1
|
He J, Zhao Y, Li Y, Yuan Q, Wu Y, Wang K, Sun K, Wu J, Jiang J, Zhang B, Wang L, Fan M. Joule Heating-Driven sp 2-C Domains Modulation in Biomass Carbon for High-Performance Bifunctional Oxygen Electrocatalysis. NANO-MICRO LETTERS 2025; 17:221. [PMID: 40246802 PMCID: PMC12006640 DOI: 10.1007/s40820-025-01725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/09/2025] [Indexed: 04/19/2025]
Abstract
Natural biomass-derived carbon material is one promising alternative to traditional graphene-based catalyst for oxygen electrocatalysis. However, their electrocatalytic performance were constrained by the limited modulating strategy. Herein, using N-doped commercial coconut shell-derived activated carbon (AC) as catalyst model, the controllably enhanced sp2-C domains, through an flash Joule heating process, effectively improve the edge defect density and overall graphitization degree of AC catalyst, which tunes the electronic structure of N configurations and accelerates electron transfer, leading to excellent oxygen reduction reaction performance (half-wave potential of 0.884 VRHE, equivalent to commercial 20% Pt/C, with a higher kinetic current density of 5.88 mA cm-2) and oxygen evolution reaction activity (overpotential of 295 mV at 10 mA cm2). In a Zn-air battery, the catalyst shows outstanding cycle stability (over 1200 h) and a peak power density of 121 mW cm-2, surpassing commercial Pt/C and RuO2 catalysts. Density functional theory simulation reveals that the enhanced catalytic activity arises from the axial regulation of local sp2-C domains. This work establishes a robust strategy for sp2-C domain modulation, offering broad applicability in natural biomass-based carbon catalysts for electrocatalysis.
Collapse
Affiliation(s)
- Jiawei He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yuying Zhao
- Key Lab of Biomass Energy and Material, Jiangsu Province; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China
| | - Yang Li
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Qixin Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yuhan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Kui Wang
- Key Lab of Biomass Energy and Material, Jiangsu Province; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China
| | - Kang Sun
- Key Lab of Biomass Energy and Material, Jiangsu Province; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material, Jiangsu Province; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China
| | - Baohua Zhang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Key Lab of Biomass Energy and Material, Jiangsu Province; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China.
| |
Collapse
|
2
|
Esmaeili Y, Toiserkani F, Qazanfarzadeh Z, Ghasemlou M, Naebe M, Barrow CJ, Timms W, Jafarzadeh S. Unlocking the potential of green-engineered carbon quantum dots for sustainable packaging biomedical applications and water purification. Adv Colloid Interface Sci 2025; 338:103414. [PMID: 39889506 DOI: 10.1016/j.cis.2025.103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Carbon quantum dots (CQDs) with well-defined architectures offer highly fascinating properties such as excellent water-solubility, exceptional luminescence, large specific surface area, non-toxicity, biocompatibility and tuneable morphological, structural, and chemical features. This review comprehensively overviews recent breakthroughs and critical milestones in the green synthesis of CQDs from renewable sources and provides guidance for their sustainable development towards fulfilling the goals of green chemistry. It also discusses the interaction of CQDs with various biopolymers to improve the material performance and functionality. This paper also highlights the latest technological applications of CQDs in numerous fields, including sustainable packaging, biosensing, bioimaging, cancer therapy, drug delivery as well as water purification. Finally, it summarizes the main challenges and provides an outlook on the future directions of CQDs in packaging and biomedical fields. This review can act as a roadmap to guide researchers for tailoring the properties of CQDs for important composite and biomedical fields.
Collapse
Affiliation(s)
- Yasaman Esmaeili
- School of Engineering, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia
| | - Farzad Toiserkani
- School of Polymer Science and Polymer Engineering, University of Akron, OH 44325, United States
| | - Zeinab Qazanfarzadeh
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Mehran Ghasemlou
- Centre for Sustainable Bioproducts, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia; School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Minoo Naebe
- Institute for Frontier Materials (IFM), Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia
| | - Wendy Timms
- School of Engineering, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia.
| | - Shima Jafarzadeh
- School of Engineering, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia.
| |
Collapse
|
3
|
Li W, Niu Q, Pang X, Li S, Liu Y, Li B, Li S, Wang L, Guo H, Wang L. Optimized Sensitivity in Copper(II) Ion Detection: Sustainable Fabrication of Fluorescence Red-Shifted Graphene Quantum Dots via Electron-Withdrawing Modulation. Molecules 2025; 30:1244. [PMID: 40142020 PMCID: PMC11946535 DOI: 10.3390/molecules30061244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Graphene quantum dots (GQDs) represent a class of promising nanomaterials characterized by adjustable optical properties, making them well suited for applications in biosensing and chemical detection. However, challenges persist in achieving scalable, cost-effective synthesis and enhancing detection sensitivity. In this study, we have developed a simple and environmentally friendly method to prepare blue graphene quantum dots, c-GQDs, using nitronaphthalene as a precursor, and yellow graphene quantum dots, y-GQDs, using nitronaphthalene doped acid. The quantum yield is 29.75%, and the average thickness is 2.08 nm and 3.95 nm, respectively. The synthesized c-GQDs exhibit a prominent cyan fluorescence at a wavelength of 490 nm under excitation at 380 nm, while the y-GQDs show a distinct yellow fluorescence at a wavelength of 540 nm under excitation at 494 nm. The introduction of p-aminobenzoic acid (PABA) introduced a marked red shift in fluorescence, attributed to the electron-withdrawing effect of the carboxyl groups on PABA. This key finding significantly enhanced the sensitivity of GQDs for detecting trace copper(II) ions (Cu2+), a heavy metal contaminant posing serious environmental risks. The fluorescence of the GQDs was selectively quenched in the presence of Cu2+, facilitating accurate and sensitive detection even in complex ion matrices. Mechanistic studies revealed that the quenching effect is driven by strong static quenching interactions, which inhibit non-radiative transitions. This work not only introduces a scalable method for producing high-performance GQDs but also highlights their potential as effective fluorescent probes for environmental monitoring and heavy metal ion detection.
Collapse
Affiliation(s)
- Weitao Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Q.N.); (S.L.); (Y.L.); (B.L.); (S.L.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Qian Niu
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Q.N.); (S.L.); (Y.L.); (B.L.); (S.L.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Xinglong Pang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China; (X.P.); (L.W.)
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Shang Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Q.N.); (S.L.); (Y.L.); (B.L.); (S.L.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Yang Liu
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Q.N.); (S.L.); (Y.L.); (B.L.); (S.L.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Boyu Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Q.N.); (S.L.); (Y.L.); (B.L.); (S.L.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Shuangyan Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Q.N.); (S.L.); (Y.L.); (B.L.); (S.L.)
| | - Lei Wang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Q.N.); (S.L.); (Y.L.); (B.L.); (S.L.)
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China; (X.P.); (L.W.)
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China; (X.P.); (L.W.)
| |
Collapse
|
4
|
Lin X, Liu C, Lei Q, Nan X, Zhu Y, Liao J, Du Z, Ye C, Xiong Y, Yang M, Fang X, Luo Y, Huang Q. A novel ratiometric electrochemical aptasensor based on graphene quantum dots/Cu-MOF nanocomposite for the on-site determination of Staphylococcus aureus. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136845. [PMID: 39689564 DOI: 10.1016/j.jhazmat.2024.136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
The sensitive detection of Staphylococcus aureus (S. aureus) holds great practical importance for ensuring public health and food safety. In this study, a sensitivity and stability ratiometric electrochemical aptasensor using graphene quantum dots/[Cu2.5 (benzotriazole-5-COO)1.5 (benzotriazole-5-COOH)0.5 (μ-Cl)0.5 (μ3-OH)-(H2O)]·3 H2O nanocomposite (GQDs/Cu-MOF) was constructed for S. aureus detection. The GQDs enhanced the sensitivity of the electrochemical aptasensor due to their excellent conductivity and provided stability through their abundant carboxyl groups. The Cu-MOF, possessing electrical activity, not only enhanced the performance of the electrochemical aptasensor but also served as a signal label. The single-stranded DNA1 (S1) was immobilized on the surface of a GQDs/Cu-MOF/screen-printed carbon electrode (S1/GQDs/Cu-MOF/SPCE) as the sensing interface. Subsequently, the S1/GQDs/Cu-MOF/SPCE was hybridized with the probe DNA-ferrocene (S2-Fc), resulting in the generation of electrochemical signals from Cu-MOF (ICu-MOF) and S2-ferrocene (IS2-FC) within the system. However, the electron transfer performance of DNA at the sensing interface was compromised, leading to a reduction in the ICu-MOF. When S. aureus was present in the system, S2-Fc reacted with it and detached from the sensing surface, resulting in a gradual decrease in IS2-FC and an increase in ICu-MOF. Then a ratiometric electrochemical aptasensor was established for S. aureus detection with remarkable sensitivity (0.97 CFU·mL-1), excellent stability, and a broad linear range. Furthermore, the aptasensor was successfully applied to detect S. aureus in tap water, milk, Lonicera japonica, urine, and Zhangjiang River. Additionally, this aptasensor design can be adapted for the detection of other foodborne pathogens, which indicates that the design scheme of the aptasensor has good universality.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenghao Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Qiaowen Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Xinru Nan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Yunxiao Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Jing Liao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Zhizhi Du
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenyi Ye
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Yixian Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Min Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Xiaojun Fang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China; Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
5
|
Li W, Liu Y, Pang X, Huang Y, Dong Z, Niu Q, Xiong Y, Li S, Li S, Wang L, Guo H, Cui S, Hu S, Li Y, Cha T, Wang L. Fluorescence Quenching of Graphene Quantum Dots from Orange Peel for Methyl Orange Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:376. [PMID: 40072179 PMCID: PMC11901586 DOI: 10.3390/nano15050376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Methyl orange (MO) is an organic synthetic dye widely used in laboratory and industrial applications. In laboratory settings, it serves as an acid-base indicator due to its distinct color change in both acidic and alkaline environments. Industrially, it is primarily utilized in the textile industry for its ultraviolet (UV) absorption properties. However, the discharge and leakage of methyl orange into the environment can cause severe ecological damage and pose potential carcinogenic and teratogenic risks to human health. Therefore, detecting and quantifying the concentration of methyl orange in various matrices is crucial. This study reports the synthesis of graphene quantum dots (GQDs) from orange peel as a precursor, using ethanol and dimethylformamide (DMF) as solvents. Cyan (c-GQDs) and yellow (y-GQDs) graphene quantum dots were synthesized through a bottom-up hydrothermal method. The difference in color is attributed to the redshift caused by the varying ratio of pyridine nitrogen to pyrrole nitrogen. These GQDs exhibited notable optical properties, with c-GQDs emitting cyan fluorescence and y-GQDs emitting yellow fluorescence under UV light. To investigate fluorescence quenching effects, nine commonly used dyes were tested, and all were found to quench the fluorescence of y-GQDs, with methyl orange having the most significant effect. The fluorescence quenching of orange peel-derived GQDs in the presence of methyl orange is attributed to poor dispersion in DMF solution. Additionally, the GQDs possess high specific surface area, abundant surface functional groups, and excellent electronic conductivity, which contribute to their effective fluorescence quenching performance. The average thickness of y-GQDs (the vertical dimension from the substrate upwards) was 3.51 nm, confirming their graphene-like structure. They emitted yellow fluorescence within the wavelength range of 450-530 nm. Notably, a significant linear correlation was found between the concentration of methyl orange and the fluorescence intensity of y-GQDs (regression coefficient = 0.9954), indicating the potential of GQDs as effective sensing materials for organic pollutant detection.
Collapse
Affiliation(s)
- Weitao Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Yang Liu
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Xinglong Pang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.P.); (L.W.)
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Yuanhao Huang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Zeyun Dong
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Qian Niu
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Yuping Xiong
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Shang Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Shuai Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Lei Wang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.P.); (L.W.)
| | - Saisai Cui
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Shenpeng Hu
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Yuenan Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Tiantian Cha
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (W.L.); (Y.L.); (Y.H.); (Z.D.); (Q.N.); (Y.X.); (S.L.); (S.L.); (S.C.); (S.H.); (Y.L.); (T.C.)
- Zhengzhou Key Laboratory of Smart Fabrics & Flexible Electronics Technology, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.P.); (L.W.)
| |
Collapse
|
6
|
Tian JR, Song JY, Wang Z. Covalently Coupling Carbon Quantum Dots for Photoluminescence Red Shift Response to pH. Inorg Chem 2025; 64:3518-3527. [PMID: 39920098 DOI: 10.1021/acs.inorgchem.4c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Conventional fluorescent pH sensors, despite offering high sensitivity and rapid response, are limited by their reliance on fluorescence intensity changes, hindering applications requiring precise wavelength control. Here, we present a pH sensing strategy based on cross-linked carbon quantum dots (CCL-CQDs) displaying a remarkable pH-dependent red shift in the fluorescence emission wavelength. Amino- and carboxyl-functionalized CQDs were synthesized via a one-step hydrothermal method and further assembled into CCL-CQDs through the condensation reaction between amino groups and glutaraldehyde. The CCL-CQDs displayed excellent pH sensitivity, with their fluorescence emission wavelength exhibiting a linear red shift upon increasing pH (from 2.29 to 7.16). The results of mechanism exploration revealed that H+ induced the cleavage of C═N bonds in the CCL-CQD structure, leading to the formation of -COOH groups and increased surface-oxidized carbon content. This enhanced oxidation generated more surface defects, triggering a wavelength shift in surface-state-related fluorescence emission. This study demonstrates the successful synthesis of pH-sensitive CCL-CQDs with an excellent fluorescence detection performance.
Collapse
Affiliation(s)
- Jun-Ru Tian
- International Iberian Nanotechnology Laboratory (INL), Avenide Mestre Jose Veiga, Braga 4715-330, Portugal
| | - Jie-Yao Song
- Modern Chemical Engineering Department, Shanxi Engineering Vocational College, Taiyuan, Shanxi 030009, China
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Avenide Mestre Jose Veiga, Braga 4715-330, Portugal
| |
Collapse
|
7
|
An G, Wang K, Yang M, Zhang J, Zhong H, Wang L, Guo H. Rational Design of Metal-Free Nitrogen-Doped Carbon for Controllable Reduction of CO 2 to Syngas. Molecules 2025; 30:953. [PMID: 40005263 PMCID: PMC11858690 DOI: 10.3390/molecules30040953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The electrocatalytic reduction of CO2 (ECO2RR) to syngas with tunable CO/H2 ratios offers a promising route for sustainable energy conversion and chemical production. Here, we report a series of N-doped carbon black (NCBx) catalysts with tailored nitrogen species that enable precise control over the composition of syngas. Among the catalysts, NCB3 exhibits the optimal performance, achieving high CO selectivity (64.14%) and activity (1.9 mA cm-2) in an H-type cell at -0.9 V. Furthermore, NCB3 produces syngas with a wide range of CO/H2 ratios (0.52 to 4.77) across the applied potentials (-0.5 to -1.0 V). Stability tests confirm the robust durability of NCB3, which maintains consistent activity and selectivity over prolonged electrolysis. This work demonstrates the critical role of nitrogen species in tuning ECO2RR pathways and establishes a strategy for designing efficient and stable carbon-based catalysts for CO2 utilization and syngas production.
Collapse
Affiliation(s)
- Guangbin An
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China; (G.A.); (K.W.); (L.W.)
| | - Kang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China; (G.A.); (K.W.); (L.W.)
| | - Min Yang
- School of Information Engineering, Gannan Medical University, Ganzhou 341000, China;
| | - Jiye Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China;
| | - Haijian Zhong
- School of Information Engineering, Gannan Medical University, Ganzhou 341000, China;
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China; (G.A.); (K.W.); (L.W.)
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China; (G.A.); (K.W.); (L.W.)
| |
Collapse
|
8
|
Liu L, Gao Z, Liao Y, Du K, Xia L, Li X, Qing Y, Wu Y. MoS 2/NiO heterocatalyst featuring stacking Structures, oxygen Vacancies, and hydrophilic Interfaces for hydrogen production via urea electrolysis. J Colloid Interface Sci 2025; 678:864-872. [PMID: 39321642 DOI: 10.1016/j.jcis.2024.09.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Two-dimensional nano-MoS2 holds remarkable potential for widespread use in hydrogen evolution reaction (HER) applications owing to its high catalytic activity, abundant availability, and low cost. However, its electrocatalytic performance is significantly lower than that of Pt-based catalysts necessitating strategies to improve its catalytic activity. We developed an effective strategy for enhancing the HER performance of MoS2 based on the synergistic effect of oxygen vacancies (Ov), heterostructures, and interfacial wettability. In particular, highly graphitized wood-based carbon (GWC) was used as a platform to prepare a hydrophilic/aerophobic MoS2@Ov-NiO-GWC heterocatalyst featuring nanosheet stacking and containing abundant Ov. Consequently, a current density of 10 mA cm-2 and an overpotential of only 77 mV were achieved in a 1 M KOH electrolyte using the prepared catalyst; notably, the overpotential increase was only 1.2 % after continuous operation for 90 h. Density functional theory calculations showed that coupling MoS2 with the Ov-NiO heterointerface increased the exposure of the MoS2 active sites on the heterointerface and accelerated the electron transfer between NiO and the MoS2 interface, considerably enhancing the HER performance. Moreover, an overall urea electrolysis cell assembled using this heterocatalyst demonstrated excellent hydrogen production activity and durability, with current densities of 10 and 100 mA cm-2 at cell voltages of only 1.33 and 1.46 V, respectively. Even after continuous operation for 75 h at a current density of 100 mA cm-2, the cell exhibited a voltage retention rate of 92.8 %. These results demonstrate the potential of this nano-heterocatalyst to efficiently produce hydrogen via overall urea electrolysis.
Collapse
Affiliation(s)
- Lei Liu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Zhifei Gao
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yu Liao
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Kun Du
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Liaoyuan Xia
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Xingong Li
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yan Qing
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yiqiang Wu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
9
|
Fernandes S, Algarra M, Gil A, Esteves da Silva J, Pinto da Silva L. Development of a Facile and Green Synthesis Strategy for Brightly Fluorescent Carbon Dots from Various Waste Materials. CHEMSUSCHEM 2025; 18:e202401702. [PMID: 39221509 DOI: 10.1002/cssc.202401702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Carbon dots (CDs) are fluorescent carbon-based nanomaterials with remarkable properties, making them more attractive than traditional fluorophores. Consequently, researchers focused on their development and application in fields such as sensing and bioimaging. One potential advantage of employing CDs is using organic waste as carbon precursors in their synthesis, providing a pathway for waste upcycling for a circular economy. However, waste-based CDs often have low fluorescence quantum yields (QYFL), limiting their practical applications. So, there is a need for a well-defined strategy to consistently produce waste-based CDs with appreciable QYFL, irrespective of the starting waste material. Herein, we developed a fabrication strategy based on the hydrothermal treatment of waste materials, using citric acid as a co-carbon precursor and ethylenediamine as N-dopant. This strategy was tested with various materials, including corn stover, spent coffee grounds, cork powder, and sawdust. The results showed consistently appreciable QYFL, reaching up to ~40 %. A Life Cycle Assessment (LCA) study demonstrated that producing these waste-based CDs has lower environmental impacts compared to CDs made solely from commercial reagents. Thus, we have established a framework for the environmentally friendly production of CDs by upcycling different waste materials without significant sacrifices in performance (QYFL).
Collapse
Affiliation(s)
- Sónia Fernandes
- Chemistry Research Unit (CIQUP), Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, Institute of Molecular Sciences (IMS), University of Porto, R. Campo Alegre s/n, Porto, 4169-007, Portugal
| | - Manuel Algarra
- Department of Science, Public University of Navarre INAMAT - Institute for Advanced Materials and Mathematics, Campus of Arrosadia, 31006, Pamplona, Spain
| | - Antonio Gil
- Department of Science, Public University of Navarre INAMAT - Institute for Advanced Materials and Mathematics, Campus of Arrosadia, 31006, Pamplona, Spain
| | - Joaquim Esteves da Silva
- Chemistry Research Unit (CIQUP), Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, Institute of Molecular Sciences (IMS), University of Porto, R. Campo Alegre s/n, Porto, 4169-007, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, Institute of Molecular Sciences (IMS), University of Porto, R. Campo Alegre s/n, Porto, 4169-007, Portugal
| |
Collapse
|
10
|
Li J, Sun C, Li Q, Xu X, Li B, Tian Y, Zheng D, Yao R, Yuan K, Guo Z. Surface State Modulation via Electrochemical Heterogeneous Redox Reactions for Full-Color Emission Carbon Dots. CHEMSUSCHEM 2025; 18:e202401313. [PMID: 39087447 DOI: 10.1002/cssc.202401313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Carbon dots (CDs) still suffer from unclear surface state fluorescence mechanism for fine modulation. Here, redox reactions for cathode and anode within electrochemical method are firstly employed to construct differentiated strategy for surface-state modulation, so as to obtain CDs with controllable emission in separated electrodes simultaneously. The fluorescence peaks of CDs from blue to red centered at 425 nm (mCDs-), 530 nm (mCDs+), 580 nm (oCDs-) and 665 nm (oCDs+) are mainly originated from the different bombardment effects of the ions and reaction tendencies of modifier during the electrolysis process. The phenylenediamine (as modifier) tends to introduce the amino groups on the surface of CDs- while introduced nitrogen atoms into the carbon nucleus skeleton around the anode, thus leading to much larger size and the formation of the graphite N for CDs+. It is the different surface states formed by phenylenediamine and the absorption redshift triggered by graphite N that ensures the tunable emission. The improved electrochemical method is of great significance for finely spectra modulation and efficient synthesis.
Collapse
Affiliation(s)
- Jinli Li
- Jiangsu Province Engineering Research Center of Electrode Materials for Lithium Batteries, Lianyungang Normal College, Lianyungang, 222006, P. R. China
| | - Chengxiang Sun
- Jiangsu Province Engineering Research Center of Electrode Materials for Lithium Batteries, Lianyungang Normal College, Lianyungang, 222006, P. R. China
| | - Qiang Li
- Jiangsu Province Engineering Research Center of Electrode Materials for Lithium Batteries, Lianyungang Normal College, Lianyungang, 222006, P. R. China
| | - Xiran Xu
- School of Science, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Baolin Li
- School of Science, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Yijia Tian
- School of Science, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Dianyuan Zheng
- Jiangsu Province Engineering Research Center of Electrode Materials for Lithium Batteries, Lianyungang Normal College, Lianyungang, 222006, P. R. China
| | - Rongbin Yao
- Jiangsu Province Engineering Research Center of Electrode Materials for Lithium Batteries, Lianyungang Normal College, Lianyungang, 222006, P. R. China
| | - Kang Yuan
- School of Science, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Ziyang Guo
- College of Energy Material and Chemistry College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
11
|
Zhang S, Li J, Zhou J, Xu P, Li Y, Zhang Y, Wu S. Modulating carbon dots from aggregation-caused quenching to aggregation-induced emission and applying them in sensing, imaging and anti-counterfeiting. Talanta 2025; 282:126983. [PMID: 39395306 DOI: 10.1016/j.talanta.2024.126983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Aggregation Induced Emission Carbon Dots (AIE-CDs) address the problem of conventional CDs being quenched in the solid-state. However, there are still challenges in comprehending the luminescence mechanism. This work proposed a strategy for preparing green, yellow, and near-infrared CDs by modifying the functional groups on the precursor from hydroxyl and amino to p-methylenediamine, in which electronic supply capacity determined the redshift. Additionally, The CDs' properties transformed from Aggregation-Caused Quenching (ACQ) to AIE was realized by substituting non-rotatable hydroxyl or amino groups with the rotatable p-methylenediamine on the precursor. The resulting CDs were then applied in multifield. C-CDs was used for ratiometric detection of Al3+ and F- in pure water through three methods including fluorometer, test strip and smartphone. R-CDs was used for imaging cell nucleus and zebrafish. NIR-CDs (λem = 676 nm) exhibits dual emission, AIE and phosphorescent characteristics was used for triple anti-counterfeiting and binary information encryption. In summary, our finding presented a strategy for preparing multicolor CDs, proposed a mechanism for the transition of CDs from ACQ to AIE, and explore their multiple applications in anti-counterfeiting, information encapsulation, sensing and imaging.
Collapse
Affiliation(s)
- Shengtao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Jinhong Li
- Shaanxi Hantang Pharmaceutical Co., Ltd, Xi'an, 710021, PR China
| | - Jieyu Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Pengyue Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China.
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China.
| |
Collapse
|
12
|
Liu W, Tang B, Huang K, Zhang Z, Wang Z, An G, Zhang M, Wang K, Fu S, Guo H, Han T, Lian C, Zhang B, Wu T, Lei Z, Wang L. Radiation-Synthesized Metal-Organic Frameworks with Ligand-Induced Lewis Pairs for Selective CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2408688. [PMID: 39410729 DOI: 10.1002/smll.202408688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 12/28/2024]
Abstract
The electrochemical activation of inert CO2 molecules through C─C coupling reactions under ambient conditions remains a significant challenge but holds great promise for sustainable development and the reduction of CO2 emission. Lewis pairs can capture and react with CO2, offering a novel strategy for the electrosynthesis of high-value-added C2 products. Herein, an electron-beam irradiation strategy is presented for rapidly synthesizing a metal-organic framework (MOF) with well-defined Lewis pairs (i.e., Cu- Npyridinic). The synthesized MOFs exhibit a total C2 product faradic efficiency of 70.0% at -0.88 V versus RHE. In situ attenuated total reflection Fourier transform infrared and Raman spectra reveal that the electron-deficient Lewis acidic Cu sites and electron-rich Lewis basic pyridinic N sites in the ligand facilitate the targeted chemisorption, activation, and conversion of CO2 molecules. DFT calculations further elucidate the electronic interactions of key intermediates in the CO2 reduction reaction. The work not only advances Lewis pair-site MOFs as a new platform for CO2 electrochemical conversion, but also provides pioneering insights into the underlying mechanisms of electron-beam irradiated synthesis of advanced nanomaterials.
Collapse
Affiliation(s)
- Wenhui Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Bijun Tang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kai Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China
| | - Zhihui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, P. R. China
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Guangbin An
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Mingwan Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Kang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Shuai Fu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Tao Han
- Shanghai Institute of Applied Radiation, Shanghai University, Shanghai, 200444, P. R. China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Baohua Zhang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Tong Wu
- College of Environmental & Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- College of Environmental & Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| |
Collapse
|
13
|
Lin X, Tang S, Yang M, Zhang Z, Huang Q. Controlling Chlorine-Doped Nickel Diselenide Ultrathin Nanosheets through Steric Effects: An Electrocatalyst for Oxygen Evolution Reaction and Urea Oxidation Reaction. Inorg Chem 2024; 63:19458-19467. [PMID: 39360711 DOI: 10.1021/acs.inorgchem.4c03510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Exploration of electrocatalysts suitable for the oxygen evolution reaction (OER) and urea oxidation reaction (UOR) is essential for electrocatalytic hydrogen production. In this work, a ligand substitution strategy is used to synthesize ultrathin-nanosheet electrocatalysts of Cl-doped NiSe2 (NiSe2-a and NiSe2-b), which exhibit high-electrocatalytic activity during OER and UOR. NiSe2-a and NiSe2-b only need an overpotential of 227 and 268 mV, respectively, to achieve a current density of 10 mA cm-2 during OER. Furthermore, NiSe2-a with its smaller steric effects exhibits excellent catalytic performance for UOR, requiring an ultralow potential of 1.360 V to deliver a current density of 100 mA cm-2. This excellent performance can be attributed to the nonmetallic elements (Se and Cl) modulating and optimizing the charge state of the metal sites, thereby increasing the electrocatalytic activity. Overall, this work provides an unparalleled example of tuning space structures to design efficient electrocatalysts and has promising industrial applications.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Shuli Tang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Min Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, P. R. China
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|
14
|
Molavi H, Mirzaei K, Barjasteh M, Rahnamaee SY, Saeedi S, Hassanpouryouzband A, Rezakazemi M. 3D-Printed MOF Monoliths: Fabrication Strategies and Environmental Applications. NANO-MICRO LETTERS 2024; 16:272. [PMID: 39145820 PMCID: PMC11327240 DOI: 10.1007/s40820-024-01487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
Metal-organic frameworks (MOFs) have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials, thanks to their large specific surface area, high porosity, tailorable structures and compositions, diverse functionalities, and well-controlled pore/size distribution. However, most developed MOFs are in powder forms, which still have some technical challenges, including abrasion, dustiness, low packing densities, clogging, mass/heat transfer limitation, environmental pollution, and mechanical instability during the packing process, that restrict their applicability in industrial applications. Therefore, in recent years, attention has focused on techniques to convert MOF powders into macroscopic materials like beads, membranes, monoliths, gel/sponges, and nanofibers to overcome these challenges.Three-dimensional (3D) printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models. Therefore, this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications, emphasizing water treatment and gas adsorption/separation applications. Herein, the various strategies for the fabrication of 3D-printed MOF monoliths, such as direct ink writing, seed-assisted in-situ growth, coordination replication from solid precursors, matrix incorporation, selective laser sintering, and digital light processing, are described with the relevant examples. Finally, future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure, composition, and textural properties of 3D-printed MOF monoliths.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137-66731, Iran.
| | - Kamyar Mirzaei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Mahdi Barjasteh
- Center for Nano-Science and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, 15614, Iran
| | - Seyed Yahya Rahnamaee
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O.Box 15875-4413, Tehran, Iran
| | - Somayeh Saeedi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137-66731, Iran
| | | | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, P.O. Box 3619995161, Iran.
| |
Collapse
|
15
|
Liao L, Qi J, Gao J, Qu X, Hu Z, Fu B, Wu F. Nitrogen-Doped Carbon Quantum Dots with Photoactivation Properties for Ultraviolet Ray Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42632-42640. [PMID: 39082213 DOI: 10.1021/acsami.4c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Photoactivation is a phenomenon that could enhance the photoluminescence (PL) and photostability upon UV/vis light exposure, which is usually observed in CdSe/ZnS quantum dots (QDs). However, the photoactivation phenomenon has been scarcely reported in fluorescent carbon quantum dots (CQDs). Herein, the nitrogen-doped carbon quantum dots (N-CQDs) were prepared through a facile solvothermal approach with naphthalenetracarboxylic dianhydride and serine as precursors. Upon simple UV light irradiation for 10 min, the fluorescence quantum yield (QY) of N-CQDs could increase up to 10-fold. Based on this phenomenon, the N-CQDs were explored as an ultraviolet (UV) light sensor to assess the intensity of ultraviolet radiation in sunlight and indirectly evaluate the UV-blocking efficiency of various sunscreen products. Thus, this contribution not only provided an insight into developing a low-cost UV detector but also opened a door for the development of carbon quantum dots with converse-photobleaching properties.
Collapse
Affiliation(s)
- Linhong Liao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Junchao Qi
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Jie Gao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Xiaowei Qu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Zhiyuan Hu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
- National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Boyi Fu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| |
Collapse
|
16
|
Li J, Zhao X, Gong X. The Emerging Star of Carbon Luminescent Materials: Exploring the Mysteries of the Nanolight of Carbon Dots for Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400107. [PMID: 38461525 DOI: 10.1002/smll.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
17
|
Guo H, Raj J, Wang Z, Zhang T, Wang K, Lin L, Hou W, Zhang J, Wu M, Wu J, Wang L. Synergistic Effects of Amine Functional Groups and Enriched-Atomic-Iron Sites in Carbon Dots for Industrial-Current-Density CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311132. [PMID: 38511553 DOI: 10.1002/smll.202311132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Metal phthalocyanine molecules with Me-N4 centers have shown promise in electrocatalytic CO2 reduction (eCO2R) for CO generation. However, iron phthalocyanine (FePc) is an exception, exhibiting negligible eCO2R activity due to a higher CO2 to *COOH conversion barrier and stronger *CO binding energy. Here, amine functional groups onto atomic-Fe-rich carbon dots (Af-Fe-CDs) are introduced via a one-step solvothermal molecule fusion approach. Af-Fe-CDs feature well-defined Fe-N4 active sites and an impressive Fe loading (up to 8.5 wt%). The synergistic effect between Fe-N4 active centers and electron-donating amine functional groups in Af-Fe-CDs yielded outstanding CO2-to-CO conversion performance. At industrial-relevant current densities exceeding 400 mA cm-2 in a flow cell, Af-Fe-CDs achieved >92% selectivity, surpassing state-of-the-art CO2-to-CO electrocatalysts. The in situ electrochemical FTIR characterization combined with theoretical calculations elucidated that Fe-N4 integration with amine functional groups in Af-Fe-CDs significantly reduced energy barriers for *COOH intermediate formation and *CO desorption, enhancing eCO2R efficiency. The proposed synergistic effect offers a promising avenue for high-efficiency catalysts with elevated atomic-metal loadings.
Collapse
Affiliation(s)
- Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jithu Raj
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianyu Zhang
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Kang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Weidong Hou
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiye Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
18
|
Xu Y, Hou W, Huang K, Guo H, Wang Z, Lian C, Zhang J, Wu D, Lei Z, Liu Z, Wang L. Engineering Built-In Electric Field Microenvironment of CQDs/g-C 3N 4 Heterojunction for Efficient Photocatalytic CO 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403607. [PMID: 38728594 PMCID: PMC11267297 DOI: 10.1002/advs.202403607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Graphitic carbon nitride (CN), as a nonmetallic photocatalyst, has gained considerable attention for its cost-effectiveness and environmentally friendly nature in catalyzing solar-driven CO2 conversion into valuable products. However, the photocatalytic efficiency of CO2 reduction with CN remains low, accompanied by challenges in achieving desirable product selectivity. To address these limitations, a two-step hydrothermal-calcination tandem synthesis strategy is presented, introducing carbon quantum dots (CQDs) into CN and forming ultra-thin CQD/CN nanosheets. The integration of CQDs induces a distinct work function with CN, creating a robust interface electric field after the combination. This electric field facilitates the accumulation of photoelectrons in the CQDs region, providing an abundant source of reduced electrons for the photocatalytic process. Remarkably, the CQD/CN nanosheets exhibit an average CO yield of 120 µmol g-1, showcasing an outstanding CO selectivity of 92.8%. The discovery in the work not only presents an innovative pathway for the development of high-performance photocatalysts grounded in non-metallic CN materials employing CQDs but also opens new avenues for versatile application prospects in environmental protection and sustainable cleaning energy.
Collapse
Affiliation(s)
- Yun Xu
- Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Weidong Hou
- Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Kai Huang
- State Key Laboratory of Chemical EngineeringShanghai Engineering Research Center of Hierarchical Nanomaterialsand School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Zeming Wang
- Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Cheng Lian
- State Key Laboratory of Chemical EngineeringShanghai Engineering Research Center of Hierarchical Nanomaterialsand School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Jiye Zhang
- School of Materials Science and EngineeringShanghai University99 Shangda RoadShanghai200444P. R. China
| | - Deli Wu
- College of Environmental & EngineeringTongji UniversityShanghai200092P. R. China
| | - Zhendong Lei
- College of Environmental & EngineeringTongji UniversityShanghai200092P. R. China
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Zheng Liu
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Liang Wang
- Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| |
Collapse
|
19
|
Guo H, Lu Y, Lei Z, Bao H, Zhang M, Wang Z, Guan C, Tang B, Liu Z, Wang L. Machine learning-guided realization of full-color high-quantum-yield carbon quantum dots. Nat Commun 2024; 15:4843. [PMID: 38844440 PMCID: PMC11156924 DOI: 10.1038/s41467-024-49172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Carbon quantum dots (CQDs) have versatile applications in luminescence, whereas identifying optimal synthesis conditions has been challenging due to numerous synthesis parameters and multiple desired outcomes, creating an enormous search space. In this study, we present a novel multi-objective optimization strategy utilizing a machine learning (ML) algorithm to intelligently guide the hydrothermal synthesis of CQDs. Our closed-loop approach learns from limited and sparse data, greatly reducing the research cycle and surpassing traditional trial-and-error methods. Moreover, it also reveals the intricate links between synthesis parameters and target properties and unifies the objective function to optimize multiple desired properties like full-color photoluminescence (PL) wavelength and high PL quantum yields (PLQY). With only 63 experiments, we achieve the synthesis of full-color fluorescent CQDs with high PLQY exceeding 60% across all colors. Our study represents a significant advancement in ML-guided CQDs synthesis, setting the stage for developing new materials with multiple desired properties.
Collapse
Affiliation(s)
- Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, China
| | - Yuhao Lu
- College of Computing and Data Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hong Bao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, China
| | - Mingwan Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, China
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, China
| | - Cuntai Guan
- College of Computing and Data Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Bijun Tang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore.
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, China.
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
20
|
An G, Wang K, Wang Z, Zhang M, Guo H, Wang L. Amine-Functionalized Metal-Free Nanocarbon to Boost Selective CO 2 Electroreduction to CO in a Flow Cell. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29060-29068. [PMID: 38767933 DOI: 10.1021/acsami.4c04502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Highly efficient electrochemical CO2-to-CO conversion is a promising approach for achieving carbon neutrality. While nonmetallic carbon electrocatalysts have shown potential for CO2-to-CO utilization in H-type cells, achieving efficient conversion in flow cells at an industrial scale remains challenging. In this study, we present a cost-effective synthesis strategy for preparing ultrathin 2D carbon nanosheet catalysts through simple amine functionalization. The optimized catalyst, NCNs-2.5, demonstrates exceptional CO selectivity with a maximum Faradaic efficiency of 98% and achieves a high current density of 55 mA cm-2 in a flow cell. Furthermore, the catalyst exhibits excellent long-term stability, operating continuously for 50 h while maintaining a CO selectivity above 90%. The superior catalytic activity of NCNs-2.5 is attributed to the presence of amine-N active sites within the carbon lattice structure. This work establishes a foundation for the rational design of cost-effective nonmetallic carbon catalysts as sustainable alternatives to metals in energy conversion systems.
Collapse
Affiliation(s)
- Guangbin An
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Kang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Mingwan Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, P. R. China
| |
Collapse
|
21
|
Sheshmani S, Mardali M, Shokrollahzadeh S, Bide Y. Starch-derived carbon quantum dots: Unveiling structural insights and photocatalytic potential as a bio-sourced metal-free semiconductor. Int J Biol Macromol 2024; 271:132535. [PMID: 38777015 DOI: 10.1016/j.ijbiomac.2024.132535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The optical appeal and sustainability of carbon quantum dots (CQDs) have led to these nanoparticles swiftly gaining attention and emerging as a new, multifunctional class of nanomaterials. This work centers on the hydrothermal preparation of CQDs utilizing starch, an abundant and renewable biopolymer, as the precursor. Extensive characterization via spectroscopy and microscopy techniques revealed that the starch-derived CQDs exhibit a spherical nanoscale morphology averaging a ∼ 4 nm diameter, demonstrating a red-orange photoluminescence emission. Diffuse reflectance spectroscopic analysis verified their semiconductor behavior, with an estimated direct band gap of 4.1 eV comparable to conventional semiconductors. The prepared CQDs demonstrated considerable promise as metal-free, semiconductor photocatalysts for degrading aqueous dye pollutants under UV irradiation. High photodegradation efficiencies of 45.11 %, 62.94 %, and 91.21 % were achieved for Acid Blue 21, Reactive Blue 94, and Reactive TB 133 dyes, respectively. Systematic investigations of critical process parameters like pH, CQDs dosage, dye concentration, and contact time provided vital insights into the photocatalytic mechanism. The bio-sourced CQD nanomaterials offer a sustainable pathway for effective environmental remediation.
Collapse
Affiliation(s)
- Shabnam Sheshmani
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
| | - Mahan Mardali
- Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Shokrollahzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Yasamin Bide
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| |
Collapse
|
22
|
Gao X, Yu H, Han Z, Chen B, Sun J, Li X. Bright solid-state luminescence and high-temperature resistance of Ga-doped carbon dots with ultra-wideband white emission for light-emitting diodes. Dalton Trans 2023; 52:16388-16397. [PMID: 37870179 DOI: 10.1039/d3dt03082b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Fluorescent CDs tend to undergo solid-state aggregation quenching in powder form. This is caused by the stacking of π-π conjugate structures and excessive resonant energy transfer. Moreover, various forms of N play an important role in white CDs suitable for LED applications. White, single-component, non-N-doped CDs have never been reported for LED application. In this study, to overcome this limitation, we developed Ga-doped CD powders containing no N element that exhibit ultra-wideband white emission in the range of 420-800 nm for LED applications and were able to resist solid-state aggregation quenching. Furthermore, the Ga-doped CD powders demonstrated excellent luminescence stability under high temperatures. Another strength of the Ga-doped CD powders is their large Stokes shift, where the peak center of white emission shifts from 550 nm to 650 nm under 365 nm excitation as the Ga doping concentration is adjusted from 0.05 to 0.6 (Ga : H2O, mass ratio). The full width at half-maximum can reach 262 nm. Additionally, the Ga-doped CD powders exhibit good luminescence stability under long-time exposure to an air atmosphere. Their luminescent intensity retained 70%-74% of the initial values even after being left in natural placement for 100 days. Moreover, the Ga-doped CDs demonstrate afterglow features.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Physics, Dalian Maritime University, No. 1, Linghai Road, Dalian 116026, Liaoning, China.
| | - Hongquan Yu
- Department of Physics, Dalian Maritime University, No. 1, Linghai Road, Dalian 116026, Liaoning, China.
| | - Zhanwen Han
- Department of Physics, Dalian Maritime University, No. 1, Linghai Road, Dalian 116026, Liaoning, China.
| | - Baojiu Chen
- Department of Physics, Dalian Maritime University, No. 1, Linghai Road, Dalian 116026, Liaoning, China.
| | - Jiashi Sun
- Department of Physics, Dalian Maritime University, No. 1, Linghai Road, Dalian 116026, Liaoning, China.
| | - Xiangping Li
- Department of Physics, Dalian Maritime University, No. 1, Linghai Road, Dalian 116026, Liaoning, China.
| |
Collapse
|