1
|
Xue X, Xue N, Zhu H, Miao X, Li L, Cheng X, Yang L, Yin J. Boosting High-Valent Fe═O Formation via Fe Electron Localization in Asymmetric FeMo Dual-Atom Catalyst for Fenton-Like Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503904. [PMID: 40420791 DOI: 10.1002/smll.202503904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/26/2025] [Indexed: 05/28/2025]
Abstract
High-valent Fe═O species, recognized as pivotal reactive oxygen intermediates in the catalyst-activated peroxymonosulfate (PMS) oxidation system, play a dominant role in contaminant degradation. However, the inherent correlation between the Fe 3d electronic structure of heterogeneous catalysts and the generation efficiency of high-valent Fe═O remains unclear, limiting the rational design of high-performance catalysts. To the end, Fe-Mo dual-atom catalysts (FeMoNC) with N3Fe-O-MoN2 configurations are constructed, which exhibit exceptional sulfadiazine (SDZ) degradation activity (k = 0.92 min-1). This performance surpasses that of monometallic FeNC (1.67 times), attributed to the optimized generation of high-valent Fe═O species. Combined XPS/XAS analysis and DFT calculations reveal that electron transfer from Mo to Fe upshifts the Fe d-band center by 0.144 eV, which facilitates Oγ-Oβ bond cleavage in PMS (energy barrier reduced by 31%) and stabilizes high-valent Fe═O species. The electronic modifications further confirm the promoted high-valent Fe═O formation. This work elucidates the electronic origin of high-valent Fe═O generation in heteronuclear dual-atom catalysts, providing a universal strategy for manipulating 3d-electron configurations to enhance high-valent metal-oxo chemistry in advanced oxidation processes.
Collapse
Affiliation(s)
- Xueyan Xue
- Xinjiang Key Laboratory of Separation Material and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
- Center of Material Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Xue
- Xinjiang Key Laboratory of Separation Material and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Hui Zhu
- Xinjiang Key Laboratory of Separation Material and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xiaojun Miao
- Xinjiang Key Laboratory of Separation Material and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Linlin Li
- Xinjiang Key Laboratory of Separation Material and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xin Cheng
- Xinjiang Key Laboratory of Separation Material and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Liping Yang
- Xinjiang Key Laboratory of Separation Material and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Jiao Yin
- Xinjiang Key Laboratory of Separation Material and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
2
|
Xiang J, Wang P, Li P, Zhou M, Yu G, Jin Z. Inter-Site Distance Effect in Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202500644. [PMID: 40033984 DOI: 10.1002/anie.202500644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
The inter-site distance effect (ISDE) has gained significant attention in heterogeneous catalysis, challenging classical models that treat adjacent nonbonded sites as isolated. Recent studies demonstrate that these sites can exhibit long-range cooperative interactions, enhancing reaction efficiencies. Fully leveraging the ISDE to overcome limitations in site reactivity requires a multidisciplinary approach and advanced techniques. This review provides a comprehensive overview of ISDE in electrocatalysis, starting with strategies for synthesizing materials with tunable inter-site distances. It examines ISDE across various catalyst models, including monometallic and heteronuclear atomic sites, active sites within clusters, and the lattice of nanocatalysts, focusing on their electronic structures, spatial geometries, and synergistic interactions. Advanced characterization and computational methods are highlighted as essential for identifying inter-site structures and distances, providing a systematic framework for understanding ISDE's role in electrocatalysis. The review also proposes best practices for studying ISDE, addressing current challenges and offering future perspectives. These insights aim to inform the design of highly efficient catalysts, enhance the understanding of catalytic mechanisms, and contribute to the development of more efficient energy conversion technologies, providing a foundation for further research into optimizing electrocatalysts.
Collapse
Affiliation(s)
- Jiongcan Xiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Pengfei Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
3
|
Xu Y, Tang H, Wang Y, Zhu X, Yang L. Graphene-Based Organic Semiconductor Film for Highly Selective Photocatalytic CO 2 Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:677. [PMID: 40358294 PMCID: PMC12073171 DOI: 10.3390/nano15090677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Mimicking artificial photosynthesis utilizing solar energy for the production of high-value chemicals is a sustainable strategy to tackle the fossil fuel-based energy crisis and mitigate the greenhouse effect. In this study, we developed a two-dimensional (2D) graphene oxide (GO)-diketopyrrolopyrrole (DPP) film photocatalyst. GO nanosheets facilitate the uniform dispersion of DPP nanoparticles (~5 nm) while simultaneously constructing an efficient charge transport network to mitigate carrier recombination. Under visible-light irradiation in an aqueous solution without sacrificial agents, the optimized GO-DPP50 film catalyst exhibited exceptional performance, achieving a CO production rate of 32.62 μmol·g⁻1·h⁻1 with nearly 100% selectivity. This represents 2.77-fold and 3.28-fold enhancements over pristine GO (8.65 μmol·g-1·h-1) and bare DPP (7.62 μmol·g-1·h-1), respectively. Mechanistic analysis reveals a synergistic mechanism. The 2D GO framework not only serves as a high-surface-area substrate for DPP anchoring, but also substantially suppresses charge recombination through rapid electron transport channels. Concurrently, the uniformly distributed DPP nanoparticles improve visible-light absorption efficiency and facilitate effective photogenerated carrier excitation. This work establishes a novel paradigm for the synergistic integration of 2D nanomaterials with organic semiconductors, providing critical design principles for developing high-performance film-based photocatalysts and selectivity control in CO2 reduction applications.
Collapse
Affiliation(s)
| | | | | | - Xiaofeng Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China; (Y.X.); (H.T.); (Y.W.)
| | - Long Yang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China; (Y.X.); (H.T.); (Y.W.)
| |
Collapse
|
4
|
Meng D, Zheng J, Guo J, Zhang A, Wang Z. Synergistic Catalysis in Fe─In Diatomic Sites Anchored on Nitrogen-Doped Carbon for Enhanced CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408146. [PMID: 39891305 DOI: 10.1002/smll.202408146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Diatomic catalysts are promising for the electrochemical CO2 reduction reaction (CO2RR) due to their maximum atom utilization and the presence of multiple active sites. However, the atomic-scale design of diatomic catalysts and the elucidation of synergistic catalytic mechanisms between multiple active centers remain challenging. In this study, heteronuclear Fe─In diatomic sites anchored on nitrogen-doped carbon (FeIn DA/NC) are constructed. The FeIn DA/NC electrocatalyst achieves a CO Faradaic efficiency exceeding 90% across a wide range of applied potentials from -0.4 to -0.7 V, with a peak efficiency of 99.1% at -0.5 V versus the reversible hydrogen electrode. In situ, attenuated total reflection surface-enhanced infrared absorption spectroscopy and density functional theory calculations reveal that the synergistic interaction between Fe and In diatomic sites induce an asymmetric charge distribution, which promote the adsorption of CO2 at the Fe site and lowered the energy barrier for the formation of *COOH. Moreover, the unique Fe─In diatomic site structure increase the adsorption energy of *OH through a bridging interaction, which decrease the energy barrier for water dissociation and further promoted CO2RR activity.
Collapse
Affiliation(s)
- Dapeng Meng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jingxuan Zheng
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Junxin Guo
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Anyu Zhang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Zhang M, Cao X, Dong J, Zhu X, Zhu Y, Wang L. Unveiling the Mystery of Precision Catalysis: Dual-Atom Catalysts Stealing the Spotlight. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409560. [PMID: 39726322 DOI: 10.1002/smll.202409560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/14/2024] [Indexed: 12/28/2024]
Abstract
In the era of atomic manufacturing, the precise manipulation of atomic structures to engineer highly active catalytic sites has become a central focus in catalysis research. Dual-atom catalysts (DACs) have garnered significant attention for their superior activity, selectivity, and stability compared to single-atom catalysts (SACs). However, a comprehensive review that integrates geometric and electronic factors influencing DAC performance remains limited. This review systematically explores the structure of DAC, addressing key macroscopic parameters, such as spatial arrangements and interatomic distances, as well as microscopic factors, including local coordination environments and electronic structures. Additionally, metal-support interactions (MSI) and long-range interactions (LSI) are comprehensively analyzed, which play a pivotal yet underexplored role in governing DAC behavior. the integration of tailored functional groups is further discussed to fine-tune DAC properties, thereby optimizing intermediate adsorption, enhancing reaction kinetics, and expanding their multifunctionality in various electrochemical environments. This review offers novel insights into their rational design by elucidating the intricate mechanisms underlying DACs' exceptional performance. Ultimately, DACs are positioned as critical players in precision catalysis, highlighting their potential to drive significant breakthroughs across a broad spectrum of catalytic applications.
Collapse
Affiliation(s)
- Mengyang Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Xiwen Cao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Jie Dong
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Xianjun Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Yanwei Zhu
- College of Materials Science and Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Feng Z, Fu Y, Yang Z, He Y, Feng C, Gao B, Zhang P, An X, Abudula A, Guan G. Modulation of charge structure in Bi/Bi 2O 3-In 2O 3@C for efficient CO 2 electroreduction to formate. J Colloid Interface Sci 2025; 678:913-923. [PMID: 39326163 DOI: 10.1016/j.jcis.2024.09.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Electrocatalytic CO2 reduction reaction (ECO2RR) to value-added chemicals is of significant importance to control CO2 emission and reach carbon neutrality. Herein, Bi/Bi2O3-In2O3@C electrocatalyst with nanosheet arrays is successfully fabricated by a facile solvothermal with subsequent calcination process. It is found that the electron structure of Bi/Bi2O3-In2O3@C can be adjusted by the synergistic effects of Bi-In hetero-diatoms, which can significantly enhance its inherent catalytic activity. As expected, it requires a maximum HCOOH faradaic efficiency (FEHCOOH) of 97.6 % at -1.1 V vs. Reversible Hydrogen Electrode (RHE), which further delivers over 90 % at a wide potential range of -0.8 to -1.4 V vs. RHE, and exhibits high stability of 90.1 % over 60-h long-term test. In-situ Raman analysis is performed to explore the mechanism of its excellent stability. Meanwhile, in-situ attenuated total reflection-Fourier-transform infrared (ATR-FTIR) analysis combined with theoretical calculations reveal that the hetero-bridging absorption of *OCHO and d-d orbital coupling effect can regulate d-band center of Bi/Bi2O3-In2O3@C and improve its density of states around Ef, moderating free energy of intermediates, thereby the improved formate production performance can be seen.
Collapse
Affiliation(s)
- Zhongbao Feng
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China; Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education), Institute for Frontier Technologies of Low-Carbon Steelmaking, Shenyang 110819, Liaoning, China; Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan.
| | - Yumo Fu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Ziyuan Yang
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
| | - Yang He
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
| | - Changrui Feng
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
| | - Bo Gao
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Pan Zhang
- Department of Environmental Science and Technology, North China Electric Power University, Baoding, Hebei 071000, China
| | - Xiaowei An
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Abuliti Abudula
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
| | - Guoqing Guan
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan; Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan.
| |
Collapse
|
7
|
Lin W, Song H, Qi H, Gu X, Zhang D, Yu J, Zhang Y, Zhao G. Controllable Structure Design of an Organic Gel-Infused Porous Surface for Efficient Anti- and De-icing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39561396 DOI: 10.1021/acs.langmuir.4c04110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Icing causes many problems in daily life and with equipment stability, and many efforts have been made to remove surface icing. Herein, a novel organic gel-infused porous material is developed to achieve excellent de-icing performance. Porous polydimethylsiloxane (P-PDMS) composites with different pore sizes were prepared by a template method. The two-phase skeletons and/or gel material was obtained by infusing PDMS gel into P-PDMS (GIP-PDMS). The ice adhesion strength of GIP-PDMS under static and dynamic icing conditions was comparatively investigated. The results show that GIP-PDMS displayed excellent anti-icing performance, and the delay freezing time of GIP-PDMS1 was ∼4554 s at -5 °C. The ice adhesion strength of GIP-PDMS was much lower than that of P-PDMS, owing to the distinct modulus between the two-phase skeletons and/or gel. The simulation results indicated that the stress concentration promoted ice fracture and contributed to weak ice adhesion. Molecular dynamics further showed that the state of the molecular chains and the interfacial interaction between ice and PDMS gel at 268 K helped to decrease the shear force.
Collapse
Affiliation(s)
- Weiming Lin
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Haonan Song
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Huimin Qi
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Xingshi Gu
- Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan, China
| | - Ding Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Jiaxin Yu
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yafeng Zhang
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Gai Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
8
|
Xu X, Guan J. Spin effect in dual-atom catalysts for electrocatalysis. Chem Sci 2024:d4sc04370g. [PMID: 39246370 PMCID: PMC11376133 DOI: 10.1039/d4sc04370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The development of high-efficiency atomic-level catalysts for energy-conversion and -storage technologies is crucial to address energy shortages. The spin states of diatomic catalysts (DACs) are closely tied to their catalytic activity. Adjusting the spin states of DACs' active centers can directly modify the occupancy of d-orbitals, thereby influencing the bonding strength between metal sites and intermediates as well as the energy transfer during electro reactions. Herein, we discuss various techniques for characterizing the spin states of atomic catalysts and strategies for modulating their active center spin states. Next, we outline recent progress in the study of spin effects in DACs for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), electrocatalytic nitrogen/nitrate reduction reaction (eNRR/NO3RR), and electrocatalytic carbon dioxide reduction reaction (eCO2RR) and provide a detailed explanation of the catalytic mechanisms influenced by the spin regulation of DACs. Finally, we offer insights into the future research directions in this critical field.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
9
|
Jin Z, Jiao D, Dong Y, Liu L, Fan J, Gong M, Ma X, Wang Y, Zhang W, Zhang L, Gen Yu Z, Voiry D, Zheng W, Cui X. Boosting Electrocatalytic Carbon Dioxide Reduction via Self-Relaxation of Asymmetric Coordination in Fe-Based Single Atom Catalyst. Angew Chem Int Ed Engl 2024; 63:e202318246. [PMID: 38102742 DOI: 10.1002/anie.202318246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Addressing the limitations arising from the consistent catalytic behavior observed for various intermediates during the electrochemical carbon dioxide reduction reaction (CO2 RR) poses a significant challenge in the optimization of catalytic activity. In this study, we aimed to address this challenge by constructing an asymmetric coordination Fe single atom catalyst (SCA) with a dynamically evolved structure. Our catalyst, consisting of a Fe atom coordinated with one S atom and three N atoms (Fe-S1 N3 ), exhibited exceptional selectivity (CO Faradaic efficiency of 99.02 %) and demonstrated a high intrinsic activity (TOF of 7804.34 h-1 ), and remarkable stability. Using operando XAFS spectra and Density Functional Theory (DFT) calculations, we elucidated the self-relaxation of geometric distortion and dynamic evolution of bond lengths within the catalyst. These structure changes enabled independent regulation of the *COOH and *CO intermediate adsorption energies, effectively breaking the linear scale relationship and enhancing the intrinsic activity of CO2 RR. This study provides valuable insights into the dynamic evolution of SACs and paves the way for targeted catalyst designs aimed to disrupt the linear scaling relationships.
Collapse
Affiliation(s)
- Zhaoyong Jin
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Dongxu Jiao
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Yilong Dong
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Lin Liu
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Jinchang Fan
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Ming Gong
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Xingcheng Ma
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Ying Wang
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Wei Zhang
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Lei Zhang
- College of Chemistry, Jilin University, 130012, Changchun, China
| | - Zhi Gen Yu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, 138632, Singapore, Singapore
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, 34000, Montpellier, France
| | - Weitao Zheng
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Xiaoqiang Cui
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, 130012, Changchun, China
| |
Collapse
|