1
|
Chougle A, Rezk A, Afzal SUB, Mohammed AK, Shetty D, Nayfeh A. Evolving Role of Conjugated Polymers in Nanoelectronics and Photonics. NANO-MICRO LETTERS 2025; 17:230. [PMID: 40272616 PMCID: PMC12021782 DOI: 10.1007/s40820-025-01748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/25/2025] [Indexed: 04/27/2025]
Abstract
Conjugated polymers (CPs) have emerged as an interesting class of materials in modern electronics and photonics, characterized by their unique delocalized π-electron systems that confer high flexibility, tunable electronic properties, and solution processability. These organic polymers present a compelling alternative to traditional inorganic semiconductors, offering the potential for a new generation of optoelectronic devices. This review explores the evolving role of CPs, exploring the molecular design strategies and innovative approaches that enhance their optoelectronic properties. We highlight notable progress toward developing faster, more efficient, and environmentally friendly devices by analyzing recent advancements in CP-based devices, including organic photovoltaics, field-effect transistors, and nonvolatile memories. The integration of CPs in flexible sustainable technologies underscores their potential to revolutionize future electronic and photonic systems. As ongoing research pushes the frontiers of molecular engineering and device architecture, CPs are poised to play an essential role in shaping next-generation technologies that prioritize performance, sustainability, and adaptability.
Collapse
Affiliation(s)
- Amaan Chougle
- Department of Electrical Engineering, Khalifa University, 127788, Abu Dhabi, UAE
| | - Ayman Rezk
- Department of Electrical Engineering, Khalifa University, 127788, Abu Dhabi, UAE
| | - Syed Usama Bin Afzal
- Department of Electrical Engineering, Khalifa University, 127788, Abu Dhabi, UAE
| | | | - Dinesh Shetty
- Department of Chemistry, Khalifa University, 127788, Abu Dhabi, UAE.
- Center for Catalysis and Separation (CeCaS), Khalifa University, 127788, Abu Dhabi, UAE.
| | - Ammar Nayfeh
- Department of Electrical Engineering, Khalifa University, 127788, Abu Dhabi, UAE.
- Research and Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
2
|
Ma R, Zou B, Hai Y, Luo Y, Luo Z, Wu J, Yan H, Li G. Triplet State Suppression for Energy Loss Reduction in 20% Nonhalogenated Solvent Processed Binary Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500861. [PMID: 40091429 PMCID: PMC12038535 DOI: 10.1002/adma.202500861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Indexed: 03/19/2025]
Abstract
Boosting power conversion efficiency (PCE) of organic solar cells (OSCs) has been restricted by its undesirably high energy loss, especially for those nonhalogenated solvent-processed ones. Here,a dichloro-methoxylated terminal group in an asymmetric small molecular acceptor design, which realizes a significantly reduced non-radiative energy loss (0.179 eV) compared to its symmetric counterpart (0.202 eV), is reported. Consequently, the device efficiency is improved by up to 20% for PM6:BTP-eC9-4ClO, without sacrificing the photon harvest or charge transport ability of the control system PM6:BTP-eC9. Further characterizations reveal the asymmetric acceptor BTP-eC9-4ClO's blend film demonstrates a suppressed triplet state formation, enabled by an enhanced electron delocalization. In addition, the asymmetric BTP-eC9-4ClO is found to be thermally stabler than BTP-eC9, and thus providing an improved device stability, whose T80 value reaches > 7800 h under 80 °C anneal in N2 via linear extrapolation. This work represents state-of-the-art device performance for nonhalogenated solvent-processed binary OSCs with certified results (19.45%).
Collapse
Affiliation(s)
- Ruijie Ma
- Department of Electrical and Electronic EngineeringResearch Institute for Smart Energy (RISE)Photonic Research Institute (PRI)The Hong Kong Polytechnic UniversityHong Kong999077China
| | - Bosen Zou
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayHong Kong999077China
| | - Yulong Hai
- The Hong Kong University of Science and Technology (Guangzhou)Function HubAdvanced Materials ThrustNansha Guangzhou511400China
| | - Yongmin Luo
- The Hong Kong University of Science and Technology (Guangzhou)Function HubAdvanced Materials ThrustNansha Guangzhou511400China
| | - Zhenghui Luo
- Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyShenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Jiaying Wu
- The Hong Kong University of Science and Technology (Guangzhou)Function HubAdvanced Materials ThrustNansha Guangzhou511400China
| | - He Yan
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water BayHong Kong999077China
| | - Gang Li
- Department of Electrical and Electronic EngineeringResearch Institute for Smart Energy (RISE)Photonic Research Institute (PRI)The Hong Kong Polytechnic UniversityHong Kong999077China
| |
Collapse
|
3
|
Wang Y, Gao C, Lei W, Yang T, Liang Z, Sun K, Zhao C, Chen L, Zhu L, Zeng H, Sun X, He B, Hu H, Tang Z, Qiu M, Li S, Han P, Zhang G. Achieving 20% Toluene-Processed Binary Organic Solar Cells via Secondary Regulation of Donor Aggregation in Sequential Processing. NANO-MICRO LETTERS 2025; 17:206. [PMID: 40167593 PMCID: PMC11961838 DOI: 10.1007/s40820-025-01715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025]
Abstract
Sequential processing (SqP) of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design, which is considered the most promising strategy for achieving efficient organic solar cells (OSCs). In the SqP method, the favorable interpenetrating network seriously depends on the fine control of the bottom layer swelling. However, the choice of solvent(s) for both the donor and acceptor have been mostly based on a trial-and-error manner. A single solvent often cannot achieve sufficient yet not excessive swelling, which has long been a difficulty in the high efficient SqP OSCs. Herein, two new isomeric molecules are introduced to fine-tune the nucleation and crystallization dynamics that allows judicious control over the swelling of the bottom layer. The strong non-covalent interaction between the isomeric molecule and active materials provides an excellent driving force for optimize the swelling-process. Among them, the molecule with high dipole moment promotes earlier nucleation of the PM6 and provides extended time for crystallization during SqP, improving bulk morphology and vertical phase segregation. As a result, champion efficiencies of 17.38% and 20.00% (certified 19.70%) are achieved based on PM6/PYF-T-o (all-polymer) and PM6/BTP-eC9 devices casted by toluene solvent.
Collapse
Affiliation(s)
- Yufei Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Chuanlin Gao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Wen Lei
- College of Cyber Security, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Tao Yang
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Photonic, Technique for Information, School of Electronics Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Kangbo Sun
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Chaoyue Zhao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Lu Chen
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Liangxiang Zhu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Haoxuan Zeng
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Xiaokang Sun
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, People's Republic of China
| | - Bin He
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, People's Republic of China
| | - Zeguo Tang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Mingxia Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Shunpu Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Peigang Han
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China.
| |
Collapse
|
4
|
Liu W, Wu W, Sergeev AA, Yao J, Fu Y, Kwok CH, Ng HM, Li C, Li X, Pun SH, Hu H, Lu X, Wong KS, Li Y, Yan H, Yu H. Coplanar Dimeric Acceptors with Bathochromic Absorption and Torsion-Free Backbones through Precise Fluorination Enabling Efficient Organic Photovoltaics with 18.63% Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410826. [PMID: 39834118 PMCID: PMC11904988 DOI: 10.1002/advs.202410826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Indexed: 01/22/2025]
Abstract
Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones. Through precise fluorination, the DYF-V-based devices exhibit the highest performance of 18.63% among the GDA-based OSCs, outperforming its non-fluorinated counterpart, DY-V-based ones (16.53%). Theoretical and morphological results demonstrate that proper fluorination in DYF-V-based devices strengthens intra/intermolecular interactions for enhanced crystallinity, superior phase segregation, and less energy disorder, which is beneficial for fast exciton dissociation, rapid carrier transport, and suppressed charge recombination. The work demonstrates that proper fluorination on GDAs with rigid coplanar backbones is effective for broader photon harvesting, stronger packing, and robust stability in GDA-based OSCs.
Collapse
Affiliation(s)
- Wei Liu
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Weiwei Wu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Aleksandr A Sergeev
- Department of Physics, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Jia Yao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Yuang Fu
- Department of Physics, Chinese University of Hong Kong, Hong Kong, New Territories, 999077, P. R. China
| | - Chung Hang Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Ho Ming Ng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Chunliang Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Xiaojun Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Sai Ho Pun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xinhui Lu
- Department of Physics, Chinese University of Hong Kong, Hong Kong, New Territories, 999077, P. R. China
| | - Kam Sing Wong
- Department of Physics, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - He Yan
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
- Hong Kong University of Science and Technology-Shenzhen Research Institute, No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan, Shenzhen, 518057, P. R. China
- Hong Kong University of Science and Technology Fok Ying Tung Research Institute, S&T Building, Nansha IT Park, Guangzhou City, 511458, P. R. China
| | - Han Yu
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
- Hong Kong University of Science and Technology-Shenzhen Research Institute, No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan, Shenzhen, 518057, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
5
|
Chen H, Huang Y, Zhang R, Mou H, Ding J, Zhou J, Wang Z, Li H, Chen W, Zhu J, Cheng Q, Gu H, Wu X, Zhang T, Wang Y, Zhu H, Xie Z, Gao F, Li Y, Li Y. Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation. NATURE MATERIALS 2025; 24:444-453. [PMID: 39824965 DOI: 10.1038/s41563-024-02062-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/28/2024] [Indexed: 01/20/2025]
Abstract
Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers. When adding AT-β2O in the donor (D18-Cl) and acceptor (N3) blend, N3 crystallizes behind D18-Cl, and this phenomenon is different from the co-crystallization observed in binary D18-Cl:N3 blends. This manipulation of crystallization dynamics is favourable to form bulk-heterojunction-gradient vertical phase separation in the active layer accompanied by the high crystallinity of the acceptor and balanced charge carrier mobilities in thick films. The resultant single-junction organic solar cells exhibited a certified power conversion efficiency of over 20%, as well as demonstrated exceptional adaptability across the active layer thicknesses (100-400 nm) and remarkable universality. Such breakthroughs enable large-area modules with a certified power conversion efficiency of 18.04%.
Collapse
Affiliation(s)
- Haiyang Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yuting Huang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Hongyu Mou
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Junyuan Ding
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Jiadong Zhou
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China
| | - Zukun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Weijie Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Juan Zhu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Qinrong Cheng
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Hao Gu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xiaoxiao Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Tianjiao Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yingyi Wang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, China.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, China
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Wu X, Gong Y, Li X, Qin S, He H, Chen Z, Liang T, Wang C, Deng D, Bi Z, Ma W, Meng L, Li Y. Inner Side Chain Modification of Small Molecule Acceptors Enables Lower Energy Loss and High Efficiency of Organic Solar Cells Processed with Non-halogenated Solvents. Angew Chem Int Ed Engl 2025; 64:e202416016. [PMID: 39320167 DOI: 10.1002/anie.202416016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Organic solar cells (OSCs) processed with non-halogenated solvents usually suffer from excessive self-aggregation of small molecule acceptors (SMAs), severe phase separation and higher energy loss (Eloss), leading to reduced open-circuit voltage (Voc) and power conversion efficiency (PCE). Regulating the intermolecular interaction to disperse the aggregation and further improve the molecular packing order of SMAs would be an effective strategy to solve this problem. Here, we designed and synthesized two SMAs L8-PhF and L8-PhMe by introducing different substituents (fluorine for L8-PhF and methyl for L8-PhMe) on the phenyl end group of the inner side chains of L8-Ph, and investigated the effect of the substituents on the intermolecular interaction of SMAs, Eloss and performance of OSCs processed with non-halogenated solvents. Through single crystal analysis and theoretical calculations, it is found that compared with L8-PhF, which possesses strong and abundant intermolecular interactions but downgraded molecular packing order, L8-PhMe with the methyl substituent possesses more effective non-covalent interactions, which improves the tightness and order of molecular packing. When blending the SMAs with polymer donor PM6, the differences in intermolecular interactions of the SMAs influenced the film formation process and phase separation of the blend films. The L8-PhMe based blend film exhibits shorten film formation and more homogeneous phase separation than those of the L8-PhF and L8-Ph based ones. Especially, the OSCs based on L8-PhMe show reduced non-radiative energy loss and enhanced Voc than the devices based on the other two SMAs. Consequently, the L8-PhMe based device processed with o-xylene (o-XY) and using 2PACz as the hole transport layer (HTL) shows an outstanding PCE of 19.27 %. This study highlights that the Eloss of OSCs processed with non-halogenated solvents could be decreased through regulating the intermolecular interactions of SMAs by inner side chain modification, and also emphasize the importance of effectivity rather than intensity of non-covalent interactions introduced in SMAs on the molecular packing, morphology and PCE of OSCs.
Collapse
Affiliation(s)
- Xiangxi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shucheng Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haozhe He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zekun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongling Liang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Caixuan Wang
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Dan Deng
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
7
|
Pang S, Deng W, Pan L, Liu X, Shen Z, Li H, Cheng P, Zhu J, Yan W, Duan C. Efficient ternary organic solar cells with suppressed nonradiative recombination via B‒N based polymer donor. iScience 2025; 28:111682. [PMID: 39868050 PMCID: PMC11761936 DOI: 10.1016/j.isci.2024.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/22/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
Organic solar cells (OSCs) have developed rapidly in recent years. However, the energy loss (E loss) remains a major obstacle to further improving the photovoltaic performance. To address this issue, a ternary strategy has been employed to precisely tune the E loss and boost the efficiency of OSCs. The B‒N-based polymer donor has been proved to process high E(T1) and small ΔE ST characters, which can inhibition of CT state recombination. Herin, B‒N-based polymer donor PBNT-BDD was incorporated into the state-of-the-art PM6:L8-BO binary to construct ternary OSCs. Together with the optimal morphology, the ternary device affords an impressive power conversion efficiency of 18.95% with an improved open-circuit voltage (V oc), short-circuit density (J sc), and reduced E loss in comparison to the binary ones, which is the highest PCE for B‒N materials-based ternary device. This work broadens the selection of guest materials toward realizing the high performance of OSCs.
Collapse
Affiliation(s)
- Shuting Pang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wanyuan Deng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Langheng Pan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xinyuan Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhibang Shen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiayuan Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wensheng Yan
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Zou B, Liang A, Ding P, Yao J, Zeng X, Li H, Ma R, Li C, Wu W, Chen D, Qammar M, Yu H, Yi J, Guo L, Pun SH, Halpert JE, Li G, Kan Z, Yan H. Dipole Moment Modulation of Terminal Groups Enables Asymmetric Acceptors Featuring Medium Bandgap for Efficient and Stable Ternary Organic Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202415332. [PMID: 39245786 DOI: 10.1002/anie.202415332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
This study puts forth a novel terminal group design to develop medium-band gap Y-series acceptors beyond conventional side-chain engineering. We focused on the strategical integration of an electron-donating methoxy group and an electron-withdrawing halogen atom at benzene-fused terminal groups. This combination precisely modulated the dipole moment and electron density of terminal groups, effectively attenuating intramolecular charge transfer effect, and widening the band gap of acceptors. The incorporation of these terminal groups yielded two asymmetric acceptors, named BTP-2FClO and BTP-2FBrO, both of which exhibited open-circuit voltage (Voc) as high as 0.96 V in binary devices, representing the highest VOCs among the asymmetric Y-series small molecule acceptors. More importantly, both BTP-2FClO and BTP-2FBrO exhibit modest aggregation behaviors and molecular crystallinity, making them suitable as a third component to mitigate excess aggregation of the PM6 : BTP-eC9 blend and optimize the devices' morphology. As a result, the optimized BTP-2FClO-based ternary organic solar cells (OSCs) achieved a remarkable power conversion efficiency (PCE) of 19.34 %, positioning it among the highest-performing OSCs. Our study highlights the molecular design importance on manipulating dipole moments and electron density in developing medium-band gap acceptors, and offers a highly efficient third component for high-performance ternary OSCs.
Collapse
Affiliation(s)
- Bosen Zou
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Anhai Liang
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, School of Physical Science & Technology, Guangxi University, 530004, Nanning, China
| | - Pengbo Ding
- Department of Chemistry, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jia Yao
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Xianghao Zeng
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610106, Chengdu, China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Chunliang Li
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Weiwei Wu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Dezhang Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Memoona Qammar
- Department of Chemistry, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Han Yu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Jicheng Yi
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Liang Guo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Sai Ho Pun
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Jonathan E Halpert
- Department of Chemistry, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Gang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610106, Chengdu, China
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Zhipeng Kan
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, School of Physical Science & Technology, Guangxi University, 530004, Nanning, China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| |
Collapse
|
9
|
Ma R, Li H, Dela Peña TA, Wang H, Yan C, Cheng P, Wu J, Li G. In-situ understanding on the formation of fibrillar morphology in green solvent processed all-polymer solar cells. Natl Sci Rev 2024; 11:nwae384. [PMID: 39660303 PMCID: PMC11629699 DOI: 10.1093/nsr/nwae384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Solid additive engineering has been intensively explored on morphology tuning for highly efficient all-polymer solar cells (all-PSCs), a promising photovoltaic technology towards multi-scenario application. Although the nano-fibrillar network of the active layer induced by additive treatment is confirmed as the key factor for power conversion efficiency (PCE) of all-PSCs, its formation mechanism is not clearly revealed, for lack of precise and convincing real-time observation of crystallization and phase separation during the liquid-to-solid transition process of spin-coating. Herein we report an in-situ grazing incidence wide-angle/small-angle X-ray scattering (GIWAXS/GISAXS) screening that reveals the fact that naphthalene derived solid additives can suppress the aggregation of the polymer acceptor (PY-IT) at the beginning stage of spin coating, which provides sufficient time and space for the polymer donor (PM6) to form the fibril structure. Moreover, guided by this knowledge, a ternary all-polymer system is proposed, which achieves cutting-edge level PCEs for both small-area (0.04 cm2) (also decent operational stability) and large-area (1 cm2) devices.
Collapse
Affiliation(s)
- Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610040, China
| | - Top Archie Dela Peña
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Guangzhou 511400, China
| | - Heng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610040, China
| | - Cenqi Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610040, China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610040, China
| | - Jiaying Wu
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Guangzhou 511400, China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
10
|
Zhang K, Li T, Song P, Ma F, Li Y. Molecular engineering and structure-property relationship based on D-A chlorophyll derivative and the application in organic solar cells. Phys Chem Chem Phys 2024; 26:25607-25622. [PMID: 39344646 DOI: 10.1039/d4cp02154a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The photoactive layer materials of organic solar cells (OSCs) play a critical role in achieving excellent performance. Chlorophyll derivatives are commonly used due to their environmental friendliness, low cost, and easy accessibility. However, the efficiency of OSCs based on chlorophyll is limited by their photoelectric properties. Here, we focused on the D-A structure of chlorophyll derivative ZnChl-1 and designed four molecules through rational molecular engineering. The photoelectric properties at the microscopic level were systematically studied using density functional theory (DFT). Our findings reveal that T-ZnChl-1 with triphenylamine donor unit has a smaller energy gap and ionization energy, as well as a larger spectral red shift and absorption range. This suggests that intramolecular charge transfer will be enhanced, leading to an improvement in short-circuit current. Furthermore, Y6 is used as the acceptor to construct the heterojunction interfaces. The results indicate that the T-ZnChl-1/Y6 interface exhibits more charge transfer states and higher exciton dissociation rate KCS, which will promote charge separation and lead to excellent photovoltaic performance. This work clarifies the structure-property relationship of chlorophyll derivatives and the photo-response mechanism of intermolecular charge transfer, providing a theoretical basis for developing valuable chlorophyll-based OSCs.
Collapse
Affiliation(s)
- Kaiyan Zhang
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Ting Li
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang 110036, Liaoning, China.
| | - Fengcai Ma
- Department of Physics, Liaoning University, Shenyang 110036, Liaoning, China.
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| |
Collapse
|
11
|
Jiang Y, Yao C, Wang X, Yang Y, Wang J. A Perspective on 2D Fused-Ring Quad-Rotor-Shaped Nonfullerene Acceptors with an Anthracene Core. J Phys Chem A 2024; 128:8446-8456. [PMID: 39312405 DOI: 10.1021/acs.jpca.4c04756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Previous studies have demonstrated the remarkable properties of quad-rotor-shaped two-dimensional nonfullerene acceptors (2D NFAs), which encompass exceptional electron affinity, robust sunlight absorption, effective exciton separation, and accelerated electron transfer capabilities. Naphthalene has been demonstrated to be a significant 2D fused core to construct high-performance 2D NFAs. However, synthesizing such materials through existing synthetic pathways poses a significant challenge. In this work, we designed four 2D NFAs (TEA-SIC, TEA-SIC-8F, TEA-SIC-OH, and TEA-SIC-OH-8F) with an anthracene core. These NFAs can theoretically be synthesized into a quad-rotor configuration through a seven-step synthetic process. Theoretical calculations have demonstrated that these 2D NFAs exhibit superior electron-accepting abilities, enhanced sunlight absorption, and more efficient exciton dissociation compared to Y6. Furthermore, TEA-SIC and TEA-SIC-8F exhibited impressive electron mobilities of 1.76 × 10-3 cm2 V-1 s-1 and 1.18 × 10-3 cm2 V-1 s-1, respectively, indicating their suitability for the development of high-performance organic solar cells (OSCs). Although TEA-SIC-OH and TEA-SIC-OH-8F have lower electron mobility, their high sunlight absorption and efficient exciton separation suggest potential as third components in ternary OSCs. These 2D NFAs also exhibit a commendable solubility in most alcohol-based solvents, indicating their potential for specialized applications in the fabrication of stacked OSCs. These findings provide valuable insights for the future design of synthesizable high-performance 2D NFAs.
Collapse
Affiliation(s)
- Yang Jiang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM), School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Chuang Yao
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM), School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Xin Wang
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM), School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Yezi Yang
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM), School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Jinshan Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| |
Collapse
|
12
|
Luo Z, Wei W, Ma R, Ran G, Jee MH, Chen Z, Li Y, Zhang W, Woo HY, Yang C. Approaching 20% Efficiency in Ortho-Xylene Processed Organic Solar Cells by a Benzo[a]phenazine-Core-Based 3D Network Acceptor with Large Electronic Coupling and Long Exciton Diffusion Length. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407517. [PMID: 39139022 DOI: 10.1002/adma.202407517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
High-performance organic solar cells often rely on halogen-containing solvents, which restrict the photovoltaic industry. Therefore, it is imperative to develop efficient organic photovoltaic materials compatible with halogen-free solvents. Herein, a series of benzo[a]phenazine (BP)-core-based small-molecule acceptors (SMAs) achieved through an isomerization chlorination strategy is presented, comprising unchlorinated NA1, 10-chlorine substituted NA2, 8-chlorine substituted NA3, and 7-chlorine substituted NA4. Theoretical simulations highlight NA3's superior orbit overlap length and tight molecular packing, attributed to interactions between the end group and BP unit. Furthermore, NA3 demonstrates dense 3D network structures and a record electronic coupling of 104.5 meV. These characteristics empower the ortho-xylene (o-XY) processed PM6:NA3 device with superior power conversion efficiency (PCE) of 18.94%, surpassing PM6:NA1 (15.34%), PM6:NA2 (7.18%), and PM6:NA4 (16.02%). Notably, the significantly lower PCE in the PM6:NA2 device is attributed to excessive self-aggregation characteristics of NA2 in o-XY. Importantly, the incorporation of D18-Cl into the PM6:NA3 binary blend enhances crystallographic ordering and increases the exciton diffusion length of the donor phase, resulting in a ternary device efficiency of 19.75% (certified as 19.39%). These findings underscore the significance of incorporating new electron-deficient units in the design of efficient SMAs tailored for environmentally benign solvent processing of OSCs.
Collapse
Affiliation(s)
- Zhenghui Luo
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Weifei Wei
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ruijie Ma
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Min Hun Jee
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Zhanxiang Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuxiang Li
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Chuluo Yang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
13
|
Duan T, Wang J, Shi W, Li Y, Tu K, Bi X, Zhong C, Lv J, Yang K, Xiao Z, Kan B, Zhao Y. Fully Fused Indacenodithiophene-Centered Small-Molecule n-Type Semiconductors for High-Performance Organic Electronics. Angew Chem Int Ed Engl 2024; 63:e202407890. [PMID: 38958602 DOI: 10.1002/anie.202407890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Developing novel n-type organic semiconductors is an on-going research endeavour, given their pivotal roles in organic electronics and their relative scarcity compared to p-type counterparts. In this study, a new strategy was employed to synthesize n-type organic semiconductors featuring a fully fused conjugated backbone. By attaching two sets of adjacent amino and formyl groups to the indacenodithiophene-based central cores and triggering a tandem reaction sequence of a Knoevenagel condensation-intramolecular cyclization, DFA1 and DFA2 were realized. The solution-processed organic field effect transistors based on DFA1 exhibited unipolar n-type transport character with a decent electron mobility of ca. 0.10 cm2 V-1 s-1 (ca. 0.038 cm2 V-1 s-1 for DFA2 based devices). When employing DFA1 as a third component in organic solar cells, a high power conversion efficiency of 19.2 % can be achieved in ternary devices fabricated with PM6 : L8-BO : DFA1. This work provides a new pathway in the molecular engineering of n-type organic semiconductors, propelling relevant research forward.
Collapse
Affiliation(s)
- Tainan Duan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jia Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Wenrui Shi
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yulu Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China
| | - Kaihuai Tu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xingqi Bi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Cheng Zhong
- Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Lv
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Ke Yang
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
14
|
Zhu X, Zhang Y, Li H, Zhang Y, Miao J, Liu J, Wang L. A fully-fluorinated all-fused-ring acceptor for highly sensitive near-infrared organic photodetectors. Sci Bull (Beijing) 2024; 69:2679-2682. [PMID: 38971654 DOI: 10.1016/j.scib.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024]
Affiliation(s)
- Xiaoyu Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yongqian Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yingze Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Wu W, Zou B, Ma R, Yao J, Li C, Luo Z, Xie B, Qammar M, Dela Peña TA, Li M, Wu J, Yang C, Fan Q, Ma W, Li G, Yan H. A Difluoro-Methoxylated Ending-Group Asymmetric Small Molecule Acceptor Lead Efficient Binary Organic Photovoltaic Blend. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402793. [PMID: 38757420 DOI: 10.1002/smll.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Developing a new end group for synthesizing asymmetric small molecule acceptors (SMAs) is crucial for achieving high-performance organic photovoltaics (OPVs). Herein, an asymmetric small molecule acceptor, BTP-BO-4FO, featuring a new difluoro-methoxylated end-group is reported. Compared to its symmetric counterpart L8-BO, BTP-BO-4FO exhibits an upshifted energy level, larger dipole moment, and more sequential crystallinity. By adopting two representative and widely available solvent additives (1-chloronaphthalene (CN) and 1,8-diiodooctane (DIO)), the device based on PM6:BTP-BO-4FO (CN) photovoltaic blend demonstrates a power conversion efficiency (PCE) of 18.62% with an excellent open-circuit voltage (VOC) of 0.933 V, which surpasses the optimal result of L8-BO. The PCE of 18.62% realizes the best efficiencies for binary OPVs based on SMAs with asymmetric end groups. A series of investigations reveal that optimized PM6:BTP-BO-4FO film demonstrates similar molecular packing motif and fibrillar phase distribution as PM6:L8-BO (DIO) does, resulting in comparable recombination dynamics, thus, similar fill factor. Besides, it is found PM6:BTP-BO-4FO possesses more efficient charge generation, which yields better VOC-JSC balance. This study provides a new ending group that enables a cutting-edge efficiency in asymmetric SMA-based OPVs, enriching the material library and shed light on further design ideas.
Collapse
Affiliation(s)
- Weiwei Wu
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Bosen Zou
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Jia Yao
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Chunliang Li
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Zhenghui Luo
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bomin Xie
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Memoona Qammar
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay Rd, Kowloon, Hong Kong, 999077, P. R. China
| | - Top Archie Dela Peña
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Jiaying Wu
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, P. R. China
| | - Chuluo Yang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - He Yan
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| |
Collapse
|
16
|
Chen Q, Bian Z, Yang Y, Cui X, Jeffreys C, Xu X, Li W, Liu Y, Heeney M, Bo Z. Hierarchical Solid-Additive Strategy for Achieving Layer-by-Layer Organic Solar Cells with Over 19 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202405949. [PMID: 38871648 DOI: 10.1002/anie.202405949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Layer-by-layer (LbL) deposition of active layers in organic solar cells (OSCs) offers immense potential for optimizing performance through precise tailoring of each layer. However, achieving high-performance LbL OSCs with distinct solid additives in each layer remains challenging. In this study, we explore a novel approach that strategically incorporates different solid additives into specific layers of LbL devices. To this end, we introduce FeCl3 into the lower donor (D18) layer as a p-type dopant to enhance hole concentration and mobility. Concurrently, we incorporate the wide-band gap conjugated polymer poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) into the upper acceptor (L8-BO) layer to improve the morphology and prolong exciton lifetime. Unlike previous studies, our approach combines these two strategies to achieve higher and more balanced electron and hole mobility without affecting device open-circuit voltage, while also suppressing charge recombination. Consequently, the power conversion efficiency (PCE) of the D18+FeCl3/L8-BO device increases to 18.12 %, while the D18/L8-BO+PFO device attains a PCE of 18.79 %. These values represent substantial improvements over the control device's PCE of 17.59 %. Notably, when both FeCl3 and PFO are incorporated, the D18+FeCl3/L8-BO+PFO device achieves a remarkable PCE of 19.17 %. In summary, our research results demonstrate the effectiveness of the layered solid additive strategy in improving OSC performance.
Collapse
Affiliation(s)
- Qiaoling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ziqing Bian
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yujie Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xinyue Cui
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Charles Jeffreys
- KAUST Solar Centre, King Abdullah University of Science & Technology (KAUST), Thuwal, 239556900, Saudi Arabia
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenhua Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuqiang Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Martin Heeney
- KAUST Solar Centre, King Abdullah University of Science & Technology (KAUST), Thuwal, 239556900, Saudi Arabia
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
17
|
Ma R, Jiang X, Dela Peña TA, Gao W, Wu J, Li M, Roth SV, Müller-Buschbaum P, Li G. Insulator Polymer Matrix Construction on All-Small-Molecule Photoactive Blend Towards Extrapolated 15000 Hour T 80 Stable Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405005. [PMID: 38992998 DOI: 10.1002/adma.202405005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/09/2024] [Indexed: 07/13/2024]
Abstract
To boost the stability of all-small-molecule (ASM) organic photovoltaic (OPV) blends, an insulator polymer called styrene-ethylene-butylene-styrene (SEBS) as morphology stabilizer is applied into the host system of small molecules BM-ClEH:BO-4Cl. Minor addition of SEBS (1 mg/ml in host solution) provides a significantly enhanced T80 value of 15000 hours (extrapolated), surpassing doping-free (0 mg/ml) and heavy doping (10 mg/ml) counterparts (900 hours, 30 hours). The material reproducibility and cost-effectiveness of the active layer will not be affected by this industrially available polymer, where the power conversion efficiency (PCE) can be well maintained at 15.02%, which is still a decent value for non-halogen solvent-treated ASM OPV. Morphological and photophysical characterizations clearly demonstrate SEBS's pivotal effect on suppressing the degradation of donor molecules and blend film's crystallization/aggregation reorganization, which protects the exciton dynamics effectively. This work pays meaningful attention to the ASM system stability, performs a smart strategy to suppress the film morphology degradation, and releases a comprehensive understanding of the mechanism of device performance reduction.
Collapse
Affiliation(s)
- Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinyu Jiang
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - Top Archie Dela Peña
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Gao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jiaying Wu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
18
|
Li Y, Ren J, Liu S, Zhao B, Liang Z, Jee MH, Qin H, Su W, Woo HY, Gao C. Tailoring the Molecular Planarity of Perylene Diimide-Based Third Component toward Efficient Ternary Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401176. [PMID: 38529741 DOI: 10.1002/smll.202401176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Incorporating a third component into binary organic solar cells (b-OSCs) has provided a potential platform to boost power conversion efficiency (PCEs). However, gaining control over the non-equilibrium blend morphology via the molecular design of the perylene diimide (PDI)-based third component toward efficient ternary organic solar cells (t-OSCs) still remains challenging. Herein, two novel PDI derivatives are developed with tailored molecular planarity, namely ufBTz-2PDI and fBTz-2PDI, as the third component for t-OSCs. Notably, after performing a cyclization reaction, the twisted ufBTz-2PDI with an amorphous character transferred to the highly planar fBTz-2PDI followed by a semi-crystalline character. When incorporating the semi-crystalline fBTz-2PDI into the D18:L8-BO system, the resultant t-OSC achieved an impressive PCE of 18.56%, surpassing the 17.88% attained in b-OSCs. In comparison, the addition of amorphous ufBTz-2PDI into the binary system facilitates additional charge trap sites and results in a deteriorative PCE of 14.37%. Additionally, The third component fBTz-2PDI possesses a good generality in optimizing the PCEs of several b-OSCs systems are demonstrated. The results not only provided a novel A-DA'D-A motif for further designing efficient third component but also demonstrated the crucial role of modulated crystallinity of the PDI-based third component in optimizing PCEs of t-OSCs.
Collapse
Affiliation(s)
- Yuxiang Li
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Jiaqi Ren
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Shujuan Liu
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Baofeng Zhao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi, Key Lab of Photonic Technique for Information School of Electronics Science & Engineering Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Min Hun Jee
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hongmei Qin
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Wenyan Su
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Chao Gao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| |
Collapse
|
19
|
Zou B, Ng HM, Yu H, Ding P, Yao J, Chen D, Pun SH, Hu H, Ding K, Ma R, Qammar M, Liu W, Wu W, Lai JYL, Zhao C, Pan M, Guo L, Halpert JE, Ade H, Li G, Yan H. Precisely Controlling Polymer Acceptors with Weak Intramolecular Charge Transfer Effect and Superior Coplanarity for Efficient Indoor All-Polymer Solar Cells with over 27% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405404. [PMID: 38804577 DOI: 10.1002/adma.202405404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Indoor photovoltaics (IPVs) are garnering increasing attention from both the academic and industrial communities due to the pressing demand of the ecosystem of Internet-of-Things. All-polymer solar cells (all-PSCs), emerging as a sub-type of organic photovoltaics, with the merits of great film-forming properties, remarkable morphological and light stability, hold great promise to simultaneously achieve high efficiency and long-term operation in IPV's application. However, the dearth of polymer acceptors with medium-bandgap has impeded the rapid development of indoor all-PSCs. Herein, a highly efficient medium-bandgap polymer acceptor (PYFO-V) is reported through the synergistic effects of side chain engineering and linkage modulation and applied for indoor all-PSCs operation. As a result, the PM6:PYFO-V-based indoor all-PSC yields the highest efficiency of 27.1% under LED light condition, marking the highest value for reported binary indoor all-PSCs to date. More importantly, the blade-coated devices using non-halogenated solvent (o-xylene) maintain an efficiency of over 23%, demonstrating the potential for industry-scale fabrication. This work not only highlights the importance of fine-tuning intramolecular charge transfer effect and intrachain coplanarity in developing high-performance medium-bandgap polymer acceptors but also provides a highly efficient strategy for indoor all-PSC application.
Collapse
Affiliation(s)
- Bosen Zou
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Ho Ming Ng
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Han Yu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong Province, 529199, China
| | - Pengbo Ding
- Department of Chemistry, Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, 999077, Hong Kong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jia Yao
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Dezhang Chen
- Department of Chemistry, Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, 999077, Hong Kong
| | - Sai Ho Pun
- Department of Chemistry, Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, 999077, Hong Kong
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Kan Ding
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Memoona Qammar
- Department of Chemistry, Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, 999077, Hong Kong
| | - Wei Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Weiwei Wu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Joshua Yuk Lin Lai
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Chaoyue Zhao
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Mingao Pan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Liang Guo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jonathan E Halpert
- Department of Chemistry, Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, 999077, Hong Kong
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong Province, 529199, China
| |
Collapse
|
20
|
Qiu D, Tian C, Zhang H, Zhang J, Wei Z, Lu K. Correlating Aggregation Ability of Polymer Donors with Film Formation Kinetics for Organic Solar Cells with Improved Efficiency and Processability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313251. [PMID: 38702890 DOI: 10.1002/adma.202313251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/07/2024] [Indexed: 05/06/2024]
Abstract
Film formation kinetics significantly impact molecular processability and power conversion efficiency (PCE) of organic solar cells. Here, two ternary random copolymerization polymers are reported, D18─N-p and D18─N-m, to modulate the aggregation ability of D18 by introducing trifluoromethyl-substituted pyridine unit at para- and meta-positions, respectively. The introduction of pyridine unit significantly reduces material aggregation ability and adjusts the interactions with acceptor L8-BO, thereby leading to largely changed film formation kinetics with earlier phase separation and longer film formation times, which enlarge fiber sizes in blend films and improve carrier generation and transport. As a result, D18─N-p with moderate aggregation ability delivers a high PCE of 18.82% with L8-BO, which is further improved to 19.45% via interface engineering. Despite the slightly inferior small area device performances, D18─N-m shows improved solubility, which inspires to adjust the ratio of meta-trifluoromethyl pyridine carefully and obtain a polymer donor D18─N-m-10 with good solubility in nonhalogenated solvent o-xylene. High PCEs of 13.07% and 12.43% in 1 cm2 device and 43 cm2 module fabricated with slot-die coating method are achieved based on D18─N-m-10:L8-BO blends. This work emphasizes film formation kinetics optimization in device fabrication via aggregation ability modulation of polymer donors for efficient devices.
Collapse
Affiliation(s)
- Dingding Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
He Z, Li S, Zeng R, Lin Y, Zhang Y, Hao Z, Zhang S, Liu F, Tang Z, Zhong H. Binary Organic Solar Cells with Exceeding 19% Efficiency via the Synergy of Polyfluoride Polymer and Fluorous Solvent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404824. [PMID: 38733312 DOI: 10.1002/adma.202404824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Rational molecular design and suitable device engineering are two important strategies to boost the efficiencies in organic solar cells (OSCs). Yet these two approaches are independently developed, while their synergy is believed to be more productive. Herein, a branched polyfluoride moiety, heptafluoroisopropoxyl group, is introduced into the side chains of conjugated polymers for the first time. Compared with the conventional alkyl chain, this polyfluoride chain can endow the resulting polymer namely PF7 with highly packing order and strong crystallinity owing to the strong polarization and fluorine-induced interactions, while good solubility and moderate miscibility are retained. As a result, PF7 comprehensively outperforms the state-of-the-art polymer PM6 in photovoltaic properties. More importantly, based on the solubility of heptafluoroisopropoxyl groups in fluorous solvents, a new post-treatment denoted as fluorous solvent vapor annealing (FSVA) is proposed to match PF7. Differing from the existing post-treatments, FSVA can selectively reorganize fluoropolymer molecules but less impact small molecules in blend films. By employing the synergy of fluoropolymer and fluorous solvent, the device achieves a remarkable efficiency of 19.09%, which is among the best efficiencies in binary OSCs. The polymer PF7 and the FSVA treatment exhibit excellent universality in various OSCs with different material combinations or device architectures.
Collapse
Affiliation(s)
- Zhilong He
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siyuan Li
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Zeng
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Lin
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Hao
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shimin Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Hongliang Zhong
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
22
|
Zhou Q, Yan C, Li H, Zhu Z, Gao Y, Xiong J, Tang H, Zhu C, Yu H, Lopez SPG, Wang J, Qin M, Li J, Luo L, Liu X, Qin J, Lu S, Meng L, Laquai F, Li Y, Cheng P. Polymer Fiber Rigid Network with High Glass Transition Temperature Reinforces Stability of Organic Photovoltaics. NANO-MICRO LETTERS 2024; 16:224. [PMID: 38888701 PMCID: PMC11189398 DOI: 10.1007/s40820-024-01442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Organic photovoltaics (OPVs) need to overcome limitations such as insufficient thermal stability to be commercialized. The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology, however, exhibiting limited applicability. Therefore, it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor-acceptor compatibilizers, or by introducing another third component. Herein, a unique approach is presented, based on constructing a polymer fiber rigid network with a high glass transition temperature (Tg) to impede the movement of acceptor and donor molecules, to immobilize the active layer morphology, and thereby to improve thermal stability. A high-Tg one-dimensional aramid nanofiber (ANF) is utilized for network construction. Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart. The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart, thereby leaving fundamental processes such as charge separation, transport, and collection, determining the device efficiency, largely unaltered. This strategy is also successfully applied to other photovoltaic systems. The strategy of incorporating a polymer fiber rigid network with high Tg offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.
Collapse
Affiliation(s)
- Qiao Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Cenqi Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zhendong Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yujie Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jie Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hua Tang
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Can Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Hailin Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Sandra P Gonzalez Lopez
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Jiayu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Longbo Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jiaqiang Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Shirong Lu
- Department of Material Science and Technology, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Frédéric Laquai
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
23
|
Pang S, Liu X, Pan L, Oh J, Yang C, Duan C. Chalcogen Atoms Regulate the Organic Solar Cell Performance of B-N-Based Polymer Donors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22265-22273. [PMID: 38637913 DOI: 10.1021/acsami.4c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Donor polymers play a key role in the development of organic solar cells (OSCs). B-N-based polymer donors, as new types of materials, have attracted a lot of attention due to their special characteristics, such as high E(T1), small ΔEST, and easy synthesis, and they can be processed with real green solvents. However, the relationship between the chemical structure and device performance has not been systematically studied. Herein, chalcogen atoms that regulate the OSCs performance of B-N-based polymer donors were systematically studied. Fortunately, the substitution of a halogen atom did not affect the high E(T1) and small ΔEST character of the B-N-based polymer. The absorption and energy levels of the polymer were systematically regulated by O, S, and Se atom substitution. The PBNT-TAZ:Y6-BO-based OSCs device demonstrated a high power conversion efficiency of 15.36%. Moreover, the layer-by-layer method was applied to further optimize the device performance, and the PBNT-TAZ/Y6-BO-based OSCs device yielded a PCE of 16.34%. Consequently, we have systematically demonstrated how chalcogen atoms modulated the electronic properties of B-N-based polymers. Detailed and systematic structure-performance relationships are important for the development of next-generation B-N-based materials.
Collapse
Affiliation(s)
- Shuting Pang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xinyuan Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Langheng Pan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jiyeon Oh
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|