1
|
Winfrey CC, Resasco J, Fierer N. Habitat specialization and edge effects of soil microbial communities in a fragmented landscape. Ecology 2025; 106:e70072. [PMID: 40176488 DOI: 10.1002/ecy.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/20/2024] [Accepted: 12/13/2024] [Indexed: 04/04/2025]
Abstract
Soil microorganisms play outsized roles in nutrient cycling, plant health, and climate regulation. Despite their importance, we have a limited understanding of how soil microbes are affected by habitat fragmentation, including their responses to conditions at fragment edges, or "edge effects." To understand the responses of soil communities to edge effects, we analyzed the distributions of soil bacteria, archaea, and fungi in an experimentally fragmented system of open patches embedded within a forest matrix. In addition, we identified taxa that consistently differed among patch, edge, or matrix habitats ("specialists") and taxa that showed no habitat preference ("nonspecialists"). We hypothesized that microbial community turnover would be most pronounced at the edge between habitats. We also hypothesized that specialist fungi would be more likely to be mycorrhizal than nonspecialist fungi because mycorrhizae should be affected more by different plant hosts among habitats, whereas specialist prokaryotes would have smaller genomes (indicating reduced metabolic versatility) and be less likely to be able to sporulate than nonspecialist prokaryotes. Across all replicate sites, the matrix and patch soils harbored distinct microbial communities. However, sites where the contrasts in vegetation and pH between the patch and matrix were most pronounced exhibited larger differences between patch and matrix communities and tended to have edge communities that differed from those in the patch and forest. There were similar numbers of patch and matrix specialists, but very few edge specialist taxa. Acidobacteria and ectomycorrhizae were more likely to be forest specialists, while Chloroflexi, Ascomycota, and Glomeromycota (i.e., arbuscular mycorrhizae) were more likely to be patch specialists. Contrary to our hypotheses, nonspecialist bacteria were not more likely than specialist bacteria to have larger genomes or to be spore-formers. We found partial support for our mycorrhizal hypothesis: arbuscular mycorrhizae, but not ectomycorrhizae, were more likely to be specialists. Overall, our results indicate that soil microbial communities are sensitive to edges, but not all taxa are equally affected, with arbuscular mycorrhizae in particular showing a strong response to habitat edges. In the context of increasing habitat fragmentation worldwide, our results can help inform efforts to maintain the structure and functioning of the soil microbiome.
Collapse
Affiliation(s)
- Claire C Winfrey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - Julian Resasco
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
2
|
Ramsay MS, Sgarlata GM, Barratt CD, Salmona J, Andriatsitohaina B, Kiene F, Manzi S, Ramilison ML, Rakotondravony R, Chikhi L, Lehman SM, Radespiel U. Effects of Forest Fragmentation on Connectivity and Genetic Diversity in an Endemic and an Invasive Rodent in Northwestern Madagascar. Genes (Basel) 2023; 14:1451. [PMID: 37510355 PMCID: PMC10378931 DOI: 10.3390/genes14071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Habitat loss and fragmentation are of concern to conservation biologists worldwide. However, not all organisms are affected equally by these processes; thus, it is important to study the effects of living in fragmented habitats on species that differ in lifestyle and habitat requirements. In this study, we examined the dispersal and connectivity patterns of rodents, one endemic (Eliurus myoxinus) and one invasive (Rattus rattus), in two landscapes containing forest fragments and adjacent continuous forest patches in northwestern Madagascar. We generated genetic (RADseq) data for 66 E. myoxinus and 81 R. rattus individuals to evaluate differences in genetic diversity as well as inbreeding and connectivity in two landscapes. We found higher levels of inbreeding and lower levels of genetic diversity in E. myoxinus compared with R. rattus. We observed related dyads both within and between habitat patches and positive spatial autocorrelation at lower distance classes for both species, with a stronger pattern of spatial autocorrelation in R. rattus. Across each site, we identified contrasting migration rates for each species, but these did not correspond to habitat-matrix dichotomies. The relatively low genetic diversity in the endemic E. myoxinus suggests ecological constraints that require further investigation.
Collapse
Affiliation(s)
- Malcolm S Ramsay
- Department of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | | | - Christopher D Barratt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Jordi Salmona
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 31062 Toulouse, France
| | - Bertrand Andriatsitohaina
- Planet Madagascar, Antananarivo 101, Madagascar
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga 401, Madagascar
| | - Frederik Kiene
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Sophie Manzi
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 31062 Toulouse, France
| | - Miarisoa L Ramilison
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga 401, Madagascar
- Department of Primate Behavior and Ecology, Central Washington University, Ellensburg, WA 98926, USA
| | - Romule Rakotondravony
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga 401, Madagascar
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 31062 Toulouse, France
| | - Shawn M Lehman
- Department of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
3
|
Burt MA, Resasco J, Haddad NM, Whitehead SR. Ants disperse seeds farther in habitat patches with corridors. Ecosphere 2022. [DOI: 10.1002/ecs2.4324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Melissa A. Burt
- Department of Biological Sciences Virginia Tech Blacksburg Virginia USA
| | - Julian Resasco
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado USA
| | - Nick M. Haddad
- W.K. Kellogg Biological Station Michigan State University Hickory Corners Michigan USA
- Department of Integrative Biology Michigan State University East Lansing Michigan USA
| | | |
Collapse
|
4
|
Edge effects and vertical stratification of aerial insectivorous bats across the interface of primary-secondary Amazonian rainforest. PLoS One 2022; 17:e0274637. [PMID: 36149843 PMCID: PMC9506665 DOI: 10.1371/journal.pone.0274637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Edge effects, abiotic and biotic changes associated with habitat boundaries, are key drivers of community change in fragmented landscapes. Their influence is heavily modulated by matrix composition. With over half of the world’s tropical forests predicted to become forest edge by the end of the century, it is paramount that conservationists gain a better understanding of how tropical biota is impacted by edge gradients. Bats comprise a large fraction of tropical mammalian fauna and are demonstrably sensitive to habitat modification. Yet, knowledge about how bat assemblages are affected by edge effects remains scarce. Capitalizing on a whole-ecosystem manipulation in the Central Amazon, the aims of this study were to i) assess the consequences of edge effects for twelve aerial insectivorous bat species across the interface of primary and secondary forest, and ii) investigate if the activity levels of these species differed between the understory and canopy and if they were modulated by distance from the edge. Acoustic surveys were conducted along four 2-km transects, each traversing equal parts of primary and ca. 30-year-old secondary forest. Five models were used to assess the changes in the relative activity of forest specialists (three species), flexible forest foragers (three species), and edge foragers (six species). Modelling results revealed limited evidence of edge effects, except for forest specialists in the understory. No significant differences in activity were found between the secondary or primary forest but almost all species exhibited pronounced vertical stratification. Previously defined bat guilds appear to hold here as our study highlights that forest bats are more edge-sensitive than edge foraging bats. The absence of pronounced edge effects and the comparable activity levels between primary and old secondary forests indicates that old secondary forest can help ameliorate the consequences of fragmentation on tropical aerial insectivorous bats.
Collapse
|
5
|
Neighboring Effects on Ecological Functions: A New Approach and Application in Urbanizing China. LAND 2022. [DOI: 10.3390/land11070987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rapid urbanization has widely induced fragmented landscapes and further negatively affected ecological functions. The edge effect is an approach commonly used to investigate these negative impacts. However, edge effect research tends to focus on the impacts that a certain landscape receives from its adjacent lands rather than to assess all the influences of the landscape edges in a region, even though the latter is critical for regional ecological planning. To fill in this gap, the concept of neighboring effect is raised and analyzed in this paper with a case study of Xintai City in Northern China. Results show that the neighboring effects are generally negative for ecological functions, especially in regions that experience rapid urbanization or heavy human activities. The U-shaped relationship between the neighboring effect of a patch and its distance to the nearest township center indicates that the border region of urban and built-up areas suffers the most negative influences due to the intense interactions between different land uses. The heterogeneous effects of influencing factors in urban and rural areas were revealed by the regression results. Socioeconomic development has more important influence on neighboring effects on ecological functions in rural areas than in urban areas, and local cadres’ support of environmental protection matters only in rural areas for a less ecological functional loss. This study quantitatively examined the negative ecological effects of landscape fragmentation during rapid urbanization and calls for more attention to ecological planning at the local scale.
Collapse
|
6
|
Reeves SE, Kriegisch N, Johnson CR, Ling SD. Kelp habitat fragmentation reduces resistance to overgrazing, invasion and collapse to turf dominance. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. E. Reeves
- Institute for Marine and Antarctic Studies University of Tasmania, 20 Castray Esplanade, Battery Point Tasmania Australia
| | - N. Kriegisch
- Institute for Marine and Antarctic Studies University of Tasmania, 20 Castray Esplanade, Battery Point Tasmania Australia
| | - C. R. Johnson
- Institute for Marine and Antarctic Studies University of Tasmania, 20 Castray Esplanade, Battery Point Tasmania Australia
| | - S. D. Ling
- Institute for Marine and Antarctic Studies University of Tasmania, 20 Castray Esplanade, Battery Point Tasmania Australia
| |
Collapse
|
7
|
Toscano BJ, Pulcini D, Costa-Pereira R, Newsome WB, Griffen BD. Polymorphism promotes edge utilization by marsh crabs. Oecologia 2022; 198:1031-1042. [DOI: 10.1007/s00442-022-05147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
|
8
|
Can prey occupancy act as a surrogate for mesopredator occupancy? A case study of ocelot (Leopardus pardalis). Mamm Biol 2022. [DOI: 10.1007/s42991-022-00232-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Pinzon J, Dabros A, Riva F, Glasier JRN. Short-term effects of wildfire in boreal peatlands: Does fire mitigate the linear footprint of oil and gas exploration? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02281. [PMID: 33336476 PMCID: PMC8047916 DOI: 10.1002/eap.2281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 06/12/2023]
Abstract
Exploration practices for oil sands developments in the boreal forest of western Canada create a network of thousands of kilometers of linear features, particularly seismic lines that dissect these forests posing significant environmental challenges. As wildfire is one of the prevalent stand-replacing natural disturbances in the Canadian boreal forest, it is an important driver of environmental change and stand development that may contribute to the mitigation of such linear industrial footprint. Here, we evaluate the short-term cumulative (also known as combined) effects of seismic lines and wildfire on biodiversity and site conditions. One year after the Horse River (Fort McMurray, Alberta, Canada) fire event in the spring of 2016, we compared dissected and undisturbed forests in burned and unburned boreal peatlands, assessing changes in overall stand structure and the responses of a variety of organisms. Soil moisture was significantly higher on seismic lines than in the adjacent forest, suggesting why most of the study sites within the fire perimeter showed little evidence of burning at the line in relation to the adjacent forest. Low fire severity on seismic lines seemed an important driver of local species diversity for ants, beetles, spiders, and plants in disturbed peatlands, resulting in similar species composition on seismic lines both within and outside the burned area, but different assemblages in burned and unburned adjacent forests. Our results suggest that fire did not erase seismic lines; rather, wildfire might increase the influence of this footprint on the recovering adjacent forest. Longer-term monitoring will be necessary to understand how boreal treed peatlands respond to the cumulative effect of wildfire and linear disturbances.
Collapse
Affiliation(s)
- Jaime Pinzon
- Natural Resources CanadaCanadian Forest ServiceNorthern Forestry Centre5320 ‐ 122 StreetEdmontonAlbertaT6H 3S5Canada
| | - Anna Dabros
- Natural Resources CanadaCanadian Forest ServiceNorthern Forestry Centre5320 ‐ 122 StreetEdmontonAlbertaT6H 3S5Canada
| | - Federico Riva
- Department of Renewable ResourcesGeneral Services BuildingUniversity of AlbertaEdmontonAlbertaT6G 2E3Canada
- Present address:
Department of BiologyCarleton University336 Nesbitt BuildingOttawaOntarioK1S 5B6Canada
| | - James R. N. Glasier
- Department of Métis Rights and AccommodationMétis Nation of Alberta11738 Kingsway AvenueEdmontonAlbertaT5G 0X5Canada
| |
Collapse
|
10
|
Batáry P, Rösch V, Dormann CF, Tscharntke T. Increasing connectivity enhances habitat specialists but simplifies plant-insect food webs. Oecologia 2020; 195:539-546. [PMID: 33367959 PMCID: PMC7882472 DOI: 10.1007/s00442-020-04830-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 12/09/2020] [Indexed: 11/02/2022]
Abstract
Strong declines of grassland species diversity in small and isolated grassland patches have been observed at local and landscape scales. Here, we study how plant-herbivore interaction webs and habitat specialisation of leafhopper communities change with the size of calcareous grassland fragments and landscape connectivity. We surveyed leafhoppers and plants on 14 small (0.1-0.6 ha) and 14 large (1.2-8.8 ha) semi-natural calcareous grassland fragments in Central Germany, differing in isolation from other calcareous grasslands and in the percentage of arable land in the surrounding landscape (from simple to complex landscapes). We quantified weighted trophic links between plants and their phytophagous leafhoppers for each grassland fragment. We found that large and well-connected grassland fragments harboured a high portion of specialist leafhopper species, which in turn yielded low interaction diversity and simple plant-leafhopper food webs. In contrast, small and well-connected fragments exhibited high levels of generalism, leading to higher interaction diversity. In conclusion, food web complexity appeared to be a poor indicator for the management of insect diversity, as it is driven by specialist species, which require high connectivity of large fragments in complex landscapes. We conclude that habitat specialists should be prioritized since generalist species associated with small fragments are also widespread in the surrounding landscape matrix.
Collapse
Affiliation(s)
- Péter Batáry
- "Lendület" Landscape and Conservation Ecology, Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány u. 2-4, 2163, Vácrátót, Hungary.
| | - Verena Rösch
- Ecosystem Analysis, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstr. 7, 76829, Landau, Germany
| | - Carsten F Dormann
- Biometry and Environmental System Analysis, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, Germany
| | - Teja Tscharntke
- Agroecology, University of Goettingen, Grisebachstr. 6, 37077, Göttingen, Germany
| |
Collapse
|
11
|
The magnitude and extent of edge effects on vascular epiphytes across the Brazilian Atlantic Forest. Sci Rep 2020; 10:18847. [PMID: 33139836 PMCID: PMC7606527 DOI: 10.1038/s41598-020-75970-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
Edge effects are ubiquitous landscape processes influencing over 70% of forest cover worldwide. However, little is known about how edge effects influence the vertical stratification of communities in forest fragments. We combined a spatially implicit and a spatially explicit approach to quantify the magnitude and extent of edge effects on canopy and understorey epiphytic plants in the Brazilian Atlantic Forest. Within the human-modified landscape, species richness, species abundance and community composition remained practically unchanged along the interior-edge gradient, pointing to severe biotic homogenisation at all strata. This is because the extent of edge effects reached at least 500 m, potentially leaving just 0.24% of the studied landscape unaffected by edges. We extrapolated our findings to the entire Atlantic Forest and found that just 19.4% of the total existing area is likely unaffected by edge effects and provide suitable habitat conditions for forest-dependent epiphytes. Our results suggest that the resources provided by the current forest cover might be insufficient to support the future of epiphyte communities. Preserving large continuous ‘intact’ forests is probably the only effective conservation strategy for vascular epiphytes.
Collapse
|
12
|
van Schalkwyk J, Pryke JS, Samways MJ, Gaigher R. Environmental filtering and spillover explain multi-species edge responses across agricultural boundaries in a biosphere reserve. Sci Rep 2020; 10:14800. [PMID: 32908193 PMCID: PMC7481220 DOI: 10.1038/s41598-020-71724-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/14/2020] [Indexed: 11/23/2022] Open
Abstract
To ensure integrity of protected areas we need to understand how species respond to anthropogenic borders. We investigate, from a metacommunity perspective, the direct and indirect mechanisms by which transformed areas affect distribution patterns of ground-living arthropod assemblages inhabiting an extensive protected area adjacent to fruit orchards in an important biosphere reserve. Arthropods and environmental variables were sampled along transects perpendicular to natural-orchard edges. Influence of distance from orchard boundary, degree of impermeability of the boundary, orchard habitat quality (local scale land-use intensity), and edge-induced changes in local environmental variables on arthropod species richness and composition in non-crop habitats were assessed. Arthropod groups were assessed in terms of habitat fidelity: species associated with natural habitat (stenotopic species), those within crop habitat (cultural species), and those showing no preference for either habitat (ubiquitous species). Spillover resulted in higher cultural species richness near edges, but not higher overall species richness. Environmental filtering was important for stenotopic species composition, which was influenced by edge-induced changes in environmental variables. Ubiquitous species composition was determined by orchard impermeability. Increased orchard habitat quality was associated with higher cultural and ubiquitous species richness. The effects of orchards on assemblages in natural habitats can be variable, but predictable when using species habitat specificity in conjunction with a metacommunity framework. High intensity orchards may act as sink habitats, especially for species that readily disperse between crop and natural habitats. Here we recommend that local buffer strips are > 85 m wide, which will reduce the influence of cultural species spillover on sensitive natural ecosystems.
Collapse
Affiliation(s)
- J van Schalkwyk
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - J S Pryke
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - M J Samways
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - R Gaigher
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
13
|
Christopher DA, Mitchell RJ, Trapnell DW, Smallwood PA, Semski WR, Karron JD. Edge effects and mating patterns in a bumblebee-pollinated plant. AOB PLANTS 2020; 12:plaa033. [PMID: 32742630 PMCID: PMC7384318 DOI: 10.1093/aobpla/plaa033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Researchers have long assumed that plant spatial location influences plant reproductive success and pollinator foraging behaviour. For example, many flowering plant populations have small, linear or irregular shapes that increase the proportion of plants on the edge, which may reduce mating opportunities through both male and female function. Additionally, plants that rely on pollinators may be particularly vulnerable to edge effects if those pollinators exhibit restricted foraging and pollen carryover is limited. To explore the effects of spatial location (edge vs. interior) on siring success, seed production, pollinator foraging patterns and pollen-mediated gene dispersal, we established a square experimental array of 49 Mimulus ringens (monkeyflower) plants. We observed foraging patterns of pollinating bumblebees and used paternity analysis to quantify male and female reproductive success and mate diversity for plants on the edge versus interior. We found no significant differences between edge and interior plants in the number of seeds sired, mothered or the number of sires per fruit. However, we found strong differences in pollinator behaviour based on plant location, including 15 % lower per flower visitation rates and substantially longer interplant moves for edge plants. This translated into 40 % greater pollen-mediated gene dispersal for edge than for interior plants. Overall, our results suggest that edge effects are not as strong as is commonly assumed, and that different plant reproduction parameters respond to spatial location independently.
Collapse
Affiliation(s)
- Dorothy A Christopher
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | | | | | | | - Wendy R Semski
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Jeffrey D Karron
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
14
|
Lázaro A, Fuster F, Alomar D, Totland Ø. Disentangling direct and indirect effects of habitat fragmentation on wild plants' pollinator visits and seed production. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02099. [PMID: 32086968 DOI: 10.1002/eap.2099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Habitat fragmentation threatens plant and pollinator communities, as well as their interactions. However, the effects of landscape fragmentation on the pollination of wild plant species are not well understood yet, partly because there are many correlated features in fragmented landscapes (e.g., decreased patch size, increased isolation, and patch complexity) whose influences are difficult to disentangle. Using a structural equation modeling approach, we assessed the direct and indirect effects of landscape fragmentation (patch size, isolation and complexity, percentage of surrounding land in forest) on the abundance, functional-group richness, and evenness of pollinators of 24 habitat fragments within an agricultural landscape in Southern Norway. In addition, we studied how these variables affected visitation rates (visits per flower) and seed production (seed set, seed mass) in the four most abundant plant species in the area. Flower abundance was higher in larger and complex patches and decreased with the percentage of forest in the surroundings, while flower richness increased with patch complexity. We found a direct negative relationship between patch complexity and the overall number of pollinator visits that the habitat fragments received. Apart from this direct landscape effect, pollinator visits were mostly affected by the floral communities, with overall flower abundance and richness increasing both total number of pollinator visits and pollinator-group richness, and flower richness having an additional negative influence on pollinator-group evenness. Interestingly, we did not find any direct link between visitation rates and reproductive success for any of the study plant species. Instead, several landscape variables directly affected species seed production, although the effects of landscape on seed production were highly species specific. Patch complexity had a negative effect on seed production in two of the four focal species, while other components of the landscape had species-specific effects. Increasing fragmentation of agricultural landscapes affects pollination interactions at the community level and the reproduction of wild plants. However, understanding the effects of fragmentation on seed production requires going beyond estimating visitation rates, since landscape effects on plant reproduction are not always related to overall interaction frequencies.
Collapse
Affiliation(s)
- Amparo Lázaro
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA; UIB-CSIC), C/ Miquel Marquès 21, Esporles, 07190, Balearic Islands, Spain
| | - Francisco Fuster
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA; UIB-CSIC), C/ Miquel Marquès 21, Esporles, 07190, Balearic Islands, Spain
| | - David Alomar
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA; UIB-CSIC), C/ Miquel Marquès 21, Esporles, 07190, Balearic Islands, Spain
| | - Ørjan Totland
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| |
Collapse
|
15
|
van Schalkwyk J, Pryke JS, Samways MJ, Gaigher R. Spillover of terrestrial arthropod species and beta diversity in perennial crops relative to spatial scale of land‐use intensity. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julia van Schalkwyk
- Department of Conservation Ecology and Entomology Stellenbosch University Matieland South Africa
| | - James S. Pryke
- Department of Conservation Ecology and Entomology Stellenbosch University Matieland South Africa
| | - Michael J. Samways
- Department of Conservation Ecology and Entomology Stellenbosch University Matieland South Africa
| | - René Gaigher
- Department of Conservation Ecology and Entomology Stellenbosch University Matieland South Africa
| |
Collapse
|
16
|
Steffens TS, Mercado Malabet F, Lehman SM. Occurrence of lemurs in landscapes and their species-specific scale responses to habitat loss. Am J Primatol 2020; 82:e23110. [PMID: 32083335 DOI: 10.1002/ajp.23110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 11/08/2022]
Abstract
Studies on the impact of habitat loss on species occurrence consistently find that the amount of habitat (measured as patch area) is a major determinant of species occurrence at a patch-level. However, patch-level research may fail to detect important patterns and processes only observable at a landscape-level. A landscape-level approach that incorporates species-specific scale responses is needed to better understand what drives species occurrence. Our aim was to determine the landscape-level scale of effect of habitat amount on the occurrence of three species of nocturnal lemurs (Cheirogaleus medius, Microcebus murinus, and M. ravelobensis). We surveyed line transects to determine the occurrence of three lemur species within a fragmented landscape of deciduous dry forest and anthropogenic grassland in northwestern Madagascar. To determine the scale of effect of habitat loss on lemur occurrence, we compared logistic regression models of occurrence against habitat amount among eight different landscape scales using Akaike's Information Criterion values. We found differing scale responses among the lemurs in our study. Occurrence of C. medius responded to habitat amount at scales between 0.5-4 ha, M. murinus at scales between 1 and 4 ha and M. ravelobensis at scales between 0.125 and 4 ha. We suggest that the scale of effect for C. medius is mediated by their ability to hibernate. A relatively lower scale-response for Microcebus spp. likely reflect their omnivorous diet, small habitat requirements, and limited dispersal ability. Differences in scale responses between M. murinus and M. ravelobensis are likely a result of differing dispersal ability and responses to edge effects between these species. Our study is among the first on lemurs to show the value of a landscape-level approach when assessing the effects of habitat loss on species occurrence.
Collapse
Affiliation(s)
- Travis S Steffens
- Department of Anthropology, University of Toronto, Ontario, Canada.,Planet Madagascar, Ontario, Guelph, Canada.,Department of Sociology and Anthropology, University of Guelph, Ontario, Canada
| | | | - Shawn M Lehman
- Department of Anthropology, University of Toronto, Ontario, Canada
| |
Collapse
|
17
|
Darling A, Leston L, Bayne E. Small-mammal abundance differs between pipelines, edges, and interior boreal forest habitat. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oil and gas development alters boreal forests by creating early-successional habitat and an increased amount of edge. We evaluated which small-mammal species used pipeline rights of way, the influence of vegetation recovery on pipelines, and edge effects in the adjacent forest. Meadow voles (Microtus pennsylvanicus (Ord, 1815)) were the most common species on pipelines, whereas adjacent forest was dominated by southern red-backed voles (Myodes gapperi (Vigors, 1830)), northern red-backed voles (Myodes rutilus (Pallas, 1779)), and North American deer mice (Peromyscus maniculatus (Wagner, 1845)). Deer mouse abundance was greater along pipeline transects with greater vegetation recovery. Within the forest, irrespective of vegetation recovery on pipelines, meadow voles and deer mice increased near edges. Red-backed voles showed a mixed (i.e., neutral or positive) response to edge. Vegetation variables (i.e., canopy type and cover, ground cover, stem counts, and volume of downed woody material) were important predictors of small-mammal abundance in the forest, but they could not fully account for observed edge effects. Altered small-mammal communities on and adjacent to pipelines may have implications for boreal forest management and conservation through potential changes in predator–prey dynamics and boreal food webs; these implications require further study.
Collapse
Affiliation(s)
- A.F. Darling
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - L. Leston
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - E.M. Bayne
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
18
|
Barros FM, Martello F, Peres CA, Pizo MA, Ribeiro MC. Matrix type and landscape attributes modulate avian taxonomic and functional spillover across habitat boundaries in the Brazilian Atlantic Forest. OIKOS 2019. [DOI: 10.1111/oik.05910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Fabio M. Barros
- Dept of Ecology, São Paulo State Univ. (UNESP) Rio Claro Brazil
| | - Felipe Martello
- Dept of Environmental Sciences, São Carlos Federal Univ. (UFSCAR) São Carlos Brazil
| | - Carlos A. Peres
- School of Environmental Sciences, Univ. of East Anglia (UEA) Norwich UK
| | - Marco A. Pizo
- Dept of Zoology, São Paulo State Univ. (UNESP) Rio Claro Brazil
| | | |
Collapse
|
19
|
Wimp GM, Ries L, Lewis D, Murphy SM. Habitat edge responses of generalist predators are predicted by prey and structural resources. Ecology 2019; 100:e02662. [PMID: 31013545 DOI: 10.1002/ecy.2662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 11/09/2022]
Abstract
Generalist predators are thought to be less vulnerable to habitat fragmentation because they use diverse resources across larger spatial scales than specialist predators. Thus, it has been suggested that generalist predators may respond positively to habitat edges or demonstrate no edge response, because they can potentially use prey resources equally well on both sides of the habitat edge. However, most predictions about generalist predator responses to the habitat edge are based solely on prey resources, without consideration of other potential drivers. For instance, structural resources are essential for some species to build webs to capture prey or to avoid intraguild predation and cannibalism. In this study, we used both prey and structural resources to predict the response of four predator functional groups (hunting spiders, web-building spiders, aerial predators, and epigeic predators that feed on the detrital/algal food web) to a habitat edge between two salt-marsh grasses (Spartina alterniflora and Spartina patens). We found that generalist predators largely demonstrated negative responses to the habitat edge and had distinct habitat associations. Positive edge responses were only observed in one functional group (hunting spiders), and this pattern was driven by the two most abundant species. Negative responses to the habitat edge were more common among taxa and were better explained by structural resources rather than prey resources in the two habitats. Although it is generally acknowledged that specialists decline in fragmented habitats, generalists are thought to be more resilient. However, our research demonstrates that even generalists have habitat structural or food resource requirements that may limit their resilience to habitat loss and fragmentation.
Collapse
Affiliation(s)
- Gina M Wimp
- Biology Department, Georgetown University, Washington, D.C., 20057, USA
| | - Leslie Ries
- Biology Department, Georgetown University, Washington, D.C., 20057, USA
| | - Danny Lewis
- Biology Department, Georgetown University, Washington, D.C., 20057, USA
| | - Shannon M Murphy
- Department of Biological Sciences, University of Denver, Denver, Colorado, 80208, USA
| |
Collapse
|
20
|
Abstract
AbstractHabitat fragmentation creates habitat edges, and ecological edge effects can cause major changes in the ecology and distribution of many taxa. However, these ecological changes may in turn influence animal movements and lead to molecular edge effects and edge-related genetic structure, matters that are largely unexplored. This study aims to infer molecular edge effects and to test three possible underlying mechanisms in the Endangered golden-brown mouse lemur Microcebus ravelobensis, a nocturnal species in the dry deciduous forest of the Ankarafantsika National Park in north-western Madagascar. Mouse lemurs were sampled in one edge and two interior habitats in close proximity to each other (500–1,400 m) in a continuous forest. A total of 41 mouse lemur samples were genotyped with seven nuclear microsatellites, and a fragment of the mitochondrial control region was sequenced for all samples. The overall genetic diversity (allelic richness, heterozygosity, haplotype richness, nucleotide diversity) was lower in the edge habitat compared to the two interior sites and all subpopulations showed signals of relatively low genetic exchange and significant genetic differentiation between them despite the short geographical distances, supporting the local preference model. These findings can be interpreted as preliminary signals of a molecular edge effect and suggest the potential for local adaptation. They are highly relevant for the conservation of fragmented populations, because a further subdivision of already small populations may increase their vulnerability to stochastic demographic changes and collapse.
Collapse
|
21
|
Bagchi R, Brown LM, Elphick CS, Wagner DL, Singer MS. Anthropogenic fragmentation of landscapes: mechanisms for eroding the specificity of plant-herbivore interactions. Oecologia 2018; 187:521-533. [PMID: 29560512 DOI: 10.1007/s00442-018-4115-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/11/2018] [Indexed: 11/26/2022]
Abstract
Reduced ecological specialization is an emerging, general pattern of ecological networks in fragmented landscapes. In plant-herbivore interactions, reductions in dietary specialization of herbivore communities are consistently associated with fragmented landscapes, but the causes remain poorly understood. We propose several hypothetical bottom-up and top-down mechanisms that may reduce the specificity of plant-herbivore interactions. These include empirically plausible applications and extensions of theory based on reduced habitat patch size and isolation (considered jointly), and habitat edge effects. Bottom-up effects in small, isolated habitat patches may limit availability of suitable hostplants, a constraint that increases with dietary specialization. Poor hostplant quality due to inbreeding in such fragments may especially disadvantage dietary specialist herbivores even when their hostplants are present. Size and isolation of habitat patches may change patterns of predation of herbivores, but whether such putative changes are associated with herbivore dietary specialization should depend on the mobility, size, and diet breadth of predators. Bottom-up edge effects may favor dietary generalist herbivores, yet top-down edge effects may favor dietary specialists owing to reduced predation. An increasingly supported edge effect is trophic ricochets generated by large grazers/browsers, which remove key hostplant species of specialist herbivores. We present empirical evidence that greater deer browsing in small forest fragments disproportionately reduces specialist abundances in lepidopteran assemblages in northeastern USA. Despite indirect evidence for these mechanisms, they have received scant direct testing with experimental approaches at a landscape scale. Identifying their relative contributions to reduced specificity of plant-herbivore interactions in fragmented landscapes is an important research goal.
Collapse
Affiliation(s)
- Robert Bagchi
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road Unit 3043, Storrs, CT, 06260-3043, USA.
| | - Leone M Brown
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road Unit 3043, Storrs, CT, 06260-3043, USA
| | - Chris S Elphick
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road Unit 3043, Storrs, CT, 06260-3043, USA
| | - David L Wagner
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road Unit 3043, Storrs, CT, 06260-3043, USA
| | - Michael S Singer
- Department of Biology, Wesleyan University, Middletown, CT, 06459, USA
| |
Collapse
|