1
|
Xiang J, Wang P, Li P, Zhou M, Yu G, Jin Z. Inter-Site Distance Effect in Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202500644. [PMID: 40033984 DOI: 10.1002/anie.202500644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
The inter-site distance effect (ISDE) has gained significant attention in heterogeneous catalysis, challenging classical models that treat adjacent nonbonded sites as isolated. Recent studies demonstrate that these sites can exhibit long-range cooperative interactions, enhancing reaction efficiencies. Fully leveraging the ISDE to overcome limitations in site reactivity requires a multidisciplinary approach and advanced techniques. This review provides a comprehensive overview of ISDE in electrocatalysis, starting with strategies for synthesizing materials with tunable inter-site distances. It examines ISDE across various catalyst models, including monometallic and heteronuclear atomic sites, active sites within clusters, and the lattice of nanocatalysts, focusing on their electronic structures, spatial geometries, and synergistic interactions. Advanced characterization and computational methods are highlighted as essential for identifying inter-site structures and distances, providing a systematic framework for understanding ISDE's role in electrocatalysis. The review also proposes best practices for studying ISDE, addressing current challenges and offering future perspectives. These insights aim to inform the design of highly efficient catalysts, enhance the understanding of catalytic mechanisms, and contribute to the development of more efficient energy conversion technologies, providing a foundation for further research into optimizing electrocatalysts.
Collapse
Affiliation(s)
- Jiongcan Xiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Pengfei Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
2
|
Liu T, Liu Y, Lin R, Chen C, Pu Z, Sun Y, Huang S, Chen Q, Al-Enizi AM, Nafady A, Ubaidullah M, Mu X, Huang Q, Mu S. Ultrafast Carbothermal Shock Synthesis of Intermetallic Silicides with Anion-Cation Double Active Sites for Efficient Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412528. [PMID: 40103527 DOI: 10.1002/smll.202412528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/06/2025] [Indexed: 03/20/2025]
Abstract
The exploration and elucidation of the active site of catalysts is crucial for advancing the comprehension of the catalytic mechanism and propelling the development of exceptional catalysts. Herein, it is unveiled that anionic Si and cationic Pt in platinum silicide (PtSi) intermetallic compounds, obtained by ultrafast Joule heating (PtSi JH), simultaneously function as dual active sites for the hydrogen evolution reaction (HER). Density functional theory calculations reveal that, when both Pt and Si simultaneously serve as the active sites, the Gibbs free energy of hydrogen adsorption is 0.70 eV, significantly lower than that of either Pt (1.14 eV) or Si (0.90 eV) alone. Furthermore, both Pt-H and Si-H species are monitored by in situ Raman during the HER process. Consequently, PtSi JH exhibits ultralow overpotentials of 14, 30, and 51 mV at current densities of 10, 50, and 100 mA cm-2, respectively, outperorming commercial Pt/C and Si powder. More importantly, the Joule heating method represents a versatile approach for synthesizing a range of metal silicides including RhSi, RuSix, and Pd2Si. Therefore, this work opens a new avenue for the identification of genuine active sites and explores promising metal silicide for HER electrocatalysis and beyond.
Collapse
Affiliation(s)
- Tingting Liu
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Yuyu Liu
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Ruting Lin
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Chen Chen
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Zonghua Pu
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Yuzhi Sun
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Qingjun Chen
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qiufeng Huang
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
3
|
Liu T, Chen C, Pu Z, Huang Q, Jiang J, Han M, Chen W, Yu G, Sun Y, Huang S, Chen Q, Al-Enizi AM, Nafady A, Mu X, Mu S. Ultrafast Synthesis of Nanoscale Metal Borides for Efficient Hydrogen Evolution. Angew Chem Int Ed Engl 2025; 64:e202425257. [PMID: 39810492 DOI: 10.1002/anie.202425257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Nanoscale metal borides, with exceptional physicochemical properties, have been attracted widespread attention. However, traditional synthesis methods of metal borides often lead to surface coking and large particle sizes. Herein, we have employed a flash Joule heating (FJH) technique to enable the ultrafast synthesis of metal boride nanomaterials. The synthesized materials encompass a wide range of diverse categories, including alkaline-earth metal borides (CaB6), transition metal borides (TiB2, VB2, CrB2, MoB, MoB2, MnB2, MnB4, FeB, CoB, NiB), noble-metal borides (RuB2, RuB1.1), and rare-earth metal borides (LaB6, CeB6). As an example, the RuB2 demonstrates highly desirable electrocatalytic performance for all-pH hydrogen evolution reaction (HER). Especially, under the acidic condition, it exhibits an overpotential as low as 15 mV at a current density of 10 mA cm-2, with a nearly 100 % faradic efficiency. Additionally, in situ Raman spectra confirm that both Ru and B sites serve as active sites for the HER. Moreover, the stability of RuB2 can be further enhanced by optimizing the microenvironments of the anolyte composition (H+, K+). More importantly, the experimental and density functional theory (DFT) calculations reveal that the co-existence of H+ and K+ localized around the RuB2 plays a crucial role in further enhancing the stability.
Collapse
Affiliation(s)
- Tingting Liu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Chen Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Zonghua Pu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Jiadong Jiang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Min Han
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Wei Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Guangtao Yu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Yuzhi Sun
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Qingjun Chen
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
4
|
Hu F, Huang P, Feng X, Zhou C, Zeng X, Liu C, Wang G, Yang X, Hu H. A porous network of boron-doped IrO 2 nanoneedles with enhanced mass activity for acidic oxygen evolution reactions. MATERIALS HORIZONS 2025; 12:630-641. [PMID: 39508486 DOI: 10.1039/d4mh01358a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
While proton exchange membrane water electrolyzers (PEMWEs) are essential for realizing practical hydrogen production, the trade-off among activity, stability, and cost of state-of-the-art iridium (Ir)-based oxygen evolution reaction (OER) electrocatalysts for PEMWE implementation is still prohibitively challenging. Ir minimization coupled with mass activity improvement of Ir-based catalysts is a promising strategy to address this challenge. Here, we present a discovery demonstrating that boron doping facilitates the one-dimensional (1D) anisotropic growth of IrO2 crystals, as supported by both experimental and theoretical evidence. The synthesized porous network of ultralong boron-doped iridium oxide (B-IrO2) nanoneedles exhibits improved electronic conductivity and reduced charge transfer resistance, thereby increasing the number of active sites. As a result, B-IrO2 displays an ultrahigh OER mass activity of 3656.3 A gIr-1 with an Ir loading of 0.08 mgIr cm-2, which is 4.02 and 6.18 times higher than those of the un-doped IrO2 nanoneedle network (L-IrO2) and Adams IrO2 nanoparticles (A-IrO2), respectively. Density functional theory (DFT) calculations reveal that the B doping moderately increases the d-band center energy level and significantly lowers the free energy barrier for the conversion of *O to *OOH, thereby improving the intrinsic activity. On the other hand, the stability of B-IrO2 can be synchronously promoted, primarily attributed to the B-induced strengthening of the Ir bonds, which help resist electrochemical dissolution. More importantly, when the B-IrO2 catalysts are applied to the membrane electrode assembly for PEM water electrolysis (PEMWE), they generate a remarkable current density of up to 2.8 A cm-2 and maintain operation for at least 160 h at a current density of 1.0 A cm-2. This work provides new insights into promoting intrinsic activity and stability while minimizing the usage of noble-metal-based OER electrocatalysts for critical energy conversion and storage.
Collapse
Affiliation(s)
- Fei Hu
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Peiyu Huang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Xu Feng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Changjian Zhou
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Xinjuan Zeng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Congcong Liu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Guangjin Wang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Huawen Hu
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| |
Collapse
|
5
|
Chen D, Mu S. Molten Salt-Assisted Synthesis of Catalysts for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408285. [PMID: 39246151 DOI: 10.1002/adma.202408285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Indexed: 09/10/2024]
Abstract
A breakthrough in manufacturing procedures often enables people to obtain the desired functional materials. For the field of energy conversion, designing and constructing catalysts with high cost-effectiveness is urgently needed for commercial requirements. Herein, the molten salt-assisted synthesis (MSAS) strategy is emphasized, which combines the advantages of traditional solid and liquid phase synthesis of catalysts. It not only provides sufficient kinetic accessibility, but effectively controls the size, morphology, and crystal plane features of the product, thus possessing promising application prospects. Specifically, the selection and role of the molten salt system, as well as the mechanism of molten salt assistance are analyzed in depth. Then, the creation of the catalyst by the MSAS and the electrochemical energy conversion related application are introduced in detail. Finally, the key problems and countermeasures faced in breakthroughs are discussed and look forward to the future. Undoubtedly, this systematical review and insights here will promote the comprehensive understanding of the MSAS and further stimulate the generation of new and high efficiency catalysts.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
6
|
Jin Y, Fan X, Cheng W, Zhou Y, Xiao L, Luo W. The Role of Phosphorus on Alkaline Hydrogen Oxidation Electrocatalysis for Ruthenium Phosphides. Angew Chem Int Ed Engl 2024; 63:e202406888. [PMID: 39007540 DOI: 10.1002/anie.202406888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
Transition metal/p-block compounds are regarded as the most essential materials for electrochemical energy converting systems involving various electrocatalysis. Understanding the role of p-block element on the interaction of key intermediates and interfacial water molecule orientation at the polarized catalyst-electrolyte interface during the electrocatalysis is important for rational designing advanced p-block modified metal electrocatalysts. Herein, taking a sequence of ruthenium phosphides (including Ru2P, RuP and RuP2) as model catalysts, we establish a volcanic-relation between P-proportion and alkaline hydrogen oxidation reaction (HOR) activity. The dominant role of P for regulating hydroxyl binding energy is validated by active sites poisoning experiments, pH-dependent infection-point behavior, in situ surface enhanced infrared absorption spectroscopy, and density functional theory calculations, in which P could tailor the d-band structure of Ru, optimize the hydroxyl adsorption sites across the Ru-P moieties, thereby leading to improved proportion of strongly hydrogen-bonded water and facilitated proton-coupled electron transfer process, which are responsible for the enhanced alkaline HOR performance.
Collapse
Affiliation(s)
- Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Xinran Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wenjing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yuheng Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| |
Collapse
|
7
|
Chen D, Yu R, Zhao H, Jiao J, Mu X, Yu J, Mu S. Boron-Induced Interstitial Effects Drive Water Oxidation on Ordered Ir-B Compounds. Angew Chem Int Ed Engl 2024; 63:e202407577. [PMID: 38771672 DOI: 10.1002/anie.202407577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Interstitial filling of light atoms strongly affects the electronic structure and adsorption properties of the parent catalyst due to ligand and ensemble effects. Different from the conventional doping and surface modification, constructing ordered intermetallic structures is more promising to overcome the dissolution and reconstruction of active sites through strong interactions generated by atomic periodic arrangement, achieving joint improvement in catalytic activity and stability. However, for tightly arranged metal lattices, such as iridium (Ir), obtaining ordered filling atoms and further unveiling their interstitial effects are still limited by highly activated processes. Herein, we report a high-temperature molten salt assisted strategy to form the intermetallic Ir-B compounds (IrB1.1) with ordered filling by light boron (B) atoms. The B residing in the interstitial lattice of Ir constitutes favorable adsorption surfaces through a donor-acceptor architecture, which has an optimal free energy uphill in rate-determining step (RDS) of oxygen evolution reaction (OER), resulting in enhanced activity. Meanwhile, the strong coupling of Ir-B structural units suppresses the demetallation and reconstruction behavior of Ir, ensuring catalytic stability. Such B-induced interstitial effects endow IrB1.1 with higher OER performance than commercial IrO2, which is further validated in proton exchange membrane water electrolyzers (PEMWEs).
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- The Sanya Science and Education Innovation Park of, Wuhan University of Technology, Sanya, 572000, P. R. China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jixiang Jiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
8
|
Ding L, Li K, Wang W, Xie Z, Yu S, Yu H, Cullen DA, Keane A, Ayers K, Capuano CB, Liu F, Gao PX, Zhang FY. Amorphous Iridium Oxide-Integrated Anode Electrodes with Ultrahigh Material Utilization for Hydrogen Production at Industrial Current Densities. NANO-MICRO LETTERS 2024; 16:203. [PMID: 38789605 PMCID: PMC11126398 DOI: 10.1007/s40820-024-01411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/05/2024] [Indexed: 05/26/2024]
Abstract
Herein, ionomer-free amorphous iridium oxide (IrOx) thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells (PEMECs) via low-cost, environmentally friendly, and easily scalable electrodeposition at room temperature. Combined with a Nafion 117 membrane, the IrOx-integrated electrode with an ultralow loading of 0.075 mg cm-2 delivers a high cell efficiency of about 90%, achieving more than 96% catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane (2 mg cm-2). Additionally, the IrOx electrode demonstrates superior performance, higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes. Notably, the remarkable performance could be mainly due to the amorphous phase property, sufficient Ir3+ content, and rich surface hydroxide groups in catalysts. Overall, due to the high activity, high cell efficiency, an economical, greatly simplified and easily scalable fabrication process, and ultrahigh material utilization, the IrOx electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.
Collapse
Affiliation(s)
- Lei Ding
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kui Li
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Weitian Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhiqiang Xie
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Shule Yu
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Haoran Yu
- Oak Ridge National Lab, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - David A Cullen
- Oak Ridge National Lab, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | | | - Fangyuan Liu
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Pu-Xian Gao
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Feng-Yuan Zhang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
9
|
Prabhu P, Do VH, Yoshida T, Zhou Y, Ariga-Miwa H, Kaneko T, Uruga T, Iwasawa Y, Lee JM. Subnanometric Osmium Clusters Confined on Palladium Metallenes for Enhanced Hydrogen Evolution and Oxygen Reduction Catalysis. ACS NANO 2024; 18:9942-9957. [PMID: 38552006 DOI: 10.1021/acsnano.3c10219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Highly efficient, cost-effective, and durable electrocatalysts, capable of accelerating sluggish reaction kinetics and attaining high performance, are essential for developing sustainable energy technologies but remain a great challenge. Here, we leverage a facile heterostructure design strategy to construct atomically thin Os@Pd metallenes, with atomic-scale Os nanoclusters of varying geometries confined on the surface layer of the Pd lattice, which exhibit excellent bifunctional properties for catalyzing both hydrogen evolution (HER) and oxygen reduction reactions (ORR). Importantly, Os5%@Pd metallenes manifest a low η10 overpotential of only 11 mV in 1.0 M KOH electrolyte (HER) as well as a highly positive E1/2 potential of 0.92 V in 0.1 M KOH (ORR), along with superior mass activities and electrochemical durability. Theoretical investigations reveal that the strong electron redistribution between Os and Pd elements renders a precise fine-tuning of respective d-band centers, thereby guiding adsorption of hydrogen and oxygen intermediates with an appropriate binding energy for the optimal HER and ORR.
Collapse
Affiliation(s)
- P Prabhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Viet-Hung Do
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
- Energy Research Institute @ NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Takefumi Yoshida
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Hiroko Ariga-Miwa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Takuma Kaneko
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Tomoya Uruga
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|