface engineering and structural optimization in catalyst design and provides valuable insights into the development of efficient Ni-based catalysts for industrial hydrogenation applications. These findings emphasize the potential of electrostatic spray deposition as a versatile method for fabricating advanced catalytic systems.
Collapse
Affiliation(s)
- Dahee Park
- Nano Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | | | | | | |
Collapse
|
5
|
Ren P, Wang Z, Zhang W, Duan F, Lu S, Du M, Zhu H. Mn and Mo co-doped NiS nanosheets induce abundant Ni 3+-O bonds for efficient electro-oxidation of biomass. Chem Commun (Camb) 2024; 60:13392-13395. [PMID: 39465512 DOI: 10.1039/d4cc04818k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
MnMo-NiS were synthesized for electro-oxidizing ethylene glycol (EG), glycerol (GLY), and 5-hydroxymethylfurfural (HMF), achieving faradaic efficiencies of 97.5%, 98.6%, and 99.2%, and yield rates of 615.7, 475.5, and 333.9 μmol h-1 cm-2. In situ Raman spectroscopy and multi-step chronoamperometry reveal that Ni3+-O is the active site.
Collapse
Affiliation(s)
- Pengfei Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Zixuan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, P. R. China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
| |
Collapse
|
6
|
Wu TH, Hou BW, Lee YY, Tsai MC, Liao CC, Chang CC. Simultaneously Boosting Direct and Indirect Urea Oxidation of Nickel Hydroxide via Strategic Yttrium Doping. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50937-50947. [PMID: 39258713 DOI: 10.1021/acsami.4c11951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Urea electrolysis can address pressing environmental concerns caused by urea-containing wastewater while realizing energy-saving hydrogen production. Highly efficient and affordable electrocatalysts are indispensable for realizing the great potential of this emerging technology. Among the numerous candidates, α-Ni(OH)2 has the merits of good electrocatalytic activity, adjustable heteroelement doping, and low cost; consequently, it has received tremendous attention in the electrolytic fields. Herein, a Y3+-doping strategy is developed to effectively enhance the catalytic performance of nickel hydroxide in the urea oxidation reaction (UOR). Our results show that Y3+ incorporation successfully modulates the electronic structure of α-Ni(OH)2 by inducing Ni3+ formation in the crystal lattice to initiate direct UOR, facilitates the Ni3+/Ni2+ redox transition with higher current responses to promote indirect UOR, and maintains the structural stability of YNi-10 (Ni2+/Y3+ molar ratio = 1:0.1) during long-term UOR operation. Owing to these features, the obtained YNi-10 sample exhibits a higher current density (127 vs 79 mA cm-2 at 1.5 V), a lower Tafel slope (48 vs 75 mV dec-1), a larger potential difference between the UOR and oxygen evolution reaction (OER, 0.26 vs 0.22 V at 80 mA cm-2), a higher reaction rate constant (1.1 × 105 vs 3.1 × 103 cm3 mol-1 s-1), and a reduced activation energy of UOR (2.9 vs 14.8 kJ mol-1) compared with the Y-free counterpart (YNi-0). This study presents a promising strategy to simultaneously boost direct and indirect UORs, providing new insights for further developing high-performance electrocatalysts.
Collapse
Affiliation(s)
- Tzu-Ho Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Bo-Wei Hou
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Yi-Ying Lee
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Meng-Che Tsai
- Department of Greenergy, National University of Tainan, 67 Rongyu St., East Dist., Tainan City 701027, Taiwan
| | - Chen-Cheng Liao
- Department of Chemical and Materials Engineering, Chinese Culture University, 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei 11114, Taiwan
| | - Chun-Chih Chang
- Department of Chemical and Materials Engineering, Chinese Culture University, 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei 11114, Taiwan
| |
Collapse
|
7
|
Jung S, Senthil RA, Min A, Kumar A, Moon CJ, Choi MY. Laser-Synthesized Co-Doped CuO Electrocatalyst: Unveiling Boosted Methanol Oxidation Kinetics for Enhanced Hydrogen Production Efficiency by In Situ/Operando Raman and Theoretical Analyses. SMALL METHODS 2024; 8:e2301628. [PMID: 38412410 DOI: 10.1002/smtd.202301628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The present study details the strategic development of Co-doped CuO nanostructures via sophisticated and expedited pulsed laser ablation in liquids (PLAL) technique. Subsequently, these structures are employed as potent electrocatalysts for the anodic methanol oxidation reaction (MOR), offering an alternative to the sluggish oxygen evolution reaction (OER). Electrochemical assessments indicate that the Co-CuO catalyst exhibits exceptional MOR activity, requiring a reduced potential of 1.42 V at 10 mA cm-2 compared to that of pure CuO catalyst (1.57 V at 10 mA cm-2). Impressively, the Co-CuO catalyst achieved a nearly 180 mV potential reduction in MOR compared to its OER performance (1.60 V at 10 mA cm-2). Furthermore, when pairing Co-CuO(+)ǀǀPt/C(-) in methanol electrolysis, the cell voltage required is only 1.51 V at 10 mA cm-2, maintaining remarkable stability over 12 h. This represents a substantial voltage reduction of ≈160 mV relative to conventional water electrolysis (1.67 V at 10 mA cm-2). Additionally, both in situ/operando Raman spectroscopy studies and theoretical calculations have confirmed that Co-doping plays a crucial role in enhancing the activity of the Co-CuO catalyst. This research introduces a novel synthetic approach for fabricating high-efficiency electrocatalysts for large-scale hydrogen production while co-synthesizing value-added formic acid.
Collapse
Affiliation(s)
- Sieon Jung
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Raja Arumugam Senthil
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Cheol Joo Moon
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
8
|
Sun H, Song S. Nickel Hydroxide-Based Electrocatalysts for Promising Electrochemical Oxidation Reactions: Beyond Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401343. [PMID: 38506594 DOI: 10.1002/smll.202401343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Transition metal hydroxides have attracted significant research interest for their energy storage and conversion technique applications. In particular, nickel hydroxide (Ni(OH)2), with increasing significance, is extensively used in material science and engineering. The past decades have witnessed the flourishing of Ni(OH)2-based materials as efficient electrocatalysts for water oxidation, which is a critical catalytic reaction for sustainable technologies, such as water electrolysis, fuel cells, CO2 reduction, and metal-air batteries. Coupling the electrochemical oxidation of small molecules to replace water oxidation at the anode is confirmed as an effective and promising strategy for realizing the energy-saving production. The physicochemical properties of Ni(OH)2 related to conventional water oxidation are first presented in this review. Then, recent progress based on Ni(OH)2 materials for these promising electrochemical reactions is symmetrically categorized and reviewed. Significant emphasis is placed on establishing the structure-activity relationship and disclosing the reaction mechanism. Emerging material design strategies for novel electrocatalysts are also highlighted. Finally, the existing challenges and future research directions are presented.
Collapse
Affiliation(s)
- Hainan Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Sanzhao Song
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
9
|
Tian H, Wang X, Luo W, Ma R, Yu X, Li S, Kong F, Cui X, Shi J. Construction of an electron-transfer channel via Cu-O-Ni to inhibit the overoxidation of Ni for durable methanol oxidation at industrial current density. Chem Sci 2024; 15:11013-11020. [PMID: 39027296 PMCID: PMC11253194 DOI: 10.1039/d4sc00842a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
The electrocatalytic methanol oxidation reaction (MOR) is a viable approach for realizing high value-added formate transformation from biomass byproducts. However, usually it is restricted by the excess adsorption of intermediates (COad) and overoxidation of catalysts, which results in low product selectivity and inactivation of the active sites. Herein, a novel Cu-O-Ni electron-transfer channel was constructed by loading NiCuO x on nickel foam (NF) to inhibit the overoxidation of Ni and enhance the formate selectivity of the MOR. The optimized NiCuO x -2/NF demonstrated excellent MOR catalytic performance at industrial current density (E 500 = 1.42 V) and high faradaic efficiency of ∼100%, as well as durable formate generation up to 600 h at ∼500 mA cm-2. The directional electron transfer from Cu to Ni and enhanced lattice stability could alleviate the overoxidation of Ni(iii) active sites to guarantee reversible Ni(ii)/Ni(iii) cycles and endow NiCuO x -2/NF with high stability under increased current density, respectively. An established electrolytic cell created by coupling the MOR with the hydrogen evolution reaction could produce H2 with low electric consumption (230 mV lower voltage at 400 mA cm-2) and concurrently generated the high value-added product of formate at the anode.
Collapse
Affiliation(s)
- Han Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Xiaohan Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Wenshu Luo
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Rundong Ma
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Xu Yu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Shujing Li
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 P. R. China
| | - Fantao Kong
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Xiangzhi Cui
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
10
|
Zan G, Li S, Chen P, Dong K, Wu Q, Wu T. Mesoporous Cubic Nanocages Assembled by Coupled Monolayers With 100% Theoretical Capacity and Robust Cycling. ACS CENTRAL SCIENCE 2024; 10:1283-1294. [PMID: 38947206 PMCID: PMC11212129 DOI: 10.1021/acscentsci.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024]
Abstract
High capacity and long cycling often conflict with each other in electrode materials. Despite extensive efforts in structural design, it remains challenging to simultaneously achieve dual high electrochemical properties. In this study, we prepared brand-new completely uniform mesoporous cubic-cages assembled by large d-spacing Ni(OH)2 coupled monolayers intercalated with VO4 3- (NiCMCs) using a biomimetic approach. Such unique mesoporous structural configuration results in an almost full atomic exposure with an amazing specific surface area of 505 m2/g and atomic utilization efficiency close to the theoretical limit, which is the highest value and far surpasses all of the reported Ni(OH)2. Thus, a breakthrough in simultaneously attaining high capacity approaching the 100% theoretical value and robust cycling of 10,000 cycles is achieved, setting a new precedent in achieving double-high attributes. When combined with high-performance Bi2O3 hexagonal nanotubes, the resulting aqueous battery exhibits an ultrahigh energy density of 115 Wh/kg and an outstanding power density of 9.5 kW/kg among the same kind. Characterizations and simulations reveal the important role of large interlayer spacing intercalation units and mesoporous cages for excellent electrochemical thermodynamics and kinetics. This work represents a milestone in developing "double-high" electrode materials, pointing in the direction for related research and paving the way for their practical application.
Collapse
Affiliation(s)
- Guangtao Zan
- School
of Chemical Science and Engineering, Institute of Advanced Study,
Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Shanqing Li
- School
of Materials and Environmental Engineering, Chizhou University, Chizhou, Anhui 247000, PR China
| | - Ping Chen
- School
of Chemistry and Chemical Engineering, Anhui
University, Hefei, Anhui 230601, PR China
| | - Kangze Dong
- School
of Chemical Science and Engineering, Institute of Advanced Study,
Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| | - Qingsheng Wu
- School
of Chemical Science and Engineering, Institute of Advanced Study,
Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| | - Tong Wu
- School
of Chemical Science and Engineering, Institute of Advanced Study,
Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
11
|
Xu N, Lv JY, Sun HY, Tian XJ, Yu WL, Li X, Liu CY, Chai YM, Dong B. Ultrasmall Ru nanoparticles-decorated nickel/nickel oxide three phase heterojunctions to boost alkaline hydrogen evolution. J Colloid Interface Sci 2024; 664:704-715. [PMID: 38492371 DOI: 10.1016/j.jcis.2024.02.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
The rational design and optimization of heterogeneous interface for low loading noble metal HER eletrocatalysts to facilitate the upscaling of alkaline water/seawater electrolysis is highly challenging. Herein, we present a facile deep corrosion strategy induced by NaBH4 to precisely construct an ultrasmall Ru nanoparticle-decorated Ni/NiO hybrid (r-Ru-Ni/NiO) with highly dispersed triple-phase heterostructures. Remarkably, it exhibits superior activity with only 53 mV and 70 mV at 100 mA cm-2 for hydrogen evolution reaction (HER) in alkaline water and seawater, respectively, surpassing the performance of Pt/C (109.7 mV, 100 mA cm-2, 1 M KOH). It is attributed to collaborative optimization of electroactive interfaces between well-distributed ultrasmall Ru nanoparticles and Ni/NiO hybrid. Moreover, the assembled r-Ru-Ni/NiO system just require 2.03 V at 1000 mA cm-2 in anion exchange membrane (AEM) electrolyzer, outperforming a RuO2/NF || Pt/C system, while exhibiting outstanding stability at high current densities. This study offers a logical design for accurate construction of interfacial engineering, showing promise for large-scale hydrogen production via electrochemical water splitting.
Collapse
Affiliation(s)
- Na Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Jing-Yi Lv
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Hai-Yi Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin-Jie Tian
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Wen-Li Yu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Chun-Ying Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
12
|
Ding L, Li K, Wang W, Xie Z, Yu S, Yu H, Cullen DA, Keane A, Ayers K, Capuano CB, Liu F, Gao PX, Zhang FY. Amorphous Iridium Oxide-Integrated Anode Electrodes with Ultrahigh Material Utilization for Hydrogen Production at Industrial Current Densities. NANO-MICRO LETTERS 2024; 16:203. [PMID: 38789605 PMCID: PMC11126398 DOI: 10.1007/s40820-024-01411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/05/2024] [Indexed: 05/26/2024]
Abstract
Herein, ionomer-free amorphous iridium oxide (IrOx) thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells (PEMECs) via low-cost, environmentally friendly, and easily scalable electrodeposition at room temperature. Combined with a Nafion 117 membrane, the IrOx-integrated electrode with an ultralow loading of 0.075 mg cm-2 delivers a high cell efficiency of about 90%, achieving more than 96% catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane (2 mg cm-2). Additionally, the IrOx electrode demonstrates superior performance, higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes. Notably, the remarkable performance could be mainly due to the amorphous phase property, sufficient Ir3+ content, and rich surface hydroxide groups in catalysts. Overall, due to the high activity, high cell efficiency, an economical, greatly simplified and easily scalable fabrication process, and ultrahigh material utilization, the IrOx electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.
Collapse
Affiliation(s)
- Lei Ding
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kui Li
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Weitian Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhiqiang Xie
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Shule Yu
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Haoran Yu
- Oak Ridge National Lab, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - David A Cullen
- Oak Ridge National Lab, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | | | - Fangyuan Liu
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Pu-Xian Gao
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Feng-Yuan Zhang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
13
|
Rao C, Wang H, Chen K, Chen H, Ci S, Xu Q, Wen Z. Hybrid Acid/Base Electrolytic Cell for Hydrogen Generation and Methanol Conversion Implemented by Bifunctional Ni/MoN Nanorod Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303300. [PMID: 37840438 DOI: 10.1002/smll.202303300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/04/2023] [Indexed: 10/17/2023]
Abstract
Combining the methanol oxidation reaction (MOR) and hydrogen evolution reaction (HER) within an integrated electrolytic system may offer the advantages of enhanced kinetics of the anode, reduced energy consumption, and the production of high-purity hydrogen. Herein, it is reported the construction of Ni─MoN nanorod arrays supported on a nickel foam substrate (Ni─MoN/NF) as a bifunctional electrocatalyst for electrocatalytic hydrogen production and selective methanol oxidation to formate. Remarkably, The optimal Ni─MoN/NF catalyst displays exceptional HER performance with an overpotential of only 49 mV to attain 10 mA cm-2 in acid, and exhibits a high activity for MOR to achieve 100 mA cm-2 at 1.48 V in alkali. A hybrid acid/base electrolytic cell with Ni─MoN/NF electrode as anode and cathode is further developed for an integrated HER-MOR cell, which only requires a voltage of 0.56 V at 10 mA cm-2 , significantly lower than that of the HER-OER system (0.70 V). The density functional theory studies reveal that the incorporation of Ni effectively modulates the electronic structure of MoN, thereby resulting in enhanced catalytic activity. The unique combination of high electrocatalytic activity and excellent stability make the Ni─MoN/NF catalyst a promising candidate for practical applications in electrocatalytic hydrogen production and methanol oxidation.
Collapse
Affiliation(s)
- Chaoming Rao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
| | - Haijian Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
| | - Kai Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Haiyan Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
| | - Suqin Ci
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
| | - Qiuhua Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
| | - Zhenhai Wen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
14
|
Qian Q, Zhu Y, Ahmad N, Feng Y, Zhang H, Cheng M, Liu H, Xiao C, Zhang G, Xie Y. Recent Advancements in Electrochemical Hydrogen Production via Hybrid Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306108. [PMID: 37815215 DOI: 10.1002/adma.202306108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/20/2023] [Indexed: 10/11/2023]
Abstract
As one of the most promising approaches to producing high-purity hydrogen (H2 ), electrochemical water splitting powered by the renewable energy sources such as solar, wind, and hydroelectric power has attracted considerable interest over the past decade. However, the water electrolysis process is seriously hampered by the sluggish electrode reaction kinetics, especially the four-electron oxygen evolution reaction at the anode side, which induces a high reaction overpotential. Currently, the emerging hybrid electrochemical water splitting strategy is proposed by integrating thermodynamically favorable electro-oxidation reactions with hydrogen evolution reaction at the cathode, providing a new opportunity for energy-efficient H2 production. To achieve highly efficient and cost-effective hybrid water splitting toward large-scale practical H2 production, much work has been continuously done to exploit the alternative anodic oxidation reactions and cutting-edge electrocatalysts. This review will focus on recent developments on electrochemical H2 production coupled with alternative oxidation reactions, including the choice of anodic substrates, the investigation on electrocatalytic materials, and the deep understanding of the underlying reaction mechanisms. Finally, some insights into the scientific challenges now standing in the way of future advancement of the hybrid water electrolysis technique are shared, in the hope of inspiring further innovative efforts in this rapidly growing field.
Collapse
Affiliation(s)
- Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Nazir Ahmad
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Huaikun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Mingyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Huanhuan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Chong Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|
15
|
Cheng H, Dong B, Liu Q, Wang F. Direct Electrocatalytic Methanol Oxidation on MoO 3/Ni(OH) 2: Exploiting Synergetic Effect of Adjacent Mo and Ni. J Am Chem Soc 2023. [PMID: 38039421 DOI: 10.1021/jacs.3c09399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Ni-based materials have been widely investigated as methanol oxidation reaction (MOR) catalysts. The formation of NiOOH and its reduction to Ni(OH)2 are generally regarded as essential steps for methanol oxidation. However, in such an indirect route, the efficiency of proton coupled electron transfer is fundamentally limited by the rate of transition from Ni(OH)2 to NiOOH back and forth. Herein we demonstrate a direct MOR pathway on MoO3/Ni(OH)2 without the formation of a NiOOH mediator. The MoO3/Ni(OH)2 exhibits a benchmark electrocatalytic MOR current density of 1000 mA cm-2 at 1.52 V vs. RHE with a nearly 100% faradic efficiency, outperforming all the state of art MOR electrocatalysts. In-situ Raman spectroscopy confirms that NiOOH is not formed during the electrocatalytic MOR process on the MoO3/Ni(OH)2. Density functional theory calculations suggest that Ni2+ in MoO3/Ni(OH)2 serves as the methanol adsorption site while the doped Mo6+ plays a key role in capturing the deprotonated H·. Benefiting from the Mo-Ni synergistic effect, the energy barrier of the CH2O* → CHO* + H* process is significantly reduced, avoiding the NiOOH formation and leading to the direct MOR. Our research unravels a direct electrochemical MOR pathway that does not rely on NiOOH formation and provides a facile strategy of regulating the intermediate process barrier for MOR.
Collapse
Affiliation(s)
- Hui Cheng
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong 510070, China
| | - Boheng Dong
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong 510070, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Qiong Liu
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong 510070, China
| | - Fuxian Wang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong 510070, China
- Huaxin Chuangneng (Guangdong) Technology Co., Ltd., Foshan, Guangdong 528200, China
| |
Collapse
|
16
|
Hu B, Huang K, Tang B, Lei Z, Wang Z, Guo H, Lian C, Liu Z, Wang L. Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:217. [PMID: 37768413 PMCID: PMC10539274 DOI: 10.1007/s40820-023-01182-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023]
Abstract
The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide (2H-MoS2) presents a significant hurdle in realizing its full potential applications. Here, we utilize theoretical calculations to predict possible functionalized graphene quantum dots (GQDs), which can enhance HER activity of bulk MoS2. Subsequently, we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS2 nanosheets mediated with GQDs (ALQD) by modulating the concentration of electron withdrawing/donating functional groups. Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role. Notably, the higher the concentration and strength of electron-withdrawing functional groups on GQDs, the thinner and more active the resulting ALQD are. Remarkably, the synthesized near atom-layer ALQD-SO3 demonstrate significantly improved HER performance. Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS2. Furthermore, it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials.
Collapse
Affiliation(s)
- Bingjie Hu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China
| | - Kai Huang
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Bijun Tang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China.
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
17
|
Wang HY, Wang L, Ren JT, Tian WW, Sun ML, Yuan ZY. Heteroatom-Induced Accelerated Kinetics on Nickel Selenide for Highly Efficient Hydrazine-Assisted Water Splitting and Zn-Hydrazine Battery. NANO-MICRO LETTERS 2023; 15:155. [PMID: 37337062 PMCID: PMC10279626 DOI: 10.1007/s40820-023-01128-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/14/2023] [Indexed: 06/21/2023]
Abstract
Hydrazine-assisted water electrolysis is a promising energy conversion technology for highly efficient hydrogen production. Rational design of bifunctional electrocatalysts, which can simultaneously accelerate hydrogen evolution reaction (HER)/hydrazine oxidation reaction (HzOR) kinetics, is the key step. Herein, we demonstrate the development of ultrathin P/Fe co-doped NiSe2 nanosheets supported on modified Ni foam (P/Fe-NiSe2) synthesized through a facile electrodeposition process and subsequent heat treatment. Based on electrochemical measurements, characterizations, and density functional theory calculations, a favorable "2 + 2" reaction mechanism with a two-step HER process and a two-step HzOR step was fully proved and the specific effect of P doping on HzOR kinetics was investigated. P/Fe-NiSe2 thus yields an impressive electrocatalytic performance, delivering a high current density of 100 mA cm-2 with potentials of - 168 and 200 mV for HER and HzOR, respectively. Additionally, P/Fe-NiSe2 can work efficiently for hydrazine-assisted water electrolysis and Zn-Hydrazine (Zn-Hz) battery, making it promising for practical application.
Collapse
Affiliation(s)
- Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, People's Republic of China
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, People's Republic of China
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, People's Republic of China
| | - Wen-Wen Tian
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, People's Republic of China
| | - Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, People's Republic of China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, People's Republic of China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
18
|
Zhu Y, Liu C, Cui S, Lu Z, Ye J, Wen Y, Shi W, Huang X, Xue L, Bian J, Li Y, Xu Y, Zhang B. Multistep Dissolution of Lamellar Crystals Generates Superthin Amorphous Ni(OH) 2 Catalyst for UOR. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301549. [PMID: 37058392 DOI: 10.1002/adma.202301549] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/04/2023] [Indexed: 06/16/2023]
Abstract
Urea oxidation reaction (UOR) is an ideal replacement of the conventional anodic oxygen evolution reaction (OER) for efficient hydrogen production due to the favorable thermodynamics. However, the UOR activity is severely limited by the high oxidation potential of Ni-based catalysts to form Ni3+ , which is considered as the active site for UOR. Herein, by using in situ cryoTEM, cryo-electron tomography, and in situ Raman, combined with theoretical calculations, a multistep dissolution process of nickel molybdate hydrate is reported, whereby NiMoO4 ·xH2 O nanosheets exfoliate from the bulk NiMoO4 ·H2 O nanorods due to the dissolution of Mo species and crystalline water, and further dissolution results in superthin and amorphous nickel (II) hydroxide (ANH) flocculus catalyst. Owing to the superthin and amorphous structure, the ANH catalyst can be oxidized to NiOOH at a much lower potential than conventional Ni(OH)2 and finally exhibits more than an order of magnitude higher current density (640 mA cm-2 ), 30 times higher mass activity, 27 times higher TOF than those of Ni(OH)2 catalyst. The multistep dissolution mechanism provides an effective methodology for the preparation of highly active amorphous catalysts.
Collapse
Affiliation(s)
- Yajie Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Cheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shiwen Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Zhuorong Lu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Jinyu Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yunzhou Wen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wenjuan Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaoxiong Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Liangyao Xue
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Juanjuan Bian
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
19
|
Ma J, Chen K, Wang J, Huang L, Dang C, Gu L, Cao X. Killing Two Birds with One Stone: Upgrading Organic Compounds via Electrooxidation in Electricity-Input Mode and Electricity-Output Mode. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2500. [PMID: 36984379 PMCID: PMC10056343 DOI: 10.3390/ma16062500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The electrochemically oxidative upgrading reaction (OUR) of organic compounds has gained enormous interest over the past few years, owing to the advantages of fast reaction kinetics, high conversion efficiency and selectivity, etc., and it exhibits great potential in becoming a key element in coupling with electricity, synthesis, energy storage and transformation. On the one hand, the kinetically more favored OUR for value-added chemical generation can potentially substitute an oxygen evolution reaction (OER) and integrate with an efficient hydrogen evolution reaction (HER) or CO2 electroreduction reaction (CO2RR) in an electricity-input mode. On the other hand, an OUR-based cell or battery (e.g., fuel cell or Zinc-air battery) enables the cogeneration of value-added chemicals and electricity in the electricity-output mode. For both situations, multiple benefits are to be obtained. Although the OUR of organic compounds is an old and rich discipline currently enjoying a revival, unfortunately, this fascinating strategy and its integration with the HER or CO2RR, and/or with electricity generation, are still in the laboratory stage. In this minireview, we summarize and highlight the latest progress and milestones of the OUR for the high-value-added chemical production and cogeneration of hydrogen, CO2 conversion in an electrolyzer and/or electricity in a primary cell. We also emphasize catalyst design, mechanism identification and system configuration. Moreover, perspectives on OUR coupling with the HER or CO2RR in an electrolyzer in the electricity-input mode, and/or the cogeneration of electricity in a primary cell in the electricity-output mode, are offered for the future development of this fascinating technology.
Collapse
Affiliation(s)
- Jiamin Ma
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Keyu Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jigang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Lin Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Chenyang Dang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Li Gu
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xuebo Cao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
20
|
Yang M, Liu Y, Ge W, Liu Z. Enhanced electrocatalytic activity of sulfur and tungsten co-doped nickel hydroxide nanosheets for urea oxidation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
21
|
Wang C, Zhang Q, Yan B, You B, Zheng J, Feng L, Zhang C, Jiang S, Chen W, He S. Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. NANO-MICRO LETTERS 2023; 15:52. [PMID: 36795218 PMCID: PMC9935811 DOI: 10.1007/s40820-023-01024-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 05/19/2023]
Abstract
The crystal facets featured with facet-dependent physical and chemical properties can exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) attributed to their anisotropy. The highly active exposed crystal facets enable increased mass activity of active sites, lower reaction energy barriers, and enhanced catalytic reaction rates for HER and OER. The formation mechanism and control strategy of the crystal facet, significant contributions as well as challenges and perspectives of facet-engineered catalysts for HER and OER are provided. The electrocatalytic water splitting technology can generate high-purity hydrogen without emitting carbon dioxide, which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality. Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency. Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface. Owing to the anisotropy, crystal planes with different orientations usually feature facet-dependent physical and chemical properties, leading to differences in the adsorption energies of oxygen or hydrogen intermediates, and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, a brief introduction of the basic concepts, fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided. The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes. Subsequently, three strategies of selective capping agent, selective etching agent, and coordination modulation to tune crystal planes are comprehensively summarized. Then, we present an overview of significant contributions of facet-engineered catalysts toward HER, OER, and overall water splitting. In particular, we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity. Finally, the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
Collapse
Affiliation(s)
- Changshui Wang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qian Zhang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Bing Yan
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
| | - Jiaojiao Zheng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Li Feng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 2150009, People's Republic of China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
22
|
Si F, Liu J, Zhang Y, Zhao B, Liang Y, Wu X, Kang X, Yang X, Zhang J, Fu XZ, Luo JL. Surface Spin Enhanced High Stable NiCo 2 S 4 for Energy-Saving Production of H 2 from Water/Methanol Coelectrolysis at High Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205257. [PMID: 36344428 DOI: 10.1002/smll.202205257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Nickel based materials are promising electrocatalysts to produce hydrogen from water in alkaline media. However, the stability is of great challenge, limiting its practical material functions. Herein, a new technique for electro-deposition flower-like NiCo2 S4 nanosheets on carbon-cloth (CC@NiCo2 S4 ) is proposed for energy-saving production of H2 from water/methanol coelectrolysis at high current density by constructing array architectures and regulating surface magnetism. The optimized and fine-tuned magnetism on the surface of the electrochemical in situ grown CC@NiCo2 S4 nanosheet array result in (0 1 -1) surface universally exposed, high catalytic activity for methanol electrooxidation, and long-term stability at high current density. X-ray photoelectron spectroscopy in combination of density functional theory calculations confirm the valence electron states and spin of d electrons for the surface of NiCo2 S4 , which enhance the surface stability of catalysts. This technology may be utilized to alter the surface magnetism and increase the stability of Ni-based electrocatalytic materials in general.
Collapse
Affiliation(s)
- Fengzhan Si
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianwen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yan Zhang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bin Zhao
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yue Liang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xuexian Wu
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaomin Kang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoqiang Yang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
23
|
Chen Z, Yun S, Wu L, Zhang J, Shi X, Wei W, Liu Y, Zheng R, Han N, Ni BJ. Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy. NANO-MICRO LETTERS 2022; 15:4. [PMID: 36454315 PMCID: PMC9715911 DOI: 10.1007/s40820-022-00974-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
The sustainable production of green hydrogen via water electrolysis necessitates cost-effective electrocatalysts. By following the circular economy principle, the utilization of waste-derived catalysts significantly promotes the sustainable development of green hydrogen energy. Currently, diverse waste-derived catalysts have exhibited excellent catalytic performance toward hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water electrolysis (OWE). Herein, we systematically examine recent achievements in waste-derived electrocatalysts for water electrolysis. The general principles of water electrolysis and design principles of efficient electrocatalysts are discussed, followed by the illustration of current strategies for transforming wastes into electrocatalysts. Then, applications of waste-derived catalysts (i.e., carbon-based catalysts, transitional metal-based catalysts, and carbon-based heterostructure catalysts) in HER, OER, and OWE are reviewed successively. An emphasis is put on correlating the catalysts' structure-performance relationship. Also, challenges and research directions in this booming field are finally highlighted. This review would provide useful insights into the design, synthesis, and applications of waste-derived electrocatalysts, and thus accelerate the development of the circular economy-driven green hydrogen energy scheme.
Collapse
Affiliation(s)
- Zhijie Chen
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Lan Wu
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jiaqi Zhang
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Xingdong Shi
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Renji Zheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, 3001, Louvain, Belgium
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|